Influence of Body Stiffness on Vehicle Dynamics Characteristics In

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Body Stiffness on Vehicle Dynamics Characteristics In Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars Master's thesis in Automotive Engineering OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2015 Master's thesis 2015:68 MASTER'S THESIS IN AUTOMOTIVE ENGINEERING Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2015 Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ c OSKAR DANIELSSON, ALEJANDRO GONZALEZ´ COCANA,~ 2015 Master's thesis 2015:68 ISSN 1652-8557 Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group Chalmers University of Technology SE-412 96 G¨oteborg Sweden Telephone: +46 (0)31-772 1000 Cover: Volvo S60 model reinforced with bars for the multibody dynamics simulation tool MSC Adams Chalmers Reproservice G¨oteborg, Sweden 2015 Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars Master's thesis in Automotive Engineering OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group Chalmers University of Technology Abstract Automotive industry is a highly competitive market where details play a key role. Detecting, understanding and improving these details are needed steps in order to create sustainable cars capable of giving people a premium driving experience. Body stiffness is one of this important specifications of a passenger car which affects not only weight thus fuel consumption but also handling, steering and ride characteristics of the vehicle. By using a method developed to perform an extensive number of simulations and suitable for the analysis of the interesting points in the design space, it has been proved that not only torsional but lateral and local stiffness can play a role in giving the customer a premium feeling by affecting key metrics in the vehicle dynamics behavior of a passenger car. Furthermore it has been proved that the effect of the body in the vehicle dynamics of a car can be measured and targeted by using test maneuvers and metrics for handling and ride. Keywords: vehicle dynamics, body stiffness, handling, steering, ride, multibody dynamics i ii Preface Fast lead time play an important role during vehicle development. In order to increase vehicle perform and at the same time reduce lead time, testing is moving towards CAE simulations. Due to this movement an increased model accuracy is needed to be able to replace physical vehicle testing which usually takes place late in the design process with virtual testing. Previous work has shown that subjective physical measurements does not match the CAE results, therefore a deeper analysis of the influence of the body stiffness properties in the vehicle dynamics characteristic is needed. Acknowledgements We would like to thank Volvo Cars for the opportunity to perform a Masters Thesis connected to a real world application and for the possibility to use collected data to verify our results. We would also like to acknowledge the importance of all the support we have gotten throughout the project both at Volvo Vehicle Dynamics CAE department and at Chalmers VEAS Division. A special thanks to: Bengt Jacobson, Mathias Lidberg, Matthijs Klomp, Mohsen Bayani Khaknejad & Johan Hultqvist for the continuous supervision, feedback and useful discussions, Stavros Angelis for the support with IPG CarMaker, Kenneth Ekstr¨omfor his precise physical subjective vehicle analysis, Richard Dekker for his help with K&C analysis, Axel Jonson & Daniel Hedendahl for their help with Sympathy For Data and thanks to Asa˚ Eriksson and the Vehicle Dynamics CAE department at VCC for their help, support and nice work environment. iii iv Nomenclature CM CarMaker CAE Computer Aided Engineering VCC Volvo Car Corporation FEA Finite element analysis BIW Body in white CoG Center of gravity MNF Modal neutral file SPMM Suspension Parameter Measurement Machine K&C Kinematics and compliance HPG H¨alleredProving Ground TCL Tool Command Language TCP Transmission Control Protocol CSV Comma-separated values DOF Degrees Of Freedom LLT Lateral load transfer LLTD Lateral load transfer distribution FLLTD Front lateral load transfer distribution VFD Vertical force distribution FVFD Front vertical force distribution RBE2 Rigid Body Element US Understeer v vi Contents Abstract i Preface iii Acknowledgements iii Nomenclature v Contents vii 1 Introduction 1 1.1 Statement of the problem.........................................1 1.2 Research questions.............................................1 1.3 Literature review..............................................1 1.4 Scope and prerequisites..........................................2 1.5 Significance of the study..........................................2 1.6 Report layout................................................2 2 Theory 3 2.1 Body stiffness................................................3 2.1.1 Torsional stiffness............................................3 2.1.2 Bending stiffness.............................................4 2.1.3 Lateral stiffness..............................................5 2.1.4 Local stiffness..............................................6 2.2 Vehicle dynamics characteristic: handling, steering and ride......................6 2.2.1 Handling.................................................7 2.2.2 Steering..................................................7 2.2.3 Ride....................................................7 2.3 Lateral load transfer model........................................7 2.4 Steady state bicycle model........................................ 