The Marine Fishes of Broward County, Florida: Final Report of 1998-2002 Survey Results

Total Page:16

File Type:pdf, Size:1020Kb

The Marine Fishes of Broward County, Florida: Final Report of 1998-2002 Survey Results NOAA Technical Memorandum NMFS-SEFSC-532 The Marine Fishes of Broward County, Florida: Final Report of 1998-2002 Survey Results Palm Beach County Port Everglades Hillsboro Inlet Dade County 1 Fleur Ferro1, Lance K.B. Jordan1,2, and Richard E. Spieler1,2 U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149 July 2005 Oceanographic Center1 and the National Coral Reef Institute2, Nova Southeastern University, 8000 N. Ocean Drive, Dania Beach, Florida 33004 USA NOAA Technical Memorandum NMFS-SEFSC-532 The Marine Fishes of Broward County, Florida: Final Report of 1998-2002 Survey Results Fleur Ferro, Lance K.B. Jordan, and Richard E. Spieler U.S. DEPARTMENT OF COMMERCE Carlos M. Gutierrez, Secretary National Oceanic and Atmospheric Administration Conrad C. Lautenbacker Jr., Undersecretary for Oceans and Atmosphere National Marine Fisheries Service William T. Hogarth, Assistant Administrator for Fisheries Southeast Fisheries Science Center Miami, Florida July 2005 This technical memorandum series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information, and has not undergone external scientific review. NOTICE The National Marine Fisheries Service (NMFS) does not approve, recommend, or endorse any proprietary product or material mentioned in this publication. No reference shall be made to the NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein or which has as its purpose any intent to cause directly or indirectly the advertised product to be used or purchased because of NMFS publication. This report should be cited as follows: Fleur, F., L.K.B. Jordan, and R.E. Spieler. 2005. The marine fishes of Broward county, Florida: Final Report of 1998-2002 Survey Results. NOAA Technical Memorandum NMFS-SEFSC-532. 73 p. Copies may be obtained by writing: National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149 or National Technical Information Service 5258 Port Royal Road Springfield, Virginia 22161 (703) 487-4650 FAX: (703) 321-8547 Rush Orders: (800) 336-4700 PDF version available at www.sefsc.noaa.gov ii The Marine Fishes of Broward County, Florida: Final Report of 1998-2002 Survey Results Fleur Ferro, Lance K.B. Jordan, and Richard E. Spieler July 2005 Executive Summary We inventoried fishes associated with three hardbottom reef tracts that are separated by sand and run parallel to the coast in sequentially deeper water offshore Broward County, Florida. Using SCUBA and the Bohnsack-Bannerot visual point count method, we recorded fish abundance, species richness, sizes (TL), and general habitat characteristics within an imaginary 15m cylinder extending from the substrate to the surface. Sites were sampled along transects at quarter nautical mile intervals along 18 nautical miles of coastline at western and eastern edges, and crest of each of the three reef tracts. A total of 86,463 fishes belonging to 208 species and 52 families was censused from 667 sites over four years (August 1998 to November 2002). Mean species richness, mean total abundance and mean total biomass of fishes increased significantly on each reef tract moving offshore (p<0.05, ANOVA, SNK). Tract differences may be due to a variety of variables, such as depth, current, refuge, food availability, and other habitat preferences. Differences were found within reef tracts based on edge or crest sites and position along reefs north or south of Port Everglades and Hillsboro Inlet. Sites within 5 na. mi. south of Port Everglades had lower total abundance and species richness (p<0.05, ANOVA) than the same number of sites located within 5 nautical miles north of the port. Also, south of Port Everglades, the western edge of the reef tracts had greater abundance and richness values than the eastern edge or the crest (p<0.05, ANOVA). In contrast, the eastern edge predominated in both abundance and richness north of Port Everglades (p<0.05, ANOVA). The reason(s) for these differences may be linked to topographic variables. In general, at count sites north of Port Everglades, the eastern edges of the reef tracts had a higher amount of vertical relief, and attendant refuge, than at southern count sites. Likewise, although regressions were weak, differences in species richness and abundance were related to bottom cover, rugosity, and depth to some extent. Hillsboro Inlet showed similar patterns. Sites within 3.75 nautical miles south of the inlet had lower abundance and species richness (p<0.05, ANOVA) than the same number of sites north of the inlet. These patterns could be influenced by effluent transport by the predominantly north-bound current running parallel to the coast. Density of juvenile grunts, an important forage base, was similar on the inshore and middle reefs, but was significantly higher than on the offshore reef. Of management interest, was a scarcity or absence of groupers and snappers observed over four years. Although juvenile red grouper were frequently seen (n = 232 at 667 sites), only two were above legal minimum size. No goliath or black grouper were recorded. A total of 10 gag, yellowfin, or scamp grouper was observed; none were legal. Among six snapper species, 219 of 718 were of legal size. iii Table of Contents The Marine Fishes of Broward County, Florida: Final Report of 1998-2002 Survey Results Executive Summary ............................................................................................... iii Table of Contents ………………………………………………………………... iv 1.0. INTRODUCTION ………………………………………………………... 1 1.1. Significance of this Study ………………………………………….......... 1 1.2. Previous Studies …………………………………………………… ……. 1 1.3. Statement of Purpose ……………………………………………………. 2 2.0. METHODS AND MATERIALS ………………………………………… 2 2.1. Study Area ……………………………………………………………….. 