Graduation Project Report Torque Vectoring

Total Page:16

File Type:pdf, Size:1020Kb

Graduation Project Report Torque Vectoring Scource: http://mercedesbenzblogphotodb.wordpress.com/2009/04/20/20042009-mercedes-benz-at-auto-shanghai-2009/torque-vectoring-brake/ (03-08-2011) Scource: http://mercedesbenzblogphotodb.wordpress.com/2009/04/20/20042009-mercedes-benz-at-auto-shanghai-2009/torque-vectoring-brake/ (03-08-2011) Enhanced Improvement Of Vehicle Dynamic Enhanced Improvement Of Vehicle Dynamic Behaviour By Applying Torque Vectoring BehaviourViewed From The By Vehicle Applying Dynamic And Torque Powertrains Vectoring Perspective Viewed From The Vehicle Dynamic And Powertrains Perspective Enhanced Improvement Of Vehicle Dynamic Behaviour By Applying Torque Vectoring Viewed From The Vehicle Dynamic And Powertrains Perspective Source: [40] 10/01/2012| Graduation Project | S.J. Koster (Joost) & S. Nada (Shady) Graduation Project Report Hogeschool van Arnhem en Nijmegen HTS-Autotechniek Contact Information Placement company: Educational institution: TNO Automotive HAN University of Applied Sciences Steenovenweg 1 HTS Autotechniek 5708 HN Helmond Ruitenberglaan 29 T 088 866 57 29 6826 CC Arnhem F 088 866 88 62 T(024) 353 05 00E [email protected] [email protected] Company supervisors; Ir. S.T.H. Jansen Ir. L.J.M. van Eeuwijk T +31 (0)88 866 57 43 T +31 (0)88 866 09 13 M +31 (0)65 388 94 82 M +31 (0)6 - [email protected] [email protected] Educational supervisors: Ir. A.J. van Breugel Ing. I. de Gijsel T +31 (0)26 384 93 47 T +31 (0)26 384 93 39 M +31 (0)63 626 25 64 M +31 (0)61 489 85 87 [email protected] [email protected] Graduates: S.J. Koster S. Nada M +31 (0)62 000 88 11 M +31 (0)62 734 06 05 [email protected] [email protected] [email protected] [email protected] S. Nada and S.J. Koster I Hogeschool van Arnhem en Nijmegen HTS-Autotechniek List Of Acronyms And Abbreviations Abbreviations in alphabetic order; Abbreviation Full Meaning 2-DOF Two Degree of Freedom AC Alternating Current Alnico Aluminum-Nickel-Cobalt (magnet) AWD All Wheel Drive BMS Battery Management System CarLab Car Laboratory (Test Vehicle) CTRL Control (inverter) DC Direct Current DFL Drive Force Limiter (controller) DYM Direct Yaw Moment (controller) ECU Electronic Control Unit EM Electric Motor EMF Back Electromotive Force FD Final Drive FWD Front Wheel Drive HEV Hybrid Electric Vehicle ICE Internal Combustion Engine IM Induction Motor MF Magic Formula NdFeB Neodyium-Iron-Boron (magnet) NS Neutral Steer OS Over Steer PM Permanent Magnets PM Sync Permanent Magnet Synchronous (electric motor) PT Powertrain QSS TB QuasiStatic Simulation Toolbox RWD Rear Wheel Drive SmCo Samarium Cobalt (magnet) SRM Switch Reluctant Motor TE Tyre Estimator® TNO Netherlands Organization for Applied Scientific Research (Company) TR Traction (controller) TV Torque Vectoring US Under Steer VD Vehicle Dynamic S. Nada and S.J. Koster II Hogeschool van Arnhem en Nijmegen HTS-Autotechniek Vehicle dynamic related acronyms in alphabetic order; Symbol Parameter Unit Track of the car Frontal area surface of car Lateral acceleration Cornering stiffness front wheel Cornering stiffness rear wheel Air drag resistance – Final drive reduction – Longitudinal force Longitudinal force rear right wheel Longitudinal force rear left wheel Lateral force Lateral force rear left wheel Lateral force rear right wheel Vertical force Vertical force rear left wheel Vertical force rear right wheel Gravity Height of central of gravity Tyre radius Inertia around x-axis Inertia around y-axis Inertia around