10 2.4.1 Lateral compliance............................................ 11 2.4.2 Torsional stiffness............................................ 11 2.4.2.1 Axle cornering stiffness........................................ 11 2.4.2.2 Roll steer................................................ 12 2.4.3 Understeer gradient........................................... 12 2.5 Design of experiment............................................ 14 2.6 Statistical analysis............................................. 15 2.6.1 Graphical visualization and correlation of large data sets...................... 15 2.6.1.1 Box-Whiskers............................................. 15 2.6.1.2 Student chart.............................................. 15 2.7 Flexible Bodies............................................... 15 2.8 Tire models................................................. 16 2.8.1 IPGTire (RealTime Tire)........................................ 16 2.8.2 Pacejka 5.2 (Magic Formula)...................................... 16 2.8.3 MF-Tire/MF-Swift 6.1 (RealTime Tire)................................ 17 2.8.4 TameTire................................................. 17 3 Method 18 3.1 Overview.................................................. 18 3.2 Component to subsystem relation..................................... 19 3.2.1 MSC Adams Model........................................... 19 3.2.1.1 Suspension............................................... 19 3.2.1.2 Body.................................................. 20 3.2.2 Parameterization of MSC Adams model................................ 20 3.2.2.1 Suspension............................................... 20 vii 3.2.2.2 Body stiffness............................................. 20 3.2.3 Validation of the model......................................... 21 3.2.4 Simulations................................................ 22 3.2.5 Design of experiment Adams...................................... 23 3.2.5.1 Post processing in modeFrontier................................... 23 3.2.6 FEM Model................................................ 24 3.2.7 Parameterization of FEM model.................................... 24 3.2.8 Validation of FEM model........................................ 25 3.2.9 Load Cases FEM............................................. 27 3.2.10 Design of experiment FEM....................................... 27 3.2.10.1 Post processing in modeFrontier................................... 29 3.3 Subsystem to vehicle relation....................................... 29 3.3.1 CarMaker Model............................................. 30 3.3.1.1 Global body stiffness model...................................... 30 3.3.1.2 Local stiffness model.......................................... 30 3.3.2 Parameterization of CarMaker model................................. 31 3.3.2.1 Suspension parametrization...................................... 31 3.3.2.2 Suspension components........................................ 32 3.3.2.3 Body stiffness parametrization.................................... 32 3.3.3 Validation of the model......................................... 34 3.3.4 Simulations and load cases....................................... 35 3.3.4.1 Brake in turn.............................................. 35 3.3.4.2 Constant radius............................................ 35 3.3.4.3 Constant radius with bump...................................... 35 3.3.4.4 Constant radius with angled bump.................................. 36
Recommended publications
  • Estudio De Un Sistema Aerodinámico Activo En Automóviles: Control Y Automatización Del Sistema
    TRABAJO FINAL DE GRADO Grado en Ingeniería Mecánica ESTUDIO DE UN SISTEMA AERODINÁMICO ACTIVO EN AUTOMÓVILES: CONTROL Y AUTOMATIZACIÓN DEL SISTEMA Memoria y Anexos Autor: Antonio Rodríguez Noriega Director: Sebastián Tornil Convocatoria: Junio 2018 Estudio de un sistema aerodinámico activo en automóviles: control y automatización del sistema Resumen A lo largo de este proyecto se tratará el diseño desde cero de un sistema de aerodinámica activa para automóviles. El proceso consta de tres partes diferenciadas: el estudio aerodinámico, donde se caracteriza la interacción fluidodinámica de un perfil alar; el estudio mecánico, donde se diseña el conjunto de mecanismos que forman el sistema mecánico, así como su posterior validación; y la automatización y el control del sistema, donde se modeliza el comportamiento del vehículo y se implementa en un sistema electrónico de control regulado. Estas partes se presentan como tres Trabajos Finales de Grado distintos relacionados entre sí. En esta memoria se desarrolla la tercera de ellas: la automatización y el control del sistema. El objetivo principal ha sido completar la fase de diseño de un sistema que mejore el comportamiento dinámico de un vehículo de carácter deportivo en el mayor número posible de situaciones. Esto se ha conseguido variando la repartición de cargas normales por rueda a partir de la modificación de las características geométricas del propio conjunto aerodinámico, mediante el uso de actuadores lineales regulados por un sistema de control en función de las condiciones del automóvil en tiempo real. I Memoria Resum Durant el transcurs d’aquest projecte es tractarà el disseny des de zero d’un sistema d’aerodinàmica activa per a automòbils.
