A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chevrolet Aveo 1
CHEVROLET_AVEO 1 NO. 96535499 - P96535499 - 96535429 - 96535495 - NO. 96535402 A2364 96535505 - 95535510K E0627-M APOIO DO MOTOR PARTE DA FRENTE LADO CAIXA ESTICADOR DO MOTOR LADO ESQUERDO CAIXA DE VELOCIDADES VELOCIDADES CHEVROLET AVEO / KALOS Hatchback (T200): 1.2 01.2004/05.2008 CHEVROLET AVEO / KALOS Hatchback (T200) 1.4 (De 03.2005 Até 53KW 72CV 1150CC - CHEVROLET AVEO / KALOS Hatchback (T200): 05.2008) 61kw 83cv 1399cm3 Hatchback - CHEVROLET AVEO / KALOS 1.4 16V 05.2003/05.2008 69KW 94CV 1399CC - CHEVROLET AVEO / Hatchback (T200) 1.4 16V (De 05.2003 Até 05.2008) 69kw 94cv KALOS Hatchback (T250, T255): 1.2 06.2006/>>> 53KW 72CV 1150CC - 1399cm3 Hatchback - CHEVROLET AVEO / KALOS três volumes CHEVROLET AVEO / KALOS Hatchback (T250, T255): 1.4 04.2008/>>> (T250, T255) 1.4 (De 03.2005 -) 61kw 83cv 1399cm3 tres volumes - 74KW 101CV 1399CC - CHEVROLET AVEO / KALOS três volumes (T250, T255... 190x162x109mm 1r-d12mm 1f-d11mm 1f-11x13mm 1f-d13mm 1f-7mm... 231x154x63mm 2f-d10mm 1f-d12mm F4218 NO. 96538061 R8174 NO. 96439858 FOLE ALAVANCA VELOCIDADES TUBO DE ADMISSÃO FILTRO DE AR CHEVROLET AVEO / KALOS três volumes (T250, T255): 1.2 CHEVROLET AVEO / KALOS Hatchback (T200): 1.4 16V 03.2005/12.2007 53KW 72CV1150CC - CHEVROLET AVEO / 05.2003/05.2008 69KW 94CV 1399CC KALOS três volumes (T250, T255): 1.201.2008/»»» 62KW 84CV1206CC - CHEVROLET AVEO / KALOS três volumes (T250, T255): 1.409.2008/»»» 74KW 101CV 1399CC 183x145x195mm 1f-123x159mm B238-58/64mm 62x131x78mm ch-d13mm 1f-d15mm NO. 96440010 - 95225560 - 96440011 NO. 96535274 - 13251806 - 13351822 -
Electric Vehicle Fleet Toolkit
ELECTRICITY Electricity WHAT IS CHARGING? What is a PEV? A plug-in electric vehicle (PEV) is a How many stations are in the San vehicle in which there is an onboard Diego region? battery that is powered by energy Currently there are over 550 public delivered from the electricity grid. There are two types of electric charging stations in the San Diego region. Level 1 Charging vehicles: a battery electric vehicle Level 1 charging uses 120 volts AC. An PEV (BEV) and a plug-in hybrid electric How much does it cost to fuel my can be charged with just a standard wall vehicle (PHEV). BEVs run exclusively vehicle? outlet. on the power from their onboard battery. PHEVs have both an It generally costs less than half as onboard battery and an internal much to drive an electric vehicle as Level 2 Charging combustion engine that is used an internal combustion engine Level 2 charging uses 240 volts AC. This is when the car’s battery is depleted. the same type of voltage as an outlet used for a dryer or washing machine. There are upwards of 12,000 PEVs in 24-month average* the San Diego region (as of Summer Gasoline $3.35 2015). DC Fast Charging Electricity** $1.22 DC fast charging is a very quick level of charging. An PEV can be charged up to 80% Savings $2.13 within 30 minutes of charging. *June 2013-June 2015 **Gasoline gallon equivalent 1 ELECTRICITY What types of vehicles can use electricity? Electric vehicles come in all shapes and sizes. -
Appendix E Descriptions of Glider Vehicles by Industry Participants
Comment on EPA Proposed Glider Vehicles Rule, Docket ID EPA-HQ-OAR-2014-0827, submitted January 5, 2018 Appendix E Descriptions of Glider Vehicles by Industry Participants Description of Glider Vehicles by Glider Manufacturer Fitzgerald Glider Kits, “What is a Glider Kit” https://www.fitzgeraldgliderkits.com/what-is-a-glider-kit (accessed Jan. 3, 2018) Description of Glider Vehicles by Glider Manufacturer Harrison Truck Centers, “Glider Kits” http://www.htctrucks.com/index.php/sales-1/harrison-truck-centers- glider-kits (accessed Jan. 3, 2018) Description of Glider Vehicles by Glider Manufacturer Freightliner, “Glider: The Truck You Always Wanted” Brochure www.dtnaglider.com THE TRUCK YOU ALWayS WaNTED WHICH ONE IS THE GLIDER? IT’S HARD TO TELL Rolling down the road, it’s difficult to spot any differences between a Freightliner Glider and a new Freightliner truck. A