z-axis Wheelbase Length: front wheels to central of gravity Length: rear wheels to central of gravity Vehicle mass Momentum around z-axis Pedal stroke Yaw-rate Corner radius Friction contact area certain tyre Rear left friction contact area Rear right friction contact area Longitudinal velocity Lateral velocity Side slip angle front wheel Side slip angle rear wheel Steer angle of the wheels Tyre friction coefficient – Density of air Slope of normalized tyre characteristic – S. Nada and S.J. Koster III Hogeschool van Arnhem en Nijmegen HTS-Autotechniek Powertrain related acronyms in alphabetic order; Symbol Parameters Unit Temperature coefficient magnets Required electrical energy Final gear ratio Moment of Inertia Moment of inertia of EM Moment of inertia of FD Back Electromotive Force (EMF) Torque Friction Electric motor inductance Maximum EM speed crossing signal Required electrical power Mechanical power Maximum regenerative power Electrical resistance Temperature Specified Temperature The torque the EM provides with response delay The requested torque from the EM Provided torque on EM Shaft FD torque at constant rotational speed Required torque to overcome moment of inertia of EM Required torque to overcome moment of inertia of FD Maximum possible torque Maximum available torque of requested torque Torque provided on the FD output shaft Efficiency of EM Efficiency factor Efficiency of FD Electrical time constant of the motor Mechanical time constant of the motor Rotational speed EM Maximum predefined rotational speed Rotational speed of the wheel S. Nada and S.J. Koster IV Hogeschool van Arnhem en Nijmegen HTS-Autotechniek List Of Figures And Tables FIGURES FIGURE 1 | TARGET VEHICLE MODEL [24] ........................................................................................................ 2 FIGURE 2 | CIRCLE OF KAMM (FRICTION CIRCLE) [38]. ...................................................................................... 4 FIGURE 3 | SCHEMATIC REAR VIEW OF THE VEHICLE MAKING A RIGHT HAND TURN [1]. ............................................ 4 FIGURE 4 | TOP VIEW OF THE TYRES WITHOUT USE OF ACTIVE DIFFERENTIAL IN A RIGHT HAND TURN. ......................... 5 FIGURE 5 | EFFECT OF TORQUE VECTORING. .................................................................................................... 5 FIGURE 6 | TYRE ESTIMATOR® FLOWCHART ..................................................................................................... 7 FIGURE 7 | THE PRIMARY (MAIN) COMPONENTS OF AN ELECTRIC VEHICLE POWERTRAIN [41] .................................. 9 FIGURE 8 | CROSS SECTIONS OF THE ELECTRIC DIRECT CURRENT (DC), INDUCTION (IM), SWITCH RELUCTANT (SRM) AND PERMANENT MAGNET SYNCHRONOUS (PM SYNC) MOTORS [27] ....................................... 10 FIGURE 9 | TYPICAL ELECTRIC TRACTION CHARACTERISTIC [6] ............................................................................ 12 FIGURE 10 | TYPICAL IM TORQUE-SPEED CHARACTERISTIC [6].......................................................................... 15 FIGURE 11 | TYPICAL TORQUE-SPEED CHARACTERISTIC OF A SYNCHRONOUS PM [6] ........................................... 15 FIGURE 12 | TORQUE-SPEED CHARACTERISTIC OF A SYNCHRONOUS PM WITH CONDUCTION ANGLE CONTROL [6] ..... 16 FIGURE 13 | IN-WHEEL PM SYNCHRONOUS MOTOR (2) .................................................................................. 16 FIGURE 14 | TYPICAL TORQUE-SPEED CHARACTERISTIC OF AN SRM [6] ............................................................. 