Development of a Vehicle Stability Control Strategy for a Hybrid Electric Vehicle Equipped with Axle Motors DISSERTATION Present
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variable Dynamic Testbed Vehicle Dynamics Analysis
Variable Dynamic Testbed Vehicle Dynamics Analysis Allan Y. Lee Jet Propulsion Laboratory Nhan T. Le University of California, Los Angeles March 1996 Jet Propulsion Laboratory California Institute of Technology JPL D-13461 Variable Dynamic Testbed Vehicle Dynamics Analysis Allan Y. Lee Jet Propulsion Laboratory Nhan T. Le University of California, Los Angeles March 1996 JPL Jet Propulsion Laboratory California Institute of Technology Table of Contents Page Table of Contents ............................................................ 2 Abstract .................................................................... 3 Introduction................................................................. 4 Scope and Approach.......................................................... 5 Vehicle Dynamic Simulation Program........................................... 6 Selected Production Vehicle Models............................................. 8 Steady-state and Transient Lateral Response Performance Metrics .................. 9 The Selected Baseline Variable Dynamic Vehicle ................................. 12 Sensitivity Analyses .......................................................... 13 Four Wheel Steering Control Algorithms........................................ 16 Results obtained from Consumer Union Obstacle Course .......................... 20 Concluding Remarks.......................................................... 21 References................................................................... 22 Acknowledgments ........................................................... -
Towards Adaptive and Directable Control of Simulated Creatures Yeuhi Abe AKER
--A Towards Adaptive and Directable Control of Simulated Creatures by Yeuhi Abe Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2007 © Massachusetts Institute of Technology 2007. All rights reserved. Author ....... Departmet of Electrical Engineering and Computer Science Febri- '. 2007 Certified by Jovan Popovid Associate Professor or Accepted by........... Arthur C.Smith Chairman, Department Committee on Graduate Students MASSACHUSETTS INSTInfrE OF TECHNOLOGY APR 3 0 2007 AKER LIBRARIES Towards Adaptive and Directable Control of Simulated Creatures by Yeuhi Abe Submitted to the Department of Electrical Engineering and Computer Science on February 2, 2007, in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering Abstract Interactive animation is used ubiquitously for entertainment and for the communi- cation of ideas. Active creatures, such as humans, robots, and animals, are often at the heart of such animation and are required to interact in compelling and lifelike ways with their virtual environment. Physical simulation handles such interaction correctly, with a principled approach that adapts easily to different circumstances, changing environments, and unexpected disturbances. However, developing robust control strategies that result in natural motion of active creatures within physical simulation has proved to be a difficult problem. To address this issue, a new and ver- satile algorithm for the low-level control of animated characters has been developed and tested. It simplifies the process of creating control strategies by automatically ac- counting for many parameters of the simulation, including the physical properties of the creature and the contact forces between the creature and the virtual environment. -
7.6 Moments and Center of Mass in This Section We Want to find a Point on Which a Thin Plate of Any Given Shape Balances Horizontally As in Figure 7.6.1
Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan 7.6 Moments and Center of Mass In this section we want to find a point on which a thin plate of any given shape balances horizontally as in Figure 7.6.1. Figure 7.6.1 The center of mass is the so-called \balancing point" of an object (or sys- tem.) For example, when two children are sitting on a seesaw, the point at which the seesaw balances, i.e. becomes horizontal is the center of mass of the seesaw. Discrete Point Masses: One Dimensional Case Consider again the example of two children of mass m1 and m2 sitting on each side of a seesaw. It can be shown experimentally that the center of mass is a point P on the seesaw such that m1d1 = m2d2 where d1 and d2 are the distances from m1 and m2 to P respectively. See Figure 7.6.2. In order to generalize this concept, we introduce an x−axis with points m1 and m2 located at points with coordinates x1 and x2 with x1 < x2: Figure 7.6.2 1 Since P is the balancing point, we must have m1(x − x1) = m2(x2 − x): Solving for x we find m x + m x x = 1 1 2 2 : m1 + m2 The product mixi is called the moment of mi about the origin. The above result can be extended to a system with many points as follows: The center of mass of a system of n point-masses m1; m2; ··· ; mn located at x1; x2; ··· ; xn along the x−axis is given by the formula n X mixi i=1 Mo x = n = X m mi i=1 n X where the sum Mo = mixi is called the moment of the system about i=1 Pn the origin and m = i=1 mn is the total mass. -
