Unique Role of Caffeine Compared to Other Methylxanthines

Total Page:16

File Type:pdf, Size:1020Kb

Unique Role of Caffeine Compared to Other Methylxanthines International Journal of Molecular Sciences Article Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells 1, 1, 1, 1 Daniel Janitschke y , Anna A. Lauer y , Cornel M. Bachmann y, Martin Seyfried , Heike S. Grimm 1, Tobias Hartmann 1,2 and Marcus O. W. Grimm 1,2,* 1 Experimental Neurology, Saarland University, 66421 Homburg/Saar, Germany; [email protected] (D.J.); [email protected] (A.A.L.); [email protected] (C.M.B.); [email protected] (M.S.); [email protected] (H.S.G.); [email protected] (T.H.) 2 Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66421 Homburg/Saar, Germany * Correspondence: [email protected] These authors contributed equally to this work. y Received: 3 November 2020; Accepted: 25 November 2020; Published: 27 November 2020 Abstract: Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer’s disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines—caffeine, theophylline and theobromine—and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class. Keywords: methylxanthines; caffeine; theobromine; theophylline; pentoxifylline; propentofylline; oxidative stress; lipid homeostasis; energy metabolism; signal transduction 1. Introduction Methylxanthines are derivatives of the purine base xanthine (2,6-dihydroxypurine) with additional methyl groups at the nitrogen of the xanthine structure (R1, R2, R3) (Figure1). The naturally occurring methylxanthine caffeine is characterized by three additional methyl groups (1,3,7-trimethylxanthine), whereas theophylline and theobromine have two additional methyl groups at different positions (theophylline = 1,3-dimethylxanthine; theobromine = 3,7-dimethylxanthine). Synthetic methylxanthines used as pharmaceuticals have, in addition to the methyl group at the R2 position, other functional groups Int. J. Mol. Sci. 2020, 21, 9015; doi:10.3390/ijms21239015 www.mdpi.com/journal/ijms Int.Int. J. Mol. J. Mol. Sci. Sci. 20202020, 21,,21 x ,FOR 9015 PEER REVIEW 2 of2 of21 19 addition to the methyl groups at R2 and R3, an oxohexyl group at R1 (3,7-dimethyl-1-(5- at the R1 and R3 positions. For example, pentoxifylline has, in addition to the methyl groups at R2 and oxohexyl)purin-2,6-dion), and propentofylline has a propylpurine group instead of a methyl group R3, an oxohexyl group at R1 (3,7-dimethyl-1-(5-oxohexyl)purin-2,6-dion), and propentofylline has a at R3 (3-methyl-1-(5-oxohexyl)-7-propylpurine-2,6-dione). propylpurine group instead of a methyl group at R3 (3-methyl-1-(5-oxohexyl)-7-propylpurine-2,6-dione). FigureFigure 1. 1.ChemicalChemical structure structure of ofxanthine xanthine (left (left) and) and combinations combinations of ofthe the side side chains chains of ofits its derivatives derivatives caffeine,caffeine, theophylline, theophylline, theobromine, theobromine, pentoxifylline pentoxifylline and and propentofylline propentofylline (right (right). ). TheThe naturally naturally occurring occurring methylxanthines methylxanthines caffeine, caffeine, theophylline theophylline and and theobromine theobromine are are widely widely consumedconsumed all all over over the the world, world, being being present present in incoffee, coffee, green green and and black black tea tea and and cacao cacao [1,2] [1,2. ].A Atotal total of of 81.2%81.2% of ofthe the participants participants in ina study a study investigating investigating time time trends trends of ofnon non-alcoholic-alcoholic beverage beverage intake intake among among GermanGerman citizens citizens declare declaredd aa frequentfrequent consumption consumption of coof ffcoffeeee [3]. [3] Co.ff eeCoffee and greenand green or black or teablack represent tea representthe second the most second commonly most consumedcommonly non-alcoholic consumed beverages,non-alcoholic after beverages water [4]., Methylxanthines after water [4] can. Methylxanthinesbe easily absorbed can frombe easily the digestive absorbed tract from after the oraldigestive intake tract and after are known oral intake to have and psychostimulant are known to haveactions psychostimulant [5,6]. actions [5,6]. AsideAside from from dietarydietary uptake, uptake, xanthine xanthine derivatives derivatives are or haveare beenor widelyhave usedbeen pharmacologically widely used pharmacologicallyin veterinary and in human veterinary medicine. and human For medicine. example, For methylxanthines example, methylxanthines are reported are to reported be beneficial to befor beneficial patients for with patients chronic with obstructive chronic obstructive lung disease lung (COPD) disease and(COPD) asthma and byasthma attenuating by attenuating bronchial bronchspasmsial spasms [7] and [7] for and the for treatment the treatment of respiratory of respiratory pediatric pediatric diseases diseases [ 8[8]].. Since Since methylxanthines methylxanthines cancan cross cross the the blood blood–brain–brain barrier barrier and and influence influence the the