17 FIGURE 15 | MECHANICAL TIME CONSTANT MULTIPLIER AS FUNCTION OF THE TEMPERATURE ................................ 19 FIGURE 16 | VEHICLE MODEL DESIGNED IN MATLAB® SIMMECHANICS® ........................................................... 23 FIGURE 17 | EXAMPLE PLOTS OUTPUT OF THE DESIGNED VEHICLE MODEL AND TYRE ESTIMATOR ® .......................... 23 FIGURE 18 | STEER CHARACTERISTIC, STEER ANGLE VERSUS LATERAL ACCELERATION [2] ........................................ 24 FIGURE 19 | TYRE FORCES IN A STEADY STATE TURN [2] ................................................................................... 25 FIGURE 20 | NORMALIZED AXLE CHARACTERISTICS AND HANDLING CURVES. (1= FRONT AXLE, 2= REAR AXLE) [23] .... 26 FIGURE 21 | TORQUE VECTORING CONTROLLERS ............................................................................................ 27 FIGURE 22 | TE AXLE CHARACTERISTIC, USED TO CALCULATE THE VEHICLE CORNERING STIFFNESS. ........................... 28 FIGURE 23 | FIRST LAYER DIRECT YAW MOMENT CONTROLLER ......................................................................... 29 FIGURE 24 | VEHICLE MOTION DATA OF VALIDATION SIMULATION. .................................................................... 30 FIGURE 25 | ACTUAL (REAL) AND THE CALCULATED IDEAL YAW-RATE.................................................................. 30 FIGURE 26 | ACCELERATION (ACC) CONTROLLER (ACC) CONTROLLER ................................................................ 31 FIGURE 27 | TOP AND FIRST LAYER OF THE TRACTION (TR) CONTROLLER ............................................................ 32 FIGURE 28 | THE TRACTION CONTROL DRIVE FORCE CORRECTION....................................................................... 32 FIGURE 29 | REDUCTION OF TYRE FORCES TO CONTROL THE CORNERING POWER .................................................. 33 FIGURE 30 | TOP AND FIRST LAYER MOTOR CONTROLLER ................................................................................. 34 FIGURE 31 | TOP AND FIRST LAYER OF THE DRIVERS INPUT SUBSYSTEM ............................................................... 35 FIGURE 32 | FIRST LAYER OF AUTO STEER CONTROLLER .................................................................................... 36 FIGURE 33 | FLOWCHART WHEN USING THE REPLAY MODEL ............................................................................. 37 FIGURE 34 | THE TOP LAYER OF THE ELECTRIC MOTOR MODEL PRESENTED AS A SUBSYSTEM .................................. 39 FIGURE 35 | SUBSYSTEM ‘GENERATED TORQUE’
Recommended publications
  • A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development
    Review A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development Fuad Un-Noor 1, Sanjeevikumar Padmanaban 2,*, Lucian Mihet-Popa 3, Mohammad Nurunnabi Mollah 1 and Eklas Hossain 4,* 1 Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh; [email protected] (F.U.-N.); [email protected] (M.N.M.) 2 Department of Electrical and Electronics Engineering, University of Johannesburg, Auckland Park 2006, South Africa 3 Faculty of Engineering, Østfold University College, Kobberslagerstredet 5, 1671 Kråkeroy-Fredrikstad, Norway; [email protected] 4 Department of Electrical Engineering & Renewable Energy, Oregon Tech, Klamath Falls, OR 97601, USA * Correspondence: [email protected] (S.P.); [email protected] (E.H.); Tel.: +27-79-219-9845 (S.P.); +1-541-885-1516 (E.H.) Academic Editor: Sergio Saponara Received: 8 May 2017; Accepted: 21 July 2017; Published: 17 August 2017 Abstract: Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept.