Glider kit comes to you as a brand-new, complete assembly that includes the frame, cab, steer axle and wheels, plus a long list of standard equipment. Every Glider also comes with a loose parts box containing up to 160 parts — everything you need to get rolling. YOU PROVIDE WE PROVIDE COMPLETE ASSEMBLY 1 THE NEXT BEST THING TO A NEW TRUCK Designed, engineered and assembled alongside new Freightliner trucks, a Glider gives you everything a new truck offers except for two of the three main driveline components (engine, transmission and rear axle). You can either recapitalize any of these from your existing unit, or spec a factory-installed remanufactured engine or rear axle. BACKED BY A NEW TRUCK WARRANTY Unlike a used truck, every factory-installed component on a Glider is covered by Freightliner’s Warranty. -
Suzuki Announces FY2019 Vehicle Recycling Results in Japan
22 June 2020 Suzuki Announces FY2019 Vehicle Recycling Results in Japan Suzuki Motor Corporation has today announced the results of vehicle recycling for FY2019 (April 2019 to March 2020) in Japan, based on the Japan Automobile Recycling Law*1. In line with the legal mandate, Suzuki is responsible for promoting appropriate treatment and recycling of automobile shredder residue (ASR), airbags, and fluorocarbons through recycling fee deposited from customers. Recycling of these materials are appropriately, smoothly, and efficiently conducted by consigning the treatment to Japan Auto Recycling Partnership as for airbags and fluorocarbons, and to Automobile Shredder Residue Recycling Promotion Team*2 as for ASR. The total cost of recycling these materials was 3,640 million yen. Recycling fees and income generated from the vehicle-recycling fund totalled 4,150 million yen, contributing to a net surplus of 510 million yen. For the promotion of vehicle recycling, Suzuki contributed a total of 370 million yen from the above net surplus, to the Japan Foundation for Advanced Auto Recycling, and 20 million yen for the advanced recycling business of the Company. For the mid-and long-term, Suzuki continues to make effort in stabilising the total recycling costs. Moreover, besides the recycling costs, the Company bears 120 million yen as management-related cost of Japan Automobile Recycling Promotion Center and recycling-related cost of ASR. The results of collection and recycling of the materials are as follows. 1. ASR - 60,388.3 tons of ASR were collected from 450,662 units of end-of-life vehicles - Recycling rate was 96.7%, exceeding the legal target rate of 70% set in FY2015 since FY2008 2. -
The Chevrolet Volt
Robert Babik Director, Environment, Energy and Safety Policy 2011 Volt — Born and Built in U.S. • GM invested more than $700 million in eight Michigan plants for Volt production • Key facilities – Detroit-Hamtramck Assembly Investment of $336 million – Brownstown Battery Assembly Investment of $43 million – GM Global Battery System Lab Investment of $33 million 2011 Chevrolet Volt Availability • Volts will be available across the U.S. by the end of this year — six months sooner than originally planned • Volts have already been delivered to customers in Washington, D.C., California, New York, Connecticut, New Jersey, Michigan and Texas How Volt Works • Combines a high-voltage lithium-ion battery pack with an advanced electric drive unit • Electric Mode — Volt can drive initially on electricity for a range of 35 miles* • Extended Range Mode — Gas-powered generator turns on and produces electric energy for hundreds of additional miles of driving range *EPA estimated 35 miles initial range based on 93 MPGe (electric); actual range varies with conditions EVSE | Fuel Pump of the Future • EVSE = Electric Vehicle Supply Equipment • Definition (according to NEC Article 625.2): Electric Vehicle Supply Equipment. The conductors, including the ungrounded, grounded, and equipment grounding conductors and the electric vehicle connectors, attachment plugs, and all other fittings, devices, power outlets, or apparatus installed specifically for the purpose of transferring energy between the premises wiring and the electric vehicle. Charging the Chevrolet -