central central nervous nervous system system via via their their effect effect as as adenosineadenosine receptor receptor antagonists, antagonists, they they are are reported reported to tohave have benef beneficialicial properties properties in inrespect respect of ofneuronal neuronal andand neurodegenerative neurodegenerative disorders disorders like like schizophrenia, schizophrenia, Parkinson´s Parkinson’s disease disease and and Alzheimer´s Alzheimer’s disease disease (AD)(AD) [9[9––11]11]. .In respectrespect to to coronary coronary heart heart diseases, diseases methylxanthines, methylxanthines are reported are toreported prevent hypertension,to prevent hypertension,arterial thrombosis arterial andthrom myocardialbosis and infarction, myocardial as infarction they have, beenas they shown have to been affect shown platelet to functionaffect plateletand arterial function vasodilation and arterial[7 vasodilation,12]. In addition [7,12] to. In their addition beneficial to the eirff ectsbeneficial in treating effects the in sidetreat eingffects theof sideradiotherapy, effects of radiotherapy individual methylxanthines, individual methylxanthines are reported are to be reported useful forto be biochemical useful for modulationbiochemical of modulationcancer chemotherapy of cancer chemotherapy [13]. [13]. MethylxanthinesMethylxanthines act act via via different different mechanisms mechanisms,, including including antagonism antagonism of ofpurinergic purinergic P1 P1 receptors, receptors, mainlymainly adenosine adenosine A1 A1 and and A2A A2A receptors receptors [14] [14. ].Blocking Blocking adenosine adenosine receptors receptors reduces reduces inhibitory inhibitory endogenousendogenous adenosine adenosine and and modulates modulates several several cellular cellular pathways pathways,, e.g. e.g.,, by by increas increasinging dopaminergic dopaminergic activityactivity in inthe the brain brain and and thereby thereby mediating mediating the the psychostimulant psychostimulant effect. effect. In Inhigher higher concentrations, concentrations, whichwhich cannot cannot be reached be reached by nutritional by nutritional intake, intake, but rather but are rather reached are reachedthrough throughpharmaceutical pharmaceutical intake, methylxanthinesintake, methylxanthines lead to inhibition lead to inhibition of cyclic ofnucleotide cyclic nucleotide phosphodiesterases phosphodiesterases and high and-affinity high-a ATPffinity- dependentATP-dependent cyclic nucleotide cyclic nucleotide transporters transporters,, resulting resulting in an increase in an increase of cellular of cellular cyclic AMP cyclic levels AMP levelsand mobilizand mobilizationation of intracellular of intracellular calcium; calcium; as a consequence as a consequence a modulation a modulation of gamma of gamma-amino-amino butyric butyric acid receptorsacid receptors,, for example, for example, has been has reported been reported [15–18] [15. –18]. MethylxanthinesMethylxanthines affect affect gene gene transcription transcription via via different different mechanisms. mechanisms. Naturally Naturally occurring occurring methylxanthinesmethylxanthines effectively effectively
Recommended publications
  • SCH 58261: a Potent and Selective Non-Xanthine A2A Adenosine Receptor Antagonist
    22 DIRECTED DRUG DISCOVERY™ LIGAND-SETS™ for Assay Validation and High Throughput Screening Easy-to-use collections of pharmacologically-similar, small organic ligands Sigma-RBI LIGAND-SETS™ are a convenient and affordable way to screen a specific target with a collection of well- characterized, pharmacologically-active compounds. Each LIGAND-SET™ contains 40-80 high purity (>96%), small organic ligands arranged by pharmacological class in a 96-well format, one compound (2 mg) per well (1 ml capacity). N Standardize/validate new screening assays with well-characterized ligands N Guide secondary screening of larger, diverse libraries using pharmaceutically-relevant structures N Screen new drug targets for leads with pharmacologically-active compounds Nine different LIGAND-SETS™ are now available: N Adrenergics (Prod. No. L 0383) N Enzyme Inhibitors (Prod. No. L 6787) N Purines/Pyrimidines (Prod. No. L 2538) N Cholinergics (Prod. No. L 2663) N GABAergics (Prod. No. L 7884) N Glutamatergics (Prod. No. L 6537) N Dopaminergics (Prod. No. L 6412) N Ion Channel Modulators (Prod. No. L 6912) N Serotonergics (Prod. No. L 6662) For further information, please visit our Drug Discovery website at sigma-aldrich.com/drugdiscovery Technical information for each compound is provided in standard SD file format for use with ISIS/Base or other compatible software (software not provided). SCH 58261: A potent and selective non-xanthine A2A adenosine receptor antagonist Vol. 19 No. 4 Vol. Adenosine (Prod. No. A 9251) acts as a modulator of [3]. These results suggest a neuroprotective effect of this neuronal activity through its interaction with four receptor compound. In another study, the role of A1 and A2A subtypes referred to as A1, A2A, A2B and A3.
