Graduation Project Report Torque Vectoring
Total Page:16
File Type:pdf, Size:1020Kb
Scource: http://mercedesbenzblogphotodb.wordpress.com/2009/04/20/20042009-mercedes-benz-at-auto-shanghai-2009/torque-vectoring-brake/ (03-08-2011) Scource: http://mercedesbenzblogphotodb.wordpress.com/2009/04/20/20042009-mercedes-benz-at-auto-shanghai-2009/torque-vectoring-brake/ (03-08-2011) Enhanced Improvement Of Vehicle Dynamic Enhanced Improvement Of Vehicle Dynamic Behaviour By Applying Torque Vectoring BehaviourViewed From The By Vehicle Applying Dynamic And Torque Powertrains Vectoring Perspective Viewed From The Vehicle Dynamic And Powertrains Perspective Enhanced Improvement Of Vehicle Dynamic Behaviour By Applying Torque Vectoring Viewed From The Vehicle Dynamic And Powertrains Perspective Source: [40] 10/01/2012| Graduation Project | S.J. Koster (Joost) & S. Nada (Shady) Graduation Project Report Hogeschool van Arnhem en Nijmegen HTS-Autotechniek Contact Information Placement company: Educational institution: TNO Automotive HAN University of Applied Sciences Steenovenweg 1 HTS Autotechniek 5708 HN Helmond Ruitenberglaan 29 T 088 866 57 29 6826 CC Arnhem F 088 866 88 62 T(024) 353 05 00E [email protected] [email protected] Company supervisors; Ir. S.T.H. Jansen Ir. L.J.M. van Eeuwijk T +31 (0)88 866 57 43 T +31 (0)88 866 09 13 M +31 (0)65 388 94 82 M +31 (0)6 - [email protected] [email protected] Educational supervisors: Ir. A.J. van Breugel Ing. I. de Gijsel T +31 (0)26 384 93 47 T +31 (0)26 384 93 39 M +31 (0)63 626 25 64 M +31 (0)61 489 85 87 [email protected] [email protected] Graduates: S.J. Koster S. Nada M +31 (0)62 000 88 11 M +31 (0)62 734 06 05 [email protected] [email protected] [email protected] [email protected] S. Nada and S.J. Koster I Hogeschool van Arnhem en Nijmegen HTS-Autotechniek List Of Acronyms And Abbreviations Abbreviations in alphabetic order; Abbreviation Full Meaning 2-DOF Two Degree of Freedom AC Alternating Current Alnico Aluminum-Nickel-Cobalt (magnet) AWD All Wheel Drive BMS Battery Management System CarLab Car Laboratory (Test Vehicle) CTRL Control (inverter) DC Direct Current DFL Drive Force Limiter (controller) DYM Direct Yaw Moment (controller) ECU Electronic Control Unit EM Electric Motor EMF Back Electromotive Force FD Final Drive FWD Front Wheel Drive HEV Hybrid Electric Vehicle ICE Internal Combustion Engine IM Induction Motor MF Magic Formula NdFeB Neodyium-Iron-Boron (magnet) NS Neutral Steer OS Over Steer PM Permanent Magnets PM Sync Permanent Magnet Synchronous (electric motor) PT Powertrain QSS TB QuasiStatic Simulation Toolbox RWD Rear Wheel Drive SmCo Samarium Cobalt (magnet) SRM Switch Reluctant Motor TE Tyre Estimator® TNO Netherlands Organization for Applied Scientific Research (Company) TR Traction (controller) TV Torque Vectoring US Under Steer VD Vehicle Dynamic S. Nada and S.J. Koster II Hogeschool van Arnhem en Nijmegen HTS-Autotechniek Vehicle dynamic related acronyms in alphabetic order; Symbol Parameter Unit Track of the car Frontal area surface of car Lateral acceleration Cornering stiffness front wheel Cornering stiffness rear wheel Air drag resistance – Final drive reduction – Longitudinal force Longitudinal force rear right wheel Longitudinal force rear left wheel Lateral force Lateral force rear left wheel Lateral force rear right wheel Vertical force Vertical force rear left wheel Vertical force rear right wheel Gravity Height of central of gravity Tyre radius Inertia around x-axis Inertia around y-axis Inertia around z-axis Wheelbase Length: front wheels to central of gravity Length: rear wheels to central of gravity Vehicle mass Momentum around z-axis Pedal stroke Yaw-rate Corner radius Friction contact area certain tyre Rear left friction contact area Rear right friction contact area Longitudinal velocity Lateral velocity Side slip angle front wheel Side slip angle rear wheel Steer angle of the wheels Tyre friction coefficient – Density of air Slope of normalized tyre characteristic – S. Nada and S.J. Koster III Hogeschool van Arnhem en Nijmegen HTS-Autotechniek Powertrain related acronyms in alphabetic order; Symbol Parameters Unit Temperature coefficient magnets Required electrical energy Final gear ratio Moment of Inertia Moment of inertia of EM Moment of inertia of FD Back Electromotive Force (EMF) Torque Friction Electric motor inductance Maximum EM speed crossing signal Required electrical power Mechanical power Maximum regenerative power Electrical resistance Temperature Specified Temperature The torque the EM provides with response delay The requested torque from the EM Provided torque on EM Shaft FD torque at constant rotational speed Required torque to overcome moment of inertia of EM Required torque to overcome moment of inertia of FD Maximum possible torque Maximum available torque of requested torque Torque provided on the FD output shaft Efficiency of EM Efficiency factor Efficiency of FD Electrical time constant of the motor Mechanical time constant of the motor Rotational speed EM Maximum predefined rotational speed Rotational speed of the wheel S. Nada and S.J. Koster IV Hogeschool van Arnhem en Nijmegen HTS-Autotechniek List Of Figures And Tables FIGURES FIGURE 1 | TARGET VEHICLE MODEL [24] ........................................................................................................ 