Individual Drive-Wheel Energy Management for Rear-Traction Electric Vehicles with In-Wheel Motors
applied sciences Article Individual Drive-Wheel Energy Management for Rear-Traction Electric Vehicles with In-Wheel Motors Jose del C. Julio-Rodríguez * , Alfredo Santana-Díaz. * and Ricardo A. Ramirez-Mendoza * School of Engineering and Sciences, Tecnologico de Monterrey, Toluca 50110, Mexico * Correspondence: [email protected] (J.d.C.J.-R.); [email protected] (A.S.-D.); [email protected] (R.A.R.-M.) Abstract: In-wheel motor technology has reduced the number of components required in a vehicle’s power train system, but it has also led to several additional technological challenges. According to kinematic laws, during the turning maneuvers of a vehicle, the tires must turn at adequate rotational speeds to provide an instantaneous center of rotation. An Electronic Differential System (EDS) controlling these speeds is necessary to ensure speeds on the rear axle wheels, always guaranteeing a tractive effort to move the vehicle with the least possible energy. In this work, we present an EDS developed, implemented, and tested in a virtual environment using MATLAB™, with the proposed developments then implemented in a test car. Exhaustive experimental testing demonstrated that the proposed EDS design significantly improves the test vehicle’s longitudinal dynamics and energy consumption. This paper’s main contribution consists of designing an EDS for an in-wheel motor electric vehicle (IWMEV), with motors directly connected to the rear axle. The design demonstrated effective energy management, with savings of up to 21.4% over a vehicle without EDS, while at the same time improving longitudinal dynamic performance. Citation: Julio-Rodríguez, J.d.C.; Keywords: electric vehicles; electromobility; in-wheel motors; electronic differential; wheel-speed Santana-Díaz., A.; Ramirez-Mendoza, control; powertrain; energy consumption; automotive control; vehicle dynamics control R.A. -
Note: This English Translation Is for Reference Purposes Only. in The
Note: This English translation is for reference purposes only. In the event of any discrepancy between the Japanese original and this English translation, the Japanese original shall prevail. We assume no responsibility for this translation or for direct, indirect or any other forms of damage arising from the translation. (Securities code: 7211) June 3, 2019 To our shareholders 3-1-21, Shibaura, Minato-ku, Tokyo MITSUBISHI MOTORS CORPORATION Chairman of the Board, CEO Osamu Masuko NOTICE OF THE 50TH ORDINARY GENERAL MEETING OF SHAREHOLDERS You are cordially invited to attend the 50th Ordinary General Meeting of Shareholders of Mitsubishi Motors Corporation (“MMC”) to be held as described as below. If you are unable to attend, as described in the “Notice on Exercising Voting Rights” (P. 3 and P. 4), you may exercise your voting right(s) in writing or via the Internet. To do so, please review the “Reference Materials” for the Ordinary General Meeting of Shareholders contained in this notice, and exercise your voting right(s) either by posting your voting form so that it arrives before 5:45 p.m. on Thursday, June 20, 2019 or inputting your vote on the website for exercising voting right(s) before the aforementioned date and time. 1. Date and time Friday, June 21, 2019 at 10:00 a.m. (Japan time) 2. Place 3-3-1 Shibakoen, Minato-ku, Tokyo Ho-O-No-Ma, 2F, Tokyo Prince Hotel (Please note that the place for this Ordinary General Meeting of Shareholders differs from the one for the previous meeting.) 3. Purposes Matters to report 1. -
'Vetter's Letter