    [Show full text]
  • Npp2013223.Pdf
    Neuropsychopharmacology (2014) 39, 499–506 & 2014 American College of Neuropsychopharmacology. All rights reserved 0893-133X/14 www.neuropsychopharmacology.org Chronic Administration of the Methylxanthine Propentofylline Impairs Reinstatement to Cocaine by a GLT-1-Dependent Mechanism ,1 1,2 1 1 1 Kathryn J Reissner* , Robyn M Brown , Sade Spencer , Phuong K Tran , Charles A Thomas and 1 Peter W Kalivas 1 2 Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia In recent years, interactions between neurons and glia have been evaluated as mediators of neuropsychiatric diseases, including drug addiction. In particular, compounds that increase expression of the astroglial glutamate transporter GLT-1 (N-acetylcysteine and ceftriaxone) can decrease measures of drug seeking. However, it is unknown whether the compounds that influence broad measures of glial physiology can influence behavioral measures of drug relapse, nor is it clear whether the upregulated GLT-1 is functionally important for suppressing of drug seeking. To address these questions, we sought to determine whether the glial modulator and neuroprotective agent propentofylline (PPF) modifies drug seeking in rats using a reinstatement model of cocaine relapse. We found that 7 days of chronic (but not acute) administration of PPF significantly decreased both cue- and cocaine-induced reinstatement of cocaine seeking. We next determined whether the effect of systemic PPF on reinstatement depended upon its ability to restore expression of GLT-1 in the nucleus accumbens. PPF restored the cocaine-induced decrease in GLT-1 in the accumbens core; then, using an antisense strategy against glutamate transporter GLT-1, we found that restored transporter expression was necessary for PPF to inhibit cue-primed cocaine seeking.
    [Show full text]
  • Theophylline Level
    Lab Dept: Chemistry Test Name: THEOPHYLLINE LEVEL General Information Lab Order Codes: THEM Synonyms: Aminophylline, Theo-Dur, Slo-Bid CPT Codes: 80198 - Theophylline Test Includes: Theophylline concentration reported in mcg/mL. Logistics Test indications: Assessing and adjusting theophylline dosage for optimal therapeutic level. Assessing theophylline toxicity Theophylline is used to relax smooth muscles of the bronchial airways and pulmonary blood vessels to relieve and prevent symptoms of asthma and bronchospasm. Caffeine is a minor metabolite and is often seen in neonates taking theophylline. Peak levels are achieved in 30–90 minutes depending on the compound and type of preparation. Theophylline has a half-life of approximately 4 hours in children and adult smokers, and 8.7 hours in nonsmoking adults. Lab Testing Sections: Chemistry Referred to: Mayo Clinic Laboratories (MML Test: THEO) Phone Numbers: MIN Lab: 612-813-6280 STP Lab: 651-220-6550 Test Availability: Monday - Saturday Turnaround Time: 1 day Special Instructions: N/A Specimen Specimen Type: Blood Container: Preferred: Serum Gel (SST) Alternate: Red Top Draw Volume: 1.5 mL blood Processed Volume: 0.5 mL (Minimum: 0.25 mL) serum Collection: Routine blood collection Special Processing: Lab Staff: Centrifuge specimen within 2 hours of collection. Store and ship at refrigerated temperature. Patient Preparation: None Sample Rejection: Mislabeled or unlabeled specimen; gross hemolysis Interpretive Reference Range: Therapeutic: Bronchodilation: 8.0-20.0 mcg/mL Neonatal apnea (< or =4 weeks old): 6.0-13.0 mcg/mL Interpretation: Response to theophylline is directly proportional to the serum level. Patients usually receive the best response when the serum level is above 8.0 mcg/mL, with minimal toxicity experienced as long as the level is less than or equal to 20.0 mcg/mL Critical Values: >20.0 mcg/mL Limitations: Coadministration of cimetidine and erythromycin will significantly inhibit theophylline clearance, requiring dosagereduction.