    [Show full text]
  • The Benefits of Four-Wheel Drive for a High-Performance FSAE Electric Racecar Elliot Douglas Owen
    The Benefits of Four-Wheel Drive for a High-Performance FSAE Electric Racecar by Elliot Douglas Owen Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Bachelor of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2018 c Elliot Douglas Owen, MMXVIII. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Author.................................................................... Department of Mechanical Engineering May 18, 2018 Certified by . David L. Trumper Professor Thesis Supervisor Accepted by . Rohit Karnik Associate Professor of Mechanical Engineering Undergraduate Officer 2 The Benefits of Four-Wheel Drive for a High-Performance FSAE Electric Racecar by Elliot Douglas Owen Submitted to the Department of Mechanical Engineering on May 18, 2018, in partial fulfillment of the requirements for the degree of Bachelor of Science in Mechanical Engineering Abstract This thesis explores the performance of Rear-Wheel Drive (RWD) and Four-Wheel Drive (4WD) FSAE Electric racecars with regards to acceleration and regenerative braking. The benefits of a 4WD architecture are presented along with the tools for further optimization and understanding. The goal is to provide real, actionable information to teams deciding to pursue 4WD vehicles and quantify the results of difficult engineering tradeoffs. Analytical bicycle models are used to discuss the effect of the Center of Gravity location on vehicle performance, and Acceleration-Velocity Phase Space (AVPS) is introduced as a useful tool for optimization.
    [Show full text]
  • Anti-Roll Bar Modeling for NVH and Vehicle
    Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses Tobolar,Anti-Roll Jakub and Bar Leitner, Modeling Martin and Heckmann, for NVH Andreas and Vehicle Dynamics Analyses 99 Jakub Tobolárˇ1 Martin Leitner1 Andreas Heckmann1 1German Aerospace Center (DLR), Institute of System Dynamics and Control, Wessling, [email protected] Abstract A The latest extension of the DLR FlexibleBodies Library concerns the field of automotive applications, namely the anti-roll bar. For the particular purposes of NVH and ve- hicle dynamics, the anti-roll bar module provides two ap- propriate levels of detail, both being based upon the beam preprocessor. In this paper, the procedure on preparing the models and their application for particular automotive related analyses is presented. Keywords: anti-roll bar, vehicle chassis, flexible body, beam model, finite element C S Figure 1. Vehicle axle with an anti-roll bar (color emphasized, 1 Introduction courtesy of Wikimedia Commons). Whenever an automotive suspension is excited in vertical direction due to road irregularities or driving maneuvers (Heckmann et al., 2006) provides capabilities to incorpo- in an asymmetrical way, i.e. differently on the right and rate data that originate from FE models in Modelica mod- the left side of the vehicle, the roll motion of the car body els. Thus, a tool chain to perform vehicle dynamics sim- is stimulated. This concerns – in common case – the com- ulation including the structural characteristics of anti-roll fort and driving experience of the car passengers. In limit bars is in principle available.