2 FIGURE 2 | CIRCLE OF KAMM (FRICTION CIRCLE) [38]. ...................................................................................... 4 FIGURE 3 | SCHEMATIC REAR VIEW OF THE VEHICLE MAKING A RIGHT HAND TURN [1]. ............................................ 4 FIGURE 4 | TOP VIEW OF THE TYRES WITHOUT USE OF ACTIVE DIFFERENTIAL IN A RIGHT HAND TURN. ......................... 5 FIGURE 5 | EFFECT OF TORQUE VECTORING. .................................................................................................... 5 FIGURE 6 | TYRE ESTIMATOR® FLOWCHART ..................................................................................................... 7 FIGURE 7 | THE PRIMARY (MAIN) COMPONENTS OF AN ELECTRIC VEHICLE POWERTRAIN [41] .................................. 9 FIGURE 8 | CROSS SECTIONS OF THE ELECTRIC DIRECT CURRENT (DC), INDUCTION (IM), SWITCH RELUCTANT (SRM) AND PERMANENT MAGNET SYNCHRONOUS (PM SYNC) MOTORS [27] ....................................... 10 FIGURE 9 | TYPICAL ELECTRIC TRACTION CHARACTERISTIC [6] ............................................................................ 12 FIGURE 10 | TYPICAL IM TORQUE-SPEED CHARACTERISTIC [6].......................................................................... 15 FIGURE 11 | TYPICAL TORQUE-SPEED CHARACTERISTIC OF A SYNCHRONOUS PM [6] ........................................... 15 FIGURE 12 | TORQUE-SPEED CHARACTERISTIC OF A SYNCHRONOUS PM WITH CONDUCTION ANGLE CONTROL [6] ..... 16 FIGURE 13 | IN-WHEEL PM SYNCHRONOUS MOTOR (2) .................................................................................. 16 FIGURE 14 | TYPICAL TORQUE-SPEED CHARACTERISTIC OF AN SRM [6] ............................................................. 17 FIGURE 15 | MECHANICAL TIME CONSTANT MULTIPLIER AS FUNCTION OF THE TEMPERATURE ................................ 19 FIGURE 16 | VEHICLE MODEL DESIGNED IN MATLAB® SIMMECHANICS® ........................................................... 23 FIGURE 17 | EXAMPLE PLOTS OUTPUT OF THE DESIGNED VEHICLE MODEL AND TYRE ESTIMATOR ® .......................... 23 FIGURE 18 | STEER CHARACTERISTIC, STEER ANGLE VERSUS LATERAL ACCELERATION [2] ........................................ 24 FIGURE 19 | TYRE FORCES IN A STEADY STATE TURN [2] ................................................................................... 25 FIGURE 20 | NORMALIZED AXLE CHARACTERISTICS AND HANDLING CURVES. (1= FRONT AXLE, 2= REAR AXLE) [23] .... 26 FIGURE 21 | TORQUE VECTORING CONTROLLERS ............................................................................................ 27 FIGURE 22 | TE AXLE CHARACTERISTIC, USED TO CALCULATE THE VEHICLE CORNERING STIFFNESS. ........................... 28 FIGURE 23 | FIRST LAYER DIRECT YAW MOMENT CONTROLLER ......................................................................... 29 FIGURE 24 | VEHICLE MOTION DATA OF VALIDATION SIMULATION. .................................................................... 30 FIGURE 25 | ACTUAL (REAL) AND THE CALCULATED IDEAL YAW-RATE.................................................................. 30 FIGURE 26 | ACCELERATION (ACC) CONTROLLER (ACC) CONTROLLER ................................................................ 31 FIGURE 27 | TOP AND FIRST LAYER OF THE TRACTION (TR) CONTROLLER ............................................................ 32 FIGURE 28 | THE TRACTION CONTROL DRIVE FORCE CORRECTION....................................................................... 32 FIGURE 29 | REDUCTION OF TYRE FORCES TO CONTROL THE CORNERING POWER .................................................. 33 FIGURE 30 | TOP AND FIRST LAYER MOTOR CONTROLLER ................................................................................. 34 FIGURE 31 | TOP AND FIRST LAYER OF THE DRIVERS INPUT SUBSYSTEM ............................................................... 35 FIGURE 32 | FIRST LAYER OF AUTO STEER CONTROLLER .................................................................................... 36 FIGURE 33 | FLOWCHART WHEN USING THE REPLAY MODEL ............................................................................. 37 FIGURE 34 | THE TOP LAYER OF THE ELECTRIC MOTOR MODEL PRESENTED AS A SUBSYSTEM .................................. 39 FIGURE 35 | SUBSYSTEM ‘GENERATED TORQUE’