    [Show full text]
  • (Trental) Does Not Inhibit Dipyridamole-Induced Coronary Hyperemia: Implications for Dipyridamole-Thaffium-20 1 Myocardial Imaging
    Pentoxifyffine (Trental) Does Not Inhibit Dipyridamole-Induced Coronary Hyperemia: Implications for Dipyridamole-Thaffium-20 1 Myocardial Imaging Kenneth A. Brown and Bryan K. Slinker Cardiology Unit ofihe University of Vermont College ofMedicine, Burlington, Vermont been found to be efficacious in the treatment of inter Dipyndamole-thallium-201imagingis often performedin mittent claudication because of its unique hemorrheo patientsunableto exercisebecauseof peripheralvascular logic effects (9). Thus, many patients with peripheral disease.Manyof these patientsare taking pentoxifylline vascular disease who undergo dipyridamole-thallium (Trental),a methylxanthinederivativewhichmayimprove 201 imaging may be taking pentoxifylline at the time intermittent claudication. Whether pentoxifylline inhibits di of their study. Although in vitro data from rat fat cells pyndamole-inducedcoronaryhyperamialike other math and hippocampal slices suggest that pentoxifylline is a ylxanthinas such as theophyllina and should be stopped much weaker adenosine antagonist than theophylline prior to dipyndamole-thallium-201 imaging is unknown. (7), it is not known whetherpentoxifylline significantly Therefore,we studiedthe hyperemicresponseto dipyn damolein sevenopen-chestanesthetizeddogs after pre inhibits dipyridamole-induced coronary hyperemia in treatmentwith either pantoxifylline(0, 7.5, or i 5 mg/kg vivo and should, therefore, be stopped prior to dipyri i.v.) or theophyllina(3 mg/kg i.v.). Baseline circumflex damole-thallium-20l imaging. Hence, we studied the
    [Show full text]
  • Synthetic Cathinones ("Bath Salts")
    Synthetic Cathinones ("Bath Salts") What are synthetic cathinones? Synthetic cathinones, more commonly known as "bath salts," are synthetic (human- made) drugs chemically related to cathinone, a stimulant found in the khat plant. Khat is a shrub grown in East Africa and southern Arabia, and people sometimes chew its leaves for their mild stimulant effects. Synthetic variants of cathinone can be much stronger than the natural product and, in some cases, very dangerous (Baumann, 2014). In Name Only Synthetic cathinone products Synthetic cathinones are marketed as cheap marketed as "bath salts" should substitutes for other stimulants such as not be confused with products methamphetamine and cocaine, and products such as Epsom salts that people sold as Molly (MDMA) often contain synthetic use during bathing. These cathinones instead (s ee "Synthetic Cathinones bathing products have no mind- and Molly" on page 3). altering ingredients. Synthetic cathinones usually take the form of a white or brown crystal-like powder and are sold in small plastic or foil packages labeled "not for human consumption." Also sometimes labeled as "plant food," "jewelry cleaner," or "phone screen cleaner," people can buy them online and in drug paraphernalia stores under a variety of brand names, which include: Flakka Bloom Cloud Nine Lunar Wave Vanilla Sky White Lightning Scarface Image courtesy of www.dea.gov/pr/multimedia- library/image-gallery/bath-salts/bath-salts04.jpg Synthetic Cathinones • January 2016 • Page 1 How do people use synthetic cathinones? People typically swallow, snort, smoke, or inject synthetic cathinones. How do synthetic cathinones affect the brain? Much is still unknown about how synthetic cathinones affect the human brain.