    [Show full text]
  • Integrated Vehicle Dynamics Control Via Coordination of Active Front
    Integrated vehicle dynamics control via coordination of active front steering and rear braking Moustapha Doumiati, Olivier Sename, Luc Dugard, John Jairo Martinez Molina, Peter Gaspar, Zoltan Szabo To cite this version: Moustapha Doumiati, Olivier Sename, Luc Dugard, John Jairo Martinez Molina, Peter Gaspar, et al.. Integrated vehicle dynamics control via coordination of active front steering and rear braking. European Journal of Control, Elsevier, 2013, 19 (2), pp.121-143. 10.1016/j.ejcon.2013.03.004. hal- 00759487 HAL Id: hal-00759487 https://hal.archives-ouvertes.fr/hal-00759487 Submitted on 3 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Integrated vehicle dynamics control via coordination of active front steering and rear braking Moustapha Doumiati, Olivier Sename, Luc Dugard, John Martinez,a ∗ Peter Gaspar, Zoltan Szabob aGipsa-Lab UMR CNRS 5216, Control Systems Department, 961 Rue de la Houille Blanche, 38402 Saint Martin d’Hères, France, Email: [email protected], {surname.name}@gipsa-lab.grenoble-inp.fr bComputer and Automation Research Institue, Hungarian Academy of Sciences, Kende u. 13-17, H-1111, Budapest, Hungary, Email: gaspar, [email protected] January 26, 2012 Abstract This paper investigates the coordination of active front steering and rear braking in a driver- assist system for vehicle yaw control.
    [Show full text]
  • Camber Effect Study on Combined Tire Forces
    Camber effect study on combined tire forces Shiruo Li Master Thesis in Vehicle Engineering Department of Aeronautical and Vehicle Engineering KTH Royal Institute of Technology TRITA-AVE 2013:33 ISSN 1651-7660 Postal address Visiting Address Telephone Telefax Internet KTH Teknikringen 8 +46 8 790 6000 +46 8 790 6500 www.kth.se Vehicle Dynamics Stockholm SE-100 44 Stockholm, Sweden Abstract Considering the more and more concerned climate change issues to which the greenhouse gas emission may contribute the most, as well as the diminishing fossil fuel resource, the automotive industry is paying more and more attention to vehicle concepts with full electric or partly electric propulsion systems. Limited by the current battery technology, most electrified vehicles on the roads today are hybrid electric vehicles (HEV). Though fully electrified systems are not common at the moment, the introduction of electric power sources enables more advanced motion control systems, such as active suspension systems and individual wheel steering, due to electrification of vehicle actuators. Various chassis and suspension control strategies can thus be developed so that the vehicles can be fully utilized. Consequently, future vehicles can be more optimized with respect to active safety and performance. Active camber control is a method that assigns the camber angle of each wheel to generate desired longitudinal and lateral forces and consequently the desired vehicle dynamic behavior. The aim of this study is to explore how the camber angle will affect the tire force generation and how the camber control strategy can be designed so that the safety and performance of a vehicle can be improved.