A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development
Review A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development Fuad Un-Noor 1, Sanjeevikumar Padmanaban 2,*, Lucian Mihet-Popa 3, Mohammad Nurunnabi Mollah 1 and Eklas Hossain 4,* 1 Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh; [email protected] (F.U.-N.); [email protected] (M.N.M.) 2 Department of Electrical and Electronics Engineering, University of Johannesburg, Auckland Park 2006, South Africa 3 Faculty of Engineering, Østfold University College, Kobberslagerstredet 5, 1671 Kråkeroy-Fredrikstad, Norway; [email protected] 4 Department of Electrical Engineering & Renewable Energy, Oregon Tech, Klamath Falls, OR 97601, USA * Correspondence: [email protected] (S.P.); [email protected] (E.H.); Tel.: +27-79-219-9845 (S.P.); +1-541-885-1516 (E.H.) Academic Editor: Sergio Saponara Received: 8 May 2017; Accepted: 21 July 2017; Published: 17 August 2017 Abstract: Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept. -
Individual Drive-Wheel Energy Management for Rear-Traction Electric Vehicles with In-Wheel Motors
applied sciences Article Individual Drive-Wheel Energy Management for Rear-Traction Electric Vehicles with In-Wheel Motors Jose del C. Julio-Rodríguez * , Alfredo Santana-Díaz. * and Ricardo A. Ramirez-Mendoza * School of Engineering and Sciences, Tecnologico de Monterrey, Toluca 50110, Mexico * Correspondence: [email protected] (J.d.C.J.-R.); [email protected] (A.S.-D.); [email protected] (R.A.R.-M.) Abstract: In-wheel motor technology has reduced the number of components required in a vehicle’s power train system, but it has also led to several additional technological challenges. According to kinematic laws, during the turning maneuvers of a vehicle, the tires must turn at adequate rotational speeds to provide an instantaneous center of rotation. An Electronic Differential System (EDS) controlling these speeds is necessary to ensure speeds on the rear axle wheels, always guaranteeing a tractive effort to move the vehicle with the least possible energy. In this work, we present an EDS developed, implemented, and tested in a virtual environment using MATLAB™, with the proposed developments then implemented in a test car. Exhaustive experimental testing demonstrated that the proposed EDS design significantly improves the test vehicle’s longitudinal dynamics and energy consumption. This paper’s main contribution consists of designing an EDS for an in-wheel motor electric vehicle (IWMEV), with motors directly connected to the rear axle. The design demonstrated effective energy management, with savings of up to 21.4% over a vehicle without EDS, while at the same time improving longitudinal dynamic performance. Citation: Julio-Rodríguez, J.d.C.; Keywords: electric vehicles; electromobility; in-wheel motors; electronic differential; wheel-speed Santana-Díaz., A.; Ramirez-Mendoza, control; powertrain; energy consumption; automotive control; vehicle dynamics control R.A. -
Embedded System Design and Implementation of an Intelligent Electronic Differential System for Electric Vehicles
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 9, 2017 Embedded System Design and Implementation of an Intelligent Electronic Differential System for Electric Vehicles Ali UYSAL Emel SOYLU Technology Faculty, Department of Mechatronics Technology Faculty, Department of Mechatronics Engineering, Karabük University Engineering, Karabük University Karabük, TURKEY Karabük, TURKEY Abstract—This paper presents an experimental study of the mechanical differential, torque is not limited by the least- electronic differential system with four-wheel, dual-rear in wheel wheeled wheel, fast response time, accurate information on motor independently driven an electric vehicle. It is worth torque per wheel [2]. bearing in mind that the electronic differential is a new technology used in electric vehicle technology and provides better In this work, the intelligent supervised EDS for electric balancing in curved paths. In addition, it is more lightweight vehicles is designed and realized. There are studies in this issue than the mechanical differential and can be controlled by a single in the literature. This technology has many applications and controller. In this study, intelligently supervised electronic vehicle performance has been improved with successful differential design and control is carried out for electric vehicles. applications. The movement of this earthmoving truck is Embedded system is used to provide motor control with a fuzzy provided by an electric drive system consisting of two logic controller. High accuracy is obtained from experimental independent electric motors. Providing a maximum power of study. 2700 kW, these engines are controlled to adjust their speed when cornering, thereby increasing traction and reducing tire Keywords—Electronic differential; electric vehicle; embedded wear. -
Aerodynamic Development of a IUPUI Formula SAE Specification Car with Computational Fluid Dynamics(CFD) Analysis