    [Show full text]
  • Effect of Theophylline and Enprofylline on Bronchial Hyperresponsiveness
    Thorax: first published as 10.1136/thx.44.12.1022 on 1 December 1989. Downloaded from Thorax 1989;44:1022-1026 Effect of theophylline and enprofylline on bronchial hyperresponsiveness G H KOETER, J KRAAN, M BOORSMA, J H G JONKMAN, TH W VAN DER MARK From the Department ofPulmonology and Lung Function, University Hospital, Groningen; Pharma Bio Research, Assen; and Astra Pharmaceutica, Rijswijk, The Netherlands ABSTRACT The effect of increasing intravenous doses of theophylline and enprofylline, a new xanthine derivative, on bronchial responsiveness to methacholine was studied in eight asthmatic patients. Methacholine provocations were carried out on three days before and after increasing doses of theophylline, enprofylline, and placebo, a double blind study design being used. Methacholine responsiveness was determined as the provocative concentration of methacholine causing a fall of 20% in FEV, (PC20). The patients were characterised pharmacokinetically before the main study to provide an individual dosage scheme for each patient that would provide rapid steady state plasma concentration plateaus of 5, 10, and 15 mg/l for theophylline and 1 25, 2 5, and 3-75 mg/l for enprofylline. Dose increments in the main study were given at 90 minute intervals. FEV, showed a small progressive decrease after placebo; it remained high in relation to placebo after both drugs and this effect was dose related. Methacholine PC20 values decreased after placebo; mean values were (maximum difference 2-0 and 1 7 higher after theophylline and enprofylline than after placebo copyright. doubling doses of methacholine); the effect of both drugs was dose related. Thus enprofylline and theophylline when given intravenously cause a small dose related increase in FEV1 and methacholine PC20 when compared with placebo.
    [Show full text]
  • Pro-Aging Effects of Xanthine Oxidoreductase Products
    antioxidants Review Pro-Aging Effects of Xanthine Oxidoreductase Products , , Maria Giulia Battelli y , Massimo Bortolotti y , Andrea Bolognesi * z and Letizia Polito * z Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy; [email protected] (M.G.B.); [email protected] (M.B.) * Correspondence: [email protected] (A.B.); [email protected] (L.P.); Tel.: +39-051-20-9-4707 (A.B.); +39-051-20-9-4729 (L.P.) These authors contributed equally. y Co-last authors. z Received: 22 July 2020; Accepted: 4 September 2020; Published: 8 September 2020 Abstract: The senescence process is the result of a series of factors that start from the genetic constitution interacting with epigenetic modifications induced by endogenous and environmental causes and that lead to a progressive deterioration at the cellular and functional levels. One of the main causes of aging is oxidative stress deriving from the imbalance between the production of reactive oxygen (ROS) and nitrogen (RNS) species and their scavenging through antioxidants. Xanthine oxidoreductase (XOR) activities produce uric acid, as well as reactive oxygen and nitrogen species, which all may be relevant to such equilibrium. This review analyzes XOR activity through in vitro experiments, animal studies and clinical reports, which highlight the pro-aging effects of XOR products. However, XOR activity contributes to a regular level of ROS and RNS, which appears essential for the proper functioning of many physiological pathways. This discourages the use of therapies with XOR inhibitors, unless symptomatic hyperuricemia is present.