    [Show full text]
  • MAE 515 Advanced Vehicle Dynamics
    MAE 515 Advanced Automotive Vehicle Dynamics Course Website: https://engineeringonline.ncsu.edu/onlinecourses/coursehomepage /SPR_2018/MAE515.html This course covers advanced materials related to mathematical models and designs in automotive vehicles as multiple degrees of freedom systems to describe their dynamic behaviors in acceleration, braking, steering, rollover, aerodynamics, suspensions, tires, and drive trains. 3 credit hours. • Prerequisite Undergraduate courses in dynamics of machines (MAE 315), aerospace structures (MAE 472) or equivalent or consent of instructor. • Course Objectives A special focus of this course aims at enabling students to apply the theories they learned in mechanics, energy, structures, design, materials, dynamics, aerodynamics, vibrations, and controls to a real-world system they encounter every day. From the basic theories, this course further extends to the development in next- generation vehicle technologies. By the end of the course, the students will be able to: • Demonstrate a skill to apply basic theories to establish useful models for either the entire vehicle or components of the vehicle. • Interpret the properties of critical factors in vehicle motion control • Apply the models established from basic theories for vehicle design and improvement • Identify key components and their working principles of modern vehicles • Identify the technology improvements in vehicles in the last several decades • Identify technologies critical to next-generation vehicle designs based on literature reviews and
    [Show full text]
  • Active Electromagnetic Suspension System for Improved Vehicle Dynamics
    Active electromagnetic suspension system for improved vehicle dynamics Citation for published version (APA): Gysen, B. L. J., Paulides, J. J. H., Janssen, J. L. G., & Lomonova, E. A. (2008). Active electromagnetic suspension system for improved vehicle dynamics. In IEEE Vehicle Power and Propulsion Conference, 2008 : VPPC '08 ; 3 - 5 Sept. 2008, Harbin, China (pp. 1-6). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/VPPC.2008.4677555 DOI: 10.1109/VPPC.2008.4677555 Document status and date: Published: 01/01/2008 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • Employing Optimization in Cae Vehicle Dynamics
    Technical University of Crete School of Production Engineering & Management EMPLOYING OPTIMIZATION IN CAE VEHICLE DYNAMICS Alexandros Leledakis December 2014 ACKNOWLEDGEMENTS This thesis study was performed between March and October 2014 at Volvo Cars in Goteborg of Sweden, where I had the chance to work inside Volvo’s Research and Development Centre (in the Active Safety CAE department). I would like to thank my Volvo Cars supervisor Diomidis Katzourakis, CAE Active Safety Assignment Leader, for his constant guidance during this thesis. He always provided knowledge and ideas during all phases of the thesis; planning, modelling, setup of experiments, etc. It is with immense gratitude that I acknowledge the support and help of my academic supervisor Nikolaos Tsourveloudis, Professor and Dean of the school of Production engineering and management at Technical University of Crete, for his trust and guidance throughout my studies. The MSc thesis of Stavros Angelis and Matthias Tidlund served as-foundation of the current thesis: I would also like to thank Mathias Lidberg, Associate Professor in Vehicle Dynamics, Chalmers University of Technology. Field tests would have been impossible without the help of Per Hesslund, who installed the steering robot in the vehicle for our DLC verification testing session, conducted each test and guided me through the procedure of instrumenting a vehicle and performing a test. I share the credit of my work with Lukas Wikander and Josip Zekic, who helped with the setup of the Vehicle for the steering torque interventions test as well as Henrik Weiefors, from Sentient, for his support regarding the Control EPAS functionality. I would also like to thank Georgios Minos, manager of CAE Active Safety.
    [Show full text]
  • Chapter 4 Vehicle Dynamics
    Chapter 4 Vehicle Dynamics 4.1. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration and deceleration, is described in this section. This model will be used for design of control laws and computer simulations. Although the model considered here is relatively simple, it retains the essential dynamics of the system. 4.2. System Dynamics The model identifies the wheel speed and vehicle speed as state variables, and it identifies the torque applied to the wheel as the input variable. The two state variables in this model are associated with one-wheel rotational dynamics and linear vehicle dynamics. The state equations are the result of the application of Newton’s law to wheel and vehicle dynamics. 4.2.1. Wheel Dynamics The dynamic equation for the angular motion of the wheel is w& w =[Te - Tb - RwFt - RwFw]/ Jw (4.1) where Jw is the moment of inertia of the wheel, w w is the angular velocity of the wheel, the overdot indicates differentiation with respect to time, and the other quantities are defined in Table 4.1. 31 Table 4.1. Wheel Parameters Rw Radius of the wheel Nv Normal reaction force from the ground Te Shaft torque from the engine Tb Brake torque Ft Tractive force Fw Wheel viscous friction Nv direction of vehicle motion wheel rotating clockwise Te Tb Rw Ft + Fw ground Mvg Figure 4.1. Wheel Dynamics (under the influence of engine torque, brake torque, tire tractive force, wheel friction force, normal reaction force from the ground, and gravity force) The total torque acting on the wheel divided by the moment of inertia of the wheel equals the wheel angular acceleration (deceleration).