Aerodynamic development of a IUPUI Formula SAE specification car with Computational Fluid Dynamics(CFD) analysis Ponnappa Bheemaiah Meederira, Indiana- University Purdue- University. Indianapolis Aerodynamic development of a IUPUI Formula SAE specification car with Computational Fluid Dynamics(CFD) analysis A Directed Project Final Report Submitted to the Faculty Of Purdue School of Engineering and Technology Indianapolis By Ponnappa Bheemaiah Meederira, In partial fulfillment of the requirements for the Degree of Master of Science in Technology Committee Member Approval Signature Date Peter Hylton, Chair Technology _______________________________________ ____________ Andrew Borme Technology _______________________________________ ____________ Ken Rennels Technology _______________________________________ ____________ Aerodynamic development of a IUPUI Formula SAE specification car with Computational 3 Fluid Dynamics(CFD) analysis Table of Contents 1. Abstract ..................................................................................................................................... 4 2. Introduction ............................................................................................................................... 5 3. Problem statement ..................................................................................................................... 7 4. Significance............................................................................................................................... 7 5. Literature review -
Electronic Differential in Electric Vehicles
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1322 ISSN 2229-5518 Electronic differential in electric vehicles Akshay aggarwal Abstract - Electronic differential is advancement in electric vehicles technology along with the more traction control. The electronic differential provides the required torque for each driving wheel and allows different wheel speeds electronically. It is used in place of the mechanical differential in multi-drive systems. When cornering the inner and outer wheels rotate at different speeds, because the inner wheels describe a smaller turning radius. The electronic differential uses the steering wheel command signal, throttle position signals and the motor speed signals to control the power to each wheel so that all wheels are supplied with the torque they need. The proposed control structure is based on the PID control for each wheel motor. PID Control system is then evaluated in the Matlab/Simulink environment. Electronic differential have the advantages of replacing loosely, heavy and inefficient mechanical transmission and mechanical differential with a more efficient, light and small electric motors directly coupled to the wheels using a single gear reduction or an in-wheel motor. Index terms PID controller, electric vehicle, controller area network, electronic control unit, electronic differential —————————— —————————— 1 Introduction trajectory or a lane change each wheel is controlled The heavy body including the structure and materials through an ED in order to satisfy the motion used in Electric Vehicle hasIJSER always been a field of requirements. interest to designers. Their continuous research work to reduce the weight of the body has interested many 3 Electric Vehicle Mechanical Load people worldwide. -
Bendix ABS-6 Advanced with ESP Stability System
Bendix® ABS-6 Advanced with ESP® Stability System Frequently Asked Questions to Help You Make an Intelligent Investment in Stability Contents: Key FAQs (Start here!)………….. Pg. 2 Stability Definitions …………….. Pg. 6 System Comparison ……………. Pg. 7 Function/Performance ………….. Pg. 9 Value ………………………………. Pg. 12 Availability/Applications ……….. Pg. 14 Vehicle System Integration …….. Pg. 16 Safety ………………………………. Pg. 17 Take the Next Step ………………. Pg. 18 Please note: This document is designed to assist you in the stability system decision process, not to serve as a performance guarantee. No system will prevent 100% of the incidents you may experience. This information is subject to change without notice © 2007 Bendix Commercial Vehicle Systems LLC, a member of the Knorr-Bremse Group. All Rights Reserved. 03/07 1 Key FAQs What is roll stability? Roll stability counteracts the tendency of a vehicle, or vehicle combination, to tip over while changing direction (typically while turning). The lateral (side) acceleration creates a force at the center of gravity (CG), “pushing” the truck/tractor-trailer horizontally. The friction between the tires and the road opposes that force. If the lateral force is high enough, one side of the vehicle may begin to lift off the ground potentially causing the vehicle to roll over. Factors influencing the sensitivity of a vehicle to lateral forces include: the load CG height, load offset, road adhesion, suspension stiffness, frame stiffness and track width of vehicle. What is yaw stability? Yaw stability counteracts the tendency of a vehicle to spin about its vertical axis. During operation, if the friction between the road surface and the tractor’s tires is not sufficient to oppose lateral (side) forces, one or more of the tires can slide, causing the truck/tractor to spin. -