    [Show full text]
  • Individual Drive-Wheel Energy Management for Rear-Traction Electric Vehicles with In-Wheel Motors
    applied sciences Article Individual Drive-Wheel Energy Management for Rear-Traction Electric Vehicles with In-Wheel Motors Jose del C. Julio-Rodríguez * , Alfredo Santana-Díaz. * and Ricardo A. Ramirez-Mendoza * School of Engineering and Sciences, Tecnologico de Monterrey, Toluca 50110, Mexico * Correspondence: [email protected] (J.d.C.J.-R.); [email protected] (A.S.-D.); [email protected] (R.A.R.-M.) Abstract: In-wheel motor technology has reduced the number of components required in a vehicle’s power train system, but it has also led to several additional technological challenges. According to kinematic laws, during the turning maneuvers of a vehicle, the tires must turn at adequate rotational speeds to provide an instantaneous center of rotation. An Electronic Differential System (EDS) controlling these speeds is necessary to ensure speeds on the rear axle wheels, always guaranteeing a tractive effort to move the vehicle with the least possible energy. In this work, we present an EDS developed, implemented, and tested in a virtual environment using MATLAB™, with the proposed developments then implemented in a test car. Exhaustive experimental testing demonstrated that the proposed EDS design significantly improves the test vehicle’s longitudinal dynamics and energy consumption. This paper’s main contribution consists of designing an EDS for an in-wheel motor electric vehicle (IWMEV), with motors directly connected to the rear axle. The design demonstrated effective energy management, with savings of up to 21.4% over a vehicle without EDS, while at the same time improving longitudinal dynamic performance. Citation: Julio-Rodríguez, J.d.C.; Keywords: electric vehicles; electromobility; in-wheel motors; electronic differential; wheel-speed Santana-Díaz., A.; Ramirez-Mendoza, control; powertrain; energy consumption; automotive control; vehicle dynamics control R.A.
    [Show full text]
  • Embedded System Design and Implementation of an Intelligent Electronic Differential System for Electric Vehicles
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 9, 2017 Embedded System Design and Implementation of an Intelligent Electronic Differential System for Electric Vehicles Ali UYSAL Emel SOYLU Technology Faculty, Department of Mechatronics Technology Faculty, Department of Mechatronics Engineering, Karabük University Engineering, Karabük University Karabük, TURKEY Karabük, TURKEY Abstract—This paper presents an experimental study of the mechanical differential, torque is not limited by the least- electronic differential system with four-wheel, dual-rear in wheel wheeled wheel, fast response time, accurate information on motor independently driven an electric vehicle. It is worth torque per wheel [2]. bearing in mind that the electronic differential is a new technology used in electric vehicle technology and provides better In this work, the intelligent supervised EDS for electric balancing in curved paths. In addition, it is more lightweight vehicles is designed and realized. There are studies in this issue than the mechanical differential and can be controlled by a single in the literature. This technology has many applications and controller. In this study, intelligently supervised electronic vehicle performance has been improved with successful differential design and control is carried out for electric vehicles. applications. The movement of this earthmoving truck is Embedded system is used to provide motor control with a fuzzy provided by an electric drive system consisting of two logic controller. High accuracy is obtained from experimental independent electric motors. Providing a maximum power of study. 2700 kW, these engines are controlled to adjust their speed when cornering, thereby increasing traction and reducing tire Keywords—Electronic differential; electric vehicle; embedded wear.
    [Show full text]
  • Electronic Differential in Electric Vehicles
    International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1322 ISSN 2229-5518 Electronic differential in electric vehicles Akshay aggarwal Abstract - Electronic differential is advancement in electric vehicles technology along with the more traction control. The electronic differential provides the required torque for each driving wheel and allows different wheel speeds electronically. It is used in place of the mechanical differential in multi-drive systems. When cornering the inner and outer wheels rotate at different speeds, because the inner wheels describe a smaller turning radius. The electronic differential uses the steering wheel command signal, throttle position signals and the motor speed signals to control the power to each wheel so that all wheels are supplied with the torque they need. The proposed control structure is based on the PID control for each wheel motor. PID Control system is then evaluated in the Matlab/Simulink environment. Electronic differential have the advantages of replacing loosely, heavy and inefficient mechanical transmission and mechanical differential with a more efficient, light and small electric motors directly coupled to the wheels using a single gear reduction or an in-wheel motor. Index terms PID controller, electric vehicle, controller area network, electronic control unit, electronic differential —————————— —————————— 1 Introduction trajectory or a lane change each wheel is controlled The heavy body including the structure and materials through an ED in order to satisfy the motion used in Electric Vehicle hasIJSER always been a field of requirements. interest to designers. Their continuous research work to reduce the weight of the body has interested many 3 Electric Vehicle Mechanical Load people worldwide.