    [Show full text]
  • Optimum Vehicle Dynamics Control Based on Tire Driving and Braking
    23 Special Issue Modeling, Analysis and Control Methods for Improving Vehicle Dynamic Behavior Optimum Vehicle Dynamics Control Based on Tire Driving and Research Braking Forces Report Yoshikazu Hattori Abstract This paper discusses a method of controlling This report proposes a method of distributing the tire force exerted by each wheel of a vehicle the target force and moment of a vehicle to each as a means of ensuring steerability and stability. tire by considering variations in the tire force Conventional vehicle stability control systems caused by changes in the tire's vertical load, the generally rely on feedback of vehicle states such longitudinal slip, and so on. As a result, the as the side slip angle and yaw rate to enable proposed strategy achieves seamless behavior stabilization under a range of vehicle/road surface between the normal and the critical limit regions. combinations. On a low-friction road surface that And, we have confirmed that excellent levels of is incapable of applying sufficient force, steerability and stability can be achieved, relative however, it is unreasonable to expect a system to to conventional stability control systems, by provide sufficient control upon the occurrence of simulating a slalom maneuver. Also, this undesirable vehicle behavior. The tire force has a strategy enables effective vehicle control in the non-linear saturating characteristic, the value of face of unstable phenomena involving which varies with the vehicle state and road unbalanced lateral forces arising from changes in surface, making it difficult to determine the force the vehicle behavior, such as closing the throttle to be generated by each tire to ensure the desired during a turn maneuver.
    [Show full text]
  • Active Electromagnetic Suspension System for Improved Vehicle Dynamics
    Active electromagnetic suspension system for improved vehicle dynamics Citation for published version (APA): Gysen, B. L. J., Paulides, J. J. H., Janssen, J. L. G., & Lomonova, E. (2010). Active electromagnetic suspension system for improved vehicle dynamics. IEEE Transactions on Vehicular Technology, 59(3), 1156-1163. https://doi.org/10.1109/TVT.2009.2038706 DOI: 10.1109/TVT.2009.2038706 Document status and date: Published: 01/01/2010 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Tyre Dynamics, Tyre As a Vehicle Component Part 1.: Tyre Handling Performance
    1 Tyre dynamics, tyre as a vehicle component Part 1.: Tyre handling performance Virtual Education in Rubber Technology (VERT), FI-04-B-F-PP-160531 Joop P. Pauwelussen, Wouter Dalhuijsen, Menno Merts HAN University October 16, 2007 2 Table of contents 1. General 1.1 Effect of tyre ply design 1.2 Tyre variables and tyre performance 1.3 Road surface parameters 1.4 Tyre input and output quantities. 1.4.1 The effective rolling radius 2. The rolling tyre. 3. The tyre under braking or driving conditions. 3.1 Practical brakeslip 3.2 Longitudinal slip characteristics. 3.3 Road conditions and brakeslip. 3.3.1 Wet road conditions. 3.3.2 Road conditions, wear, tyre load and speed 3.4 Tyre models for longitudinal slip behaviour 3.5 The pure slip longitudinal Magic Formula description 4. The tyre under cornering conditions 4.1 Vehicle cornering performance 4.2 Lateral slip characteristics 4.3 Side force coefficient for different textures and speeds 4.4 Cornering stiffness versus tyre load 4.5 Pneumatic trail and aligning torque 4.6 The empirical Magic Formula 4.7 Camber 4.8 The Gough plot 5 Combined braking and cornering 5.1 Polar diagrams, Fx vs. Fy and Fx vs. Mz 5.2 The Magic Formula for combined slip. 5.3 Physical tyre models, requirements 5.4 Performance of different physical tyre models 5.5 The Brush model 5.5.1 Displacements in terms of slip and position. 5.5.2 Adhesion and sliding 5.5.3 Shear forces 5.5.4 Aligning torque and pneumatic trail 5.5.5 Tyre characteristics according to the brush mode 5.5.6 Brush model including carcass compliance 5.6 The brush string model 6.
    [Show full text]