Allentown Area Corvette Club, Inc. ‘Vetter’s Letter December 2019 Volume 26, Issue 12 President Joe Iervolino From the val Office 973-219-6307 [email protected] To all our members… Vice-President Gary Warmkessel “‘Tis the Season” is a phrase that refers to things that happen dur‐ 610-767-3605 ing the holiday time stretching roughly from Thanksgiving through [email protected] Christmas. It is also a prelude to the New Year. For we Corvette owners who are Secretary Carol Jenkins in the process of or have completed storing our prized Corvettes, the “season” 610-417-8836 is a much‐needed uplift to overcome the sadness of this self‐induced hibernation. [email protected] Treasurer On the joyous side of things, it is a time for family, worship, good food and drink, Mike Best merriment, wrapping presents, gift exchanging, mistletoe, Santa Claus and the 610-767-6079 Grinch. It is for certain both a happy and stressful time of year, in that there is [email protected] much to do in a short period of time and it is also a period of reflection on the Membership Laura Hegyi year at its end and the hopes of the year yet to come. 610-730-2695 [email protected] For our club, it’s been an uplifting year where we continued to grow, had two Activities very successful car shows, and contributed a record amount to our charity — Jeff Mohring Angel 34 — and provided financial assistance to victims of a deadly hurricane and 610-392-6898 [email protected] the many families left homeless by a devastating fire in the town of our club Merchandise & Clothing namesake, Allentown. -
Embedded System Design and Implementation of an Intelligent Electronic Differential System for Electric Vehicles
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 9, 2017 Embedded System Design and Implementation of an Intelligent Electronic Differential System for Electric Vehicles Ali UYSAL Emel SOYLU Technology Faculty, Department of Mechatronics Technology Faculty, Department of Mechatronics Engineering, Karabük University Engineering, Karabük University Karabük, TURKEY Karabük, TURKEY Abstract—This paper presents an experimental study of the mechanical differential, torque is not limited by the least- electronic differential system with four-wheel, dual-rear in wheel wheeled wheel, fast response time, accurate information on motor independently driven an electric vehicle. It is worth torque per wheel [2]. bearing in mind that the electronic differential is a new technology used in electric vehicle technology and provides better In this work, the intelligent supervised EDS for electric balancing in curved paths. In addition, it is more lightweight vehicles is designed and realized. There are studies in this issue than the mechanical differential and can be controlled by a single in the literature. This technology has many applications and controller. In this study, intelligently supervised electronic vehicle performance has been improved with successful differential design and control is carried out for electric vehicles. applications. The movement of this earthmoving truck is Embedded system is used to provide motor control with a fuzzy provided by an electric drive system consisting of two logic controller. High accuracy is obtained from experimental independent electric motors. Providing a maximum power of study. 2700 kW, these engines are controlled to adjust their speed when cornering, thereby increasing traction and reducing tire Keywords—Electronic differential; electric vehicle; embedded wear. -
Accelerating Electric Vehicle Adoption: a Vision for Minnesota
Accelerating Electric Vehicle Adoption: A Vision for Minnesota Minnesota Department of Transportation Minnesota Pollution Control Agency 2019 Great Plains Institute 2 Acknowledgements Authors Fran Crotty, Minnesota Pollution Control Agency Brendan Jordan, Great Plains Institute, Drive Electric Minnesota Dane McFarlane, Great Plains Institute Tim Sexton, Minnesota Department of Transportation Siri Simons, Minnesota Department of Transportation Data Analysis Anne Claflin, Minnesota Pollution Control Agency Anne Jackson, Minnesota Pollution Control Agency Dorian Kvale, Minnesota Pollution Control Agency Amanda Jarrett Smith, Minnesota Pollution Control Agency Contributors Katelyn Bocklund, Great Plains Institute Matthew Blackler, ZEF Energy Larry Herke, State of Minnesota Office of Enterprise Sustainability