    [Show full text]
  • Electric Vehicle
    Electric vehicle An electric vehicle (EV), also referred to as an electric drive vehicle, uses one or more electric motors or traction motors for propulsion. An electric vehicle may be pow- ered through a collector system by electricity from off- vehicle sources, or may be self-contained with a battery or generator to convert fuel to electricity.[1] EVs include road and rail vehicles, surface and underwater vessels, electric aircraft and electric spacecraft. EVs first came into existence in the mid-19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort An EV and an antique car on display at a 1912 auto show and ease of operation that could not be achieved by the gasoline cars of the time. The internal combustion en- gine (ICE) has been the dominant propulsion method for Around the same period, early experimental electrical motor vehicles for almost 100 years, but electric power cars were moving on rails, too. American blacksmith and has remained commonplace in other vehicle types, such inventor Thomas Davenport built a toy electric locomo- as trains and smaller vehicles of all types. tive, powered by a primitive electric motor, in 1835. In 1838, a Scotsman named Robert Davidson built an elec- tric locomotive that attained a speed of four miles per 1 History hour (6 km/h). In England a patent was granted in 1840 for the use of rails as conductors of electric current, and Main article: History of the electric vehicle similar American patents were issued to Lilley and Colten Electric motive power started in 1827, when Slovak- in 1847.[3] Between 1832 and 1839 (the exact year is uncertain), Robert Anderson of Scotland invented the first crude electric carriage, powered by non-rechargeable primary cells.[4] By the 20th century, electric cars and rail transport were commonplace, with commercial electric automo- biles having the majority of the market.
    [Show full text]
  • Issue: V34-4 – February 2017 the Voice of the Macedon
    THE VOICE OF THE MACEDON RANGES A ES ND G D N I A A0003800S S R T R N & DISTRICT MOTOR CLUB INC. I C O T D - E I C A0003800S N A C . M M B OTOR CLU DINGO SANCTUARY DEC. 4 2016 ISSUE: V34-4 – FEBRUARY 2017 Club Objective: To encourage the restoration, preservation and operation A ES ND G D of motorised vehicles. N I A A0003800S S R T R N I C O T D Meetings: First Wednesday of every month (except Jan) at 8pm. - E I C N A C . Disclaimer: The opinions and ideas expressed in this magazine are not M necessarily those of the club or the committee. No responsibility can be taken M B for accuracy of submissions. OTOR CLU Committee 2016/2017 President - Alan Martin Vice President - Ted Delia Ph: 0402 708 408 Ph: 0424 244 390 E: [email protected] E: [email protected] Secretary-Hanging Rock- Graham Williams Treasurer - Adam Furniss Ph: 0419 393 023 Ph: 0404 034 841 E:[email protected] E: [email protected] Membership Officer/ Members Rally Director– Deb Williams Representative - Michael Camilleri Ph: 0404 020 525 Ph: 0432 718 250 E: [email protected] E: [email protected] Sales Officer - Lina Bragato Editor - Peter Amezdroz Ph: 0432 583 098 E: [email protected] E: [email protected] Welfare/Grievance Officer - John Parnis Head Scrutineer Officer Brian- Jayasingha Ph: 0425 802 593 Ph: 9330 3331 BH E: [email protected] Property Officer – Boyd Unwin Catering Officer - Clara Tine Ph: 0403 371 449 Librarian - Shelly Haylock Mid-Week Run Committee Ph: 0430 426 854 Pam, Shirley, Vivian, Elizabeth, Barbara
    [Show full text]
  • Advanced Redundancy Technology for a Drive System Using In-Wheel