Ride Control Defined
RIDE CONTROL DEFINED According to Newton's First Law, a moving body will continue moving in a straight line until it is acted upon by another force. Newton's Second Law states that for each action there is an equal and opposite reaction. In the case of the automobile, whether the disturbing force is in the form of a wind-gust, an incline in the roadway, or the cornering forces produced by tires, the force causing the action and the force resisting the action will always be in balance. Many things affect vehicles in motion. Weight distribution, speed, road conditions and wind are some factors that affect how vehicles travel down the highway. Under all these variables however, the vehicle suspension system including the shocks, struts and springs must be in good condition. Worn suspension components may reduce the stability of the vehicle and reduce driver control. They may also accelerate wear on other suspension components. Replacing worn or inadequate shocks and struts will help maintain good ride control as they: Control spring and suspension movement Provide consistent handling and braking Prevent premature tire wear Help keep the tires in contact with the road Maintain dynamic wheel alignment Control vehicle bounce, roll, sway, dive and acceleration squat Reduce wear on other vehicle systems Promote even and balanced tire and brake wear Reduce driver fatigue Suspension concepts and components have changed and will continue to change dramatically, but the basic objective remains the same: 1. Provide steering stability with good handling characteristics 2. Maximize passenger comfort Achieving these objectives under all variables of a vehicle in motion is called ride control 1 BASIC TERMINOLOGY To begin this training program, you need to possess some very basic information. -
Anti-Roll Bar Modeling for NVH and Vehicle
Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses Tobolar,Anti-Roll Jakub and Bar Leitner, Modeling Martin and Heckmann, for NVH Andreas and Vehicle Dynamics Analyses 99 Jakub Tobolárˇ1 Martin Leitner1 Andreas Heckmann1 1German Aerospace Center (DLR), Institute of System Dynamics and Control, Wessling, [email protected] Abstract A The latest extension of the DLR FlexibleBodies Library concerns the field of automotive applications, namely the anti-roll bar. For the particular purposes of NVH and ve- hicle dynamics, the anti-roll bar module provides two ap- propriate levels of detail, both being based upon the beam preprocessor. In this paper, the procedure on preparing the models and their application for particular automotive related analyses is presented. Keywords: anti-roll bar, vehicle chassis, flexible body, beam model, finite element C S Figure 1. Vehicle axle with an anti-roll bar (color emphasized, 1 Introduction courtesy of Wikimedia Commons). Whenever an automotive suspension is excited in vertical direction due to road irregularities or driving maneuvers (Heckmann et al., 2006) provides capabilities to incorpo- in an asymmetrical way, i.e. differently on the right and rate data that originate from FE models in Modelica mod- the left side of the vehicle, the roll motion of the car body els. Thus, a tool chain to perform vehicle dynamics sim- is stimulated. This concerns – in common case – the com- ulation including the structural characteristics of anti-roll fort and driving experience of the car passengers. In limit bars is in principle available. -
Less Mower Deck) Equipment for Base Machine
JOHN DEERE TURF & UTILITY PRODUCTS COMMERCIAL FRONT MOWERS AND EQUIPMENT 1550 TerrainCut Commercial Front Mower (Less Mower Deck) Equipment for Base Machine 24.2 HP (17.8 kW), gross SAE mounted) Low Oil Pressure Warning Light J1995, PS 23x10.50-12 In. 4PR Turf (std) Hydraulic Oil Temp. Light and Rated at 3000 rpm Drive Tires Alarm PTO Shutdown Diesel Engine 77 cu. in. (1.27 18x8.50-8 In. 4PR Turf Folding Two Post ROPS (Roll- L) Steering Tires (2WD) or Over Protective Structure) Three Cylinder Liquid-Cooled 18x8.50-10 In. 4PR Turf and Retractable Seat Belt Dual Element Air Cleaner Steering Tires (4WD) Cast Iron Rear Bumper Air Restriction Indicator Transmission Oil Cooler Operator Training Video 12V Electric Start Individual Turn Assist Brakes 12V Auxilary Power Outlet Internal Wet Disk Brakes 75 AMP Automotive Alternator Master Stop Brake 16 U.S. Gallon Fuel Capacity Dual Hydraulic Implement Two Pedal Hydrostatic Foot Lift Cylinders Control Less Mower Deck Hydrostatic Transmission Hourmeter Hydrostatic Front Wheel Drive Fuel Gauge Hydrostatic Power Steering Tilt Steering Wheel Differential Front Wheel Lock PTO Drvien Implements Front Lights (steering column Operator Presence System List Price Attachment Suggested Code Identifier Description USD ($) Select One Code From Each Required Category BASE MACHINE F.O.B. Raleigh, North Carolina 2400TC 1550 TerrainCut Commercial Front Mower (Less Mower Deck) 19,899.00 DESTINATION North America 001A United States and Canada In Base Price DRIVE SYSTEM 1190 Two Wheel Drive In Base Price 1191 Four Wheel Drive (Full Time or On Demand) 2,913.00 Standard on the 1575, 1580, and 1585 TerrainCut Commercial Front Mowers.