Pat Jones, Metro Transit Jukka Kukkonen, Plug-in Connect Diana McKeown, Great Plains Institute Sophia Parr, Duluth Transit Authority Rebecca Place, Minnesota Pollution Control Agency Lisa Thurstin, American Lung Association in Minnesota, Twin Cities Clean Cities Coalition Andrew Twite, Fresh Energy Denise Wilson, Minnesota Pollution Control Agency Photographer Will Dunder, Great Plains Institute Layout & Graphics Siri Simons, Minnesota Department of Transportation Accelerating Electric Vehicle Adoption: A Vision for Minnesota 3 Table of Contents 2 Acknowledgements 4 Executive Summary 6 Introduction 7 Collaboration Advances EVs 8 EV Basics 12 What are the Benefits of Electric Vehicles in Minnesota? 18 What are the Challenges? 20 Strategies to Advance Electric Vehicles 31 Utility Electric Vehicle Programs 32 Looking to the Future 35 Appendices 35 Appendix A 35 Appendix B 36 Appendix C 37 Appendix D 39 Appendix E 40 Appendix F 41 Appendix G 42 Appendix H 43 Appendix I 4 Executive Summary A STATEWIDE VISION FOR ELECTRIC VEHICLES The goal is admittedly ambitious. -
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Review Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy Michael Handwerker 1,2,*, Jörg Wellnitz 1,2 and Hormoz Marzbani 2 1 Faculty of Mechanical Engineering, University of Applied Sciences Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany; [email protected] 2 Royal Melbourne Institute of Technology, School of Engineering, Plenty Road, Bundoora, VIC 3083, Australia; [email protected] * Correspondence: [email protected] Abstract: Climate change is one of the major problems that people face in this century, with fossil fuel combustion engines being huge contributors. Currently, the battery powered electric vehicle is considered the predecessor, while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified, different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells, it is shown that, despite the lower efficiency, the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle, the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency Citation: Handwerker, M.; Wellnitz, and high prices for the required components, this domestically produced hydrogen cannot compete J.; Marzbani, H. Comparison of with hydrogen produced from fossil fuels on a larger scale. -
Mid-Atlantic and Northeast Plug-In Electric Vehicle Cost-Benefit Analysis Methodology & Assumptions
Mid-Atlantic and Northeast Plug-in Electric Vehicle Cost-Benefit Analysis Methodology & Assumptions December 2016 Acknowledgements Authors: Dana Lowell, Brian Jones, and David Seamonds M.J. Bradley & Associates LLC Prepared by: M.J. Bradley & Associates LLC 47 Junction Square Drive Concord, MA 01742 Contact: Dana Lowell (978) 405-1275 [email protected] For Submission to: Natural Resources Defense Council 40 W 20th Street, New York, NY 10011 Contact: Luke Tonachel (212) 727-4607 [email protected] About M.J. Bradley & Associates LLC M.J. Bradley & Associates LLC (MJB&A) provides strategic and technical advisory services to address critical energy and environmental matters including: energy policy, regulatory compliance, emission markets, energy efficiency, renewable energy, and advanced technologies. Our multi-national client base includes electric and natural gas utilities, major transportation fleet operators, clean technology firms, environmental groups and government agencies. We bring insights to executives, operating managers, and advocates. We help you find opportunity in environmental markets, anticipate and respond smartly to changes in administrative law and policy at federal and state levels. We emphasize both vision and implementation, and offer timely access to information along with ideas for using it to the best advantage. © M.J. Bradley & Associates 2016 December 2016 Mid-Atlantic and Northeast Plug-in Electric Vehicle Cost-Benefit Analysis Table of Contents Executive Summary .....................................................................................................................................