    ISSN 2032-6653 The World Electric Vehicle Association Journal, Vol. 1, 2007 Advanced Redundancy Technology for a Drive System Using In-Wheel Motors Kiyomoto Kawakami*, Hidetoshi Tanabe**, Hiroshi Shimizu*, Hiroichi Yoshida* In electric vehicles that use in-wheel motors, the right and left traction forces become unbalanced if a motor malfunctions by motor lock or loss of traction, generating yaw moment. Control methods were designed to reduce this effect by stopping the motor output on the opposite side of the same axle. By using a prototype “Eliica” car, the maximum yaw rate and lateral acceleration were compared for a breakdown of one motor with the results from the “Sensitivity to lateral wind” indicated in Z108-76 of the Japanese Automobile Standards Organization. Under redundancy control, the test results were confirmed to be below the tolerance limits Keywords: Wheel Motor, Inverter, Control System, Vehicle Stability, Safety center-of-gravity point (CG) of the vehicle. Therefore, a 1. INTRODUCTION control method for the situation in which a motor Several prototype electric vehicles (EVs) with motors breaks down is important for achieving redundancy for installed in each wheel that exploit the torque a drive system that uses in-wheel motors. characteristics of the in-wheel motor [1] have been Our intention is to enhance the merits of function and developed by KEIO University. Unlike an internal safety of EVs by achieving a redundancy technology for combustion engine, an electric motor can generate drive systems that use in-wheel motors. maximum torque from standing still to a high speed. First in this report, the influence on vehicle stability The purpose of our research is to develop redundancy by a motor malfunction is described.
    [Show full text]
  • Status of Pure Electric Vehicle Power Train Technology and Future Prospects
    Review Status of Pure Electric Vehicle Power Train Technology and Future Prospects Abhisek Karki 1,2,* , Sudip Phuyal 3,4,* , Daniel Tuladhar 1, Subarna Basnet 5 and Bim Prasad Shrestha 1 1 Department of Mechanical Engineering, Kathmandu University, Dhulikhel 45200, Nepal; [email protected] (D.T.); [email protected] (B.P.S.) 2 Aviyanta ko Karmashala Pvt. Ltd., Bhaktapur 44800, Nepal 3 Department of Electrical and Electronics Engineering, Kathmandu University, Dhulikhel 45200, Nepal 4 Institute of Himalayan Risk Reduction, Lalitpur 44700, Nepal 5 International Design Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; [email protected] * Correspondence: [email protected] (A.K.); [email protected] (S.P.) Received: 14 July 2020; Accepted: 10 August 2020; Published: 17 August 2020 Abstract: Electric vehicles (EV) are becoming more common mobility in the transportation sector in recent times. The dependence on oil as the source of energy for passenger vehicles has economic and political implications, and the crisis will take over as the oil reserves of the world diminish. As concerns of oil depletion and security of the oil supply remain as severe as ever, and faced with the consequences of climate change due to greenhouse gas emissions from the tail pipes of vehicles, the world today is increasingly looking at alternatives to traditional road transport technologies. EVs are seen as a promising green technology which could lead to the decarbonization of the passenger vehicle fleet and to independence from oil. There are possibilities of immense environmental benefits as well, as EVs have zero tail pipe emission and therefore are capable of curbing the pollution problems created by vehicle emission in an efficient way so they can extensively reduce the greenhouse gas emissions produced by the transportation sector as pure electric vehicles are the only vehicles with zero-emission potential.