    [Show full text]
  • Study of Adulterants and Diluents in Some Seized Captagon-Type Stimulants
    MedDocs Publishers ISSN: 2638-1370 Annals of Clinical Nutrition Open Access | Mini Review Study of Adulterants and Diluents in Some Seized Captagon-Type Stimulants Ali Zaid A Alshehri1,2*; Mohammed saeed Al Qahtani1,3; Mohammed Aedh Al Qahtani1,4; Abdulhadi M Faeq1,5; Jawad Aljohani1,6; Ammar AL-Farga7 1Department of Medical Laboratory Technology, College of Applied Medical Sciences, University of Jeddah, Saudi Arabia 2Poison Control and Medical Forensic Chemistry Center, Ministry of Health, Riyadh, Saudi Arabia 3Khammis Mushayte Maternity & Children Hospital, Ministry of Health, Saudi Arabia 4Ahad Rufidah General, Hospital, Aseer, Ministry of Health, Saudi Arabia 5Comprehensive Specialized Clinics of Security Forces in Jeddah, Ministry of Interior, Saudi Arabia 6Compliance Department, Yanbu Health Sector, Ministry of Health, Saudi Arabia 7Department of Biochemistry, Faculty of Science, University of Jeddah, Saudi Arabia *Corresponding Author(s): Ali Zaid A Alshehri Department of Medical Laboratory Technology, College of Applied Medical Sciences, University of Jeddah, Saudi Arabia Email: [email protected] Received: Apr 27, 2020 Accepted: Jun 05, 2020 Published Online: Jun 10, 2020 Journal: Annals of Clinical Nutrition Publisher: MedDocs Publishers LLC Online edition: http://meddocsonline.org/ Copyright: © Alshehri AZA (2020). This Article is distributed under the terms of Creative Commons Attribution 4.0 International License Introduction ATS are synthetic compounds belonging to the class of stimu- and heroin users combined [3,4]. Fenethylline, 7-(2-amethyl lants that excite the Central Nervous System (CNS) to produce phenyl-amino ethyl)-theophylline, is a theophylline derivative of adrenaline-like effects such as amphetamine, methamphet- amphetamine. It is a psychoactive drug which is similar to am- amine, fenethylline, methylphenidate and dextroamphetamine phetamine in many ways [5].
    [Show full text]
  • Reviews Insights Into Pathophysiology from Medication-Induced Tremor
    Freely available online Reviews Insights into Pathophysiology from Medication-induced Tremor 1* 1 1 1 John C. Morgan , Julie A. Kurek , Jennie L. Davis & Kapil D. Sethi 1 Movement Disorders Program Parkinson’s Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta, GA, USA Abstract Background: Medication-induced tremor (MIT) is common in clinical practice and there are many medications/drugs that can cause or exacerbate tremors. MIT typically occurs by enhancement of physiological tremor (EPT), but not all drugs cause tremor in this way. In this manuscript, we review how some common examples of MIT have informed us about the pathophysiology of tremor. Methods: We performed a PubMed literature search for published articles dealing with MIT and attempted to identify articles that especially dealt with the medication’s mechanism of inducing tremor. Results: There is a paucity of literature that deals with the mechanisms of MIT, with most manuscripts only describing the frequency and clinical settings where MIT is observed. That being said, MIT emanates from multiple mechanisms depending on the drug and it often takes an individualized approach to manage MIT in a given patient. Discussion: MIT has provided some insight into the mechanisms of tremors we see in clinical practice. The exact mechanism of MIT is unknown for most medications that cause tremor, but it is assumed that in most cases physiological tremor is influenced by these medications. Some medications (epinephrine) that cause EPT likely lead to tremor by peripheral mechanisms in the muscle (b-adrenergic agonists), but others may influence the central component (amitriptyline).
    [Show full text]
  • TRENTAL (Pentoxifylline) Should Be Used During Pregnancy Only If the Potential Benefit Justifies the Potential Risk to the Fetus
    TRENTAL® (pentoxifylline) Extended-Release Tablets, 400 mg DESCRIPTION TRENTAL® (pentoxifylline) extended-release tablets for oral administration contain 400 mg of the active drug and the following inactive ingredients: FD&C Red No. 3, hypromellose USP, magnesium stearate NF, polyethylene glycol NF, povidone USP, talc USP, titanium dioxide USP, and hydroxyethyl cellulose USP in an extended-release formulation. TRENTAL is a tri-substituted xanthine derivative designated chemically as 1-(5-oxohexyl)-3, 7­ dimethylxanthine that, unlike theophylline, is a hemorrheologic agent, i.e. an agent that affects blood viscosity. Pentoxifylline is soluble in water and ethanol, and sparingly soluble in toluene. The CAS Registry Number is 6493-05-6. The chemical structure is: CLINICAL PHARMACOLOGY Mode of Action Pentoxifylline and its metabolites improve the flow properties of blood by decreasing its viscosity. In patients with chronic peripheral arterial disease, this increases blood flow to the affected microcirculation and enhances tissue oxygenation. The precise mode of action of pentoxifylline and the sequence of events leading to clinical improvement are still to be defined. Pentoxifylline administration has been shown to produce dose-related hemorrheologic effects, lowering blood viscosity, and improving erythrocyte flexibility. Leukocyte properties of hemorrheologic importance have been modified in animal and in vitro human studies. Pentoxifylline has been shown to increase leukocyte deformability and to inhibit neutrophil adhesion and activation. Tissue oxygen levels have been shown to be significantly increased by therapeutic doses of pentoxifylline in patients with peripheral arterial disease. Pharmacokinetics and Metabolism After oral administration in aqueous solution pentoxifylline is almost completely absorbed. It undergoes a first-pass effect and the various metabolites appear in plasma very soon after dosing.