    [Show full text]
  • ENGINEERING JOURNAL No.168E
    TECHNICAL REPORT Bearing & Seal Technologies for Electric Vehicle Eliica Project C. MUROTANI In the industry-academy collaborative Eliica project to develop a high-performance electric vehicle, Koyo was responsible for developing and supplying bearings and seals for in-wheel motor drive systems. Koyo's supply of bearings and seals that can operate at the designed maximum vehicle speed of 400 km/h has contributed to the success of the Eliica project. Key Words: electric automobile, environment, in-wheel motors, lithium-ion battery, Tokyo Motor Show 1. Introduction 2. Outline of Eliica Project Keio University and thirty-eight companies actively coping Although environmental concerns have given birth to strong with environmental problems teamed up to form an industry- public demand for the spread of electric vehicles, there so far academy collaborative organization for the development of a has been no vehicle having performance comparable to that of new-concept electric vehicle named the "Eliica." In September conventional internal combustion engine vehicles to satisfy 2004, the project successfully completed the first stage consumers' needs. prototypes, which achieved planned targets. Keio University previously carried out a project named the This project was publicized at the 37th Tokyo Motor Show "KAZ," to construct an eight-wheel electric vehicle applying in 2003. It was also featured in a NHK TV program in October specific designs for electric vehicles instead of modifying an 2004. Behind such success that has evoked enormous public existing vehicle, and Koyo provided bearing and seal interest, there were various contributions by participants in the technologies. Applying optimized element technology, vehicle project.
    [Show full text]
  • Multi-Objective Optimisation for Battery Electric Vehicle Powertrain Topologies
    Original Article Proc IMechE Part D: J Automobile Engineering 1–20 Multi-objective optimisation for Ó IMechE 2016 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav battery electric vehicle powertrain DOI: 10.1177/0954407016671275 topologies pid.sagepub.com Pongpun Othaganont1, Francis Assadian2 and Daniel J Auger1 Abstract Electric vehicles are becoming more popular in the market. To be competitive, manufacturers need to produce vehicles with a low energy consumption, a good range and an acceptable driving performance. These are dependent on the choice of components and the topology in which they are used. In a conventional gasoline vehicle, the powertrain topol- ogy is constrained to a few well-understood layouts; these typically consist of a single engine driving one axle or both axles through a multi-ratio gearbox. With electric vehicles, there is more flexibility, and the design space is relatively unexplored. In this paper, we evaluate several different topologies as follows: a traditional topology using a single electric motor driving a single axle with a fixed gear ratio; a topology using separate motors for the front axle and the rear axle, each with its own fixed gear ratio; a topology using in-wheel motors on a single axle; a four-wheel-drive topology using in-wheel motors on both axes. Multi-objective optimisation techniques are used to find the optimal component sizing for a given requirement set and to investigate the trade-offs between the energy consumption, the powertrain cost and the acceleration performance. The paper concludes with a discussion of the relative merits of the different topologies and their applicability to real-world passenger cars.
    [Show full text]
  • SCCA Fastrack News January 2021 Page 1 Solo
    Solo SOLO EVENTS BOARD | November 25th The Solo Events Board met by conference call November 25th. Attending were SEB members Mark Labbancz, Bob Davis, Zack Barnes, Keith Brown, Mark Scroggs, and Marshall Grice; Charlie Davis and Steve Strickland of the BOD. These minutes are presented in topical order rather than the order discussed. Comments regarding items published herein should be directed via the website www.soloeventsboard.com. Member Advisories Street Modified Category #29086 #28658 feedback - manufacturer specific engine blocks The SMAC thanks you for your input. #29130 #28658 Delete the cross-make engine weight penalty - feedback The SMAC thanks you for your input. #29258 In support of #28658 to remove cross-manufacturer penalty The SMAC thanks you for your input. #29307, 29308, 29310, 29313 Feedback on #28407 Aftermarket gauge clusters (various) The SMAC thanks you for your input. #29335 28407 Feedback The SMAC thanks you for your input. Prepared Category #29371 Front Air Damn Vertical means perpendicular to horizontal. Front spoilers/air dams are covered in 17.2.O, which "allows a vertical air dam/spoiler above a horizontal splitter." As per 1.c in Appendix A, X Prepared, the splitter has a +/- 3 degree allowance from horizontal. The PAC strongly cautions against tortured interpretations of the rules. #29735 Bodywork modifications Per the PAC, if bodywork is in excess of the allowances of section 17.2 of the Solo Rules, but is compliant with the Club Racing General Competition Rules (GCR) GT rule set, and is of a car listed in Appendix A of the Solo Rule Book for CP (I.E.
    [Show full text]
  • Acronimos Automotriz
    ACRONIMOS AUTOMOTRIZ 0LEV 1AX 1BBL 1BC 1DOF 1HP 1MR 1OHC 1SR 1STR 1TT 1WD 1ZYL 12HOS 2AT 2AV 2AX 2BBL 2BC 2CAM 2CE 2CEO 2CO 2CT 2CV 2CVC 2CW 2DFB 2DH 2DOF 2DP 2DR 2DS 2DV 2DW 2F2F 2GR 2K1 2LH 2LR 2MH 2MHEV 2NH 2OHC 2OHV 2RA 2RM 2RV 2SE 2SF 2SLB 2SO 2SPD 2SR 2SRB 2STR 2TBO 2TP 2TT 2VPC 2WB 2WD 2WLTL 2WS 2WTL 2WV 2ZYL 24HLM 24HN 24HOD 24HRS 3AV 3AX 3BL 3CC 3CE 3CV 3DCC 3DD 3DHB 3DOF 3DR 3DS 3DV 3DW 3GR 3GT 3LH 3LR 3MA 3PB 3PH 3PSB 3PT 3SK 3ST 3STR 3TBO 3VPC 3WC 3WCC 3WD 3WEV 3WH 3WP 3WS 3WT 3WV 3ZYL 4ABS 4ADT 4AT 4AV 4AX 4BBL 4CE 4CL 4CLT 4CV 4DC 4DH 4DR 4DS 4DSC 4DV 4DW 4EAT 4ECT 4ETC 4ETS 4EW 4FV 4GA 4GR 4HLC 4LF 4LH 4LLC 4LR 4LS 4MT 4RA 4RD 4RM 4RT 4SE 4SLB 4SPD 4SRB 4SS 4ST 4STR 4TB 4VPC 4WA 4WABS 4WAL 4WAS 4WB 4WC 4WD 4WDA 4WDB 4WDC 4WDO 4WDR 4WIS 4WOTY 4WS 4WV 4WW 4X2 4X4 4ZYL 5AT 5DHB 5DR 5DS 5DSB 5DV 5DW 5GA 5GR 5MAN 5MT 5SS 5ST 5STR 5VPC 5WC 5WD 5WH 5ZYL 6AT 6CE 6CL 6CM 6DOF 6DR 6GA 6HSP 6MAN 6MT 6RDS 6SS 6ST 6STR 6WD 6WH 6WV 6X6 6ZYL 7SS 7STR 8CL 8CLT 8CM 8CTF 8WD 8X8 8ZYL 9STR A&E A&F A&J A1GP A4K A4WD A5K A7C AAA AAAA AAAFTS AAAM AAAS AAB AABC AABS AAC AACA AACC AACET AACF AACN AAD AADA AADF AADT AADTT AAE AAF AAFEA AAFLS AAFRSR AAG AAGT AAHF AAI AAIA AAITF AAIW AAK AAL AALA AALM AAM AAMA AAMVA AAN AAOL AAP AAPAC AAPC AAPEC AAPEX AAPS AAPTS AAR AARA AARDA AARN AARS AAS AASA AASHTO AASP AASRV AAT AATA AATC AAV AAV8 AAW AAWDC AAWF AAWT AAZ ABA ABAG ABAN ABARS ABB ABC ABCA ABCV ABD ABDC ABE ABEIVA ABFD ABG ABH ABHP ABI ABIAUTO ABK ABL ABLS ABM ABN ABO ABOT ABP ABPV ABR ABRAVE ABRN ABRS ABS ABSA ABSBSC ABSL ABSS ABSSL ABSV ABT ABTT
    [Show full text]