    [Show full text]
  • Adenosine Strongly Potentiates Pressor Responses to Nicotine in Rats (Caffeine/Blood Pressure/Sympathetic Nervous System) REID W
    Proc. Nadl. Acad. Sci. USA Vol. 81, pp. 5599-5603, September 1984 Neurobiology Adenosine strongly potentiates pressor responses to nicotine in rats (caffeine/blood pressure/sympathetic nervous system) REID W. VON BORSTEL, ANDREW A. RENSHAW, AND RICHARD J. WURTMAN Laboratory of Neuroendocrine Regulation, Department of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, MA 02139 Communicated by Walle J. H. Nauta, May 14, 1984 ABSTRACT Intravenous infusion of subhypotensive doses epinephrine output during nerve stimulation is decreased (6). of adenosine strongly potentiates the pressor response of anes- Adenosine can be produced ubiquitously and is present in thetized rats to nicotine. A dose of nicotine (40 jpg/kg, i.v.), plasma and cerebrospinal fluid (7, 8); the nucleoside can which, given alone, elicits a peak increase in diastolic pressure therefore potentially act at a number of different loci, both of -15 mm Hg, increases pressure by -70 mm Hg when arte- central and peripheral, within the complex neural circuitry rial plasma adenosine levels have been increased to 2 puM from involved in the regulation of a single physiological function, a basal concentration of =1 puM. The pressor response to ciga- such as maintenance of blood pressure or heart rate. Neither rette smoke applied to the lungs is also strongly potentiated normal plasma adenosine levels nor the relative and absolute during infusion of adenosine. Slightly higher adenosine con- sensitivities of neural and cellular processes to adenosine centrations (-4 jaM) attenuate pressor responses to electrical have been well characterized in intact animals. The studies stimulation of preganglionic sympathetic nerves, or to injec- described below explore the effects of controlled measured tions of the a-adrenergic agonist phenylephrine, but continue alterations in arterial plasma adenosine concentrations on to potentiate pressor responses to nicotine.
    [Show full text]
  • Narco-Terrorism Today: the Role of Fenethylline and Tramadol
    Narco-terrorism today: the role of fenethylline and tramadol Introduction The relationship between psychoactive substances and violent crimes such as war acts and terrorism dates long back in history. Viking warriors famously fought in a trance-like state, probably as a result of taking agaric "magic" mushrooms and bog myrtle (McCarthy, 2016). More recently, under the German Nazis’ Third Reich, methamphetamine gained an extreme popularity, despite an official “drug-free” propaganda. Under the trademark Pervitin, it could be sold without prescription until 1939, and it was not regulated by the Reich Opium Law of 1941. Pervitin was commonly used in recreational and working settings, and, of course, the stimulant was shipped to German soldiers when the troops invaded France, allowing them to march sleepless for 36 to 50 hours (Ohler, 2016). On the other side, Benzedrine, a racemic mixture of amphetamine initially developed as a bronchodilator, was the stimulant of choice of the Allied forces during World War II (McCarthy, 2016). Vietnam War (1955-1975) is considered to be the first “pharmacological war” of modern history, so called due to an unprecedented high level of consumption of psychoactive substances by military personnel (Kamienski, 2016). In 1971, a report by the House Select Committee on Crime revealed that from 1966 to 1969, the US armed forces had used 225 million tablets of stimulants, mostly Dexedrine (dextroamphetamine), an amphetamine derivative that is nearly twice as strong as the Benzedrine used in the Second World War (Kamienski, 2016). The use of illicit drugs such as stimulants or painkillers by terrorists or insurgents while undertaking their terrorist activities has been hypothesized but still needs further documentation.
    [Show full text]