2 2.2. Census Technique ………………………………………………………… 6 2.2.1. Census Site Determination ……………………………………………….. 6 2.2.2. Equipment ………………………………………………………………… 6 2.2.3. Underwater Operations …………………………………………………… 7 2.2.4. Point Count Procedure …………………………………………………… 9 2.3. Data Analysis …………………………………………………………….. 9 3.0. RESULTS ………………………………………………………………… 10 3.1. Broward County Reef Tract Description …………………………………. 10 3.1.1. Inshore Reef Tract ………………………………………………………… 10 3.1.2. Middle Reef Tract ………………………………………………………… 13 3.1.3. Offshore Reef Tract ………………………………………………………. 16 3.2. Fish Assemblage Structures ……………………………………………… 18 3.2.1. Totals for Each Reef Tract ……………………………………………….. 18 3.2.2. Abundance and Species Richness North and South of Port Everglades …. 23 3.2.3. Fish Assemblages Relating to Port Everglades …………………………… 26 3.2.4. Abundance and Species Richness North and South of Hillsboro Inlet …… 27 3.2.5. Fish Assemblages Around Hillsboro Inlet ……………………………….. 32 3.2.6. Total Fish Abundance and Species Richness North to South ……………. 33 3.2.7. Environmental Factors ……………………………………………………. 34 3.2.8. Juvenile Haemulidae……………………………………………………….. 38 3.2.9. Serranidae …………………………………………………………………. 40 3.2.10. Lutjanidae ………………………………………………………………… 43 4.0. DISCUSSION …………………………………………………………….. 46 4.1. Broward County’s Fish Assemblage Structure …………………………… 46 4.2. Port Everglades and Hillsboro Inlet ……………………………………… 48 4.3. Juvenile Haemulidae ………………………………………………………. 48 4.4. Serranidae ………………………………………………………………… 49 4.5. Lutjanidae ………………………………………………………………… 49 5.0. CONCLUSION …………………………………………………………… 50 6.0. ACKNOWLEGMENTS ………………………………………………….. 50 7.0. REFERENCES ……………………………………………………………. 51 iv INTRODUCTION 1.1. Significance of this Study The ability to determine change in an environmental resource in response to any anthropogenic activity or natural event requires an accurate inventory of that resource prior to the activity or event occurring. The coral reef fishes in Broward County, Florida, both residents and transients, are subject to multiple environmental stressors, including such activities as heavy fishing pressure (both commercial and recreational), effluent from Fort Lauderdale and Port Everglades, and habitat destruction from anchoring and ship groundings (five major groundings have occurred on Broward County reefs in the last 10 years). Coral reefs are highly productive communities, which are important to the fisheries of southern Florida (Miclat et al. 1981). Multiple local management decisions are being implemented or considered to alleviate depleted fish stocks and marine life or to mitigate damage (e.g., small boat mooring buoys, artificial reefs, fish stocking, and marine protected areas). In addition, management decisions at the state and federal level can potentially impact the reef fishes of Broward County (e.g., catch limits, redirection of fresh water outflow from Everglades restoration projects, creation of reserves for reproductive stock in the Florida Keys). Management policies are in turn dependent upon reliable fisheries data collection and efficient assessment methods (Beets 1997). The collected data can be utilized for a variety of management strategies (e.g., designing reserve areas) as well as have basic science value (e.g., understanding the organization of reef fish assemblages) (Friedlander & Parrish 1998). Without knowledge of current stocks, the effects of management decisions will be difficult
Recommended publications
  • Field Guide to the Nonindigenous Marine Fishes of Florida
    Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii
    [Show full text]
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Modeling Gag Grouper (Mycteroperca Microlepis
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2009 Modeling gag grouper (Mycteroperca microlepis) in the Gulf of Mexico: exploring the impact of marine reserves on the population dynamics of a protogynous grouper Robert D. Ellis Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Ellis, Robert D., "Modeling gag grouper (Mycteroperca microlepis) in the Gulf of Mexico: exploring the impact of marine reserves on the population dynamics of a protogynous grouper" (2009). LSU Master's Theses. 4146. https://digitalcommons.lsu.edu/gradschool_theses/4146 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. MODELING GAG GROUPER (MYCTEROPERCA MICROLEPIS) IN THE GULF OF MEXICO: EXPLORING THE IMPACT OF MARINE RESERVES ON THE POPULATION DYNAMICS OF A PROTOGYNOUS GROUPER A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Oceanography and Coastal Sciences by Robert D. Ellis B.S., University of California Santa Barbara, 2004 August 2009 ACKNOWLEDGEMENTS I would like to thank the State of Louisiana Board of Regents for funding this research with an 8G Fellowship. My research and thesis were greatly improved by the comments and assistance of many people, first among them my advisor Dr.
    [Show full text]
  • Chapter 14. Northern Shelf Region
    Chapter 14. Northern Shelf Region Queen Charlotte Sound, Hecate Strait, and Dixon canoes were almost as long as the ships of the early Spanish, Entrance form a continuous coastal seaway over the conti- and British explorers. The Haida also were gifted carvers nental shelfofthe Canadian west coast (Fig. 14.1). Except and produced a volume of art work which, like that of the for the broad lowlands along the northwest side ofHecate mainland tribes of the Kwaluutl and Tsimshian, is only Strait, the region is typified by a highly broken shoreline now becoming appreciated by the general public. of islands, isolated shoals, and countless embayments The first Europeans to sail the west coast of British which, during the last ice age, were covered by glaciers Columbia were Spaniards. Under the command of Juan that spread seaward from the mountainous terrain of the Perez they reached the vicinity of the Queen Charlotte mainland coast and the Queen Charlotte Islands. The Islands in 1774 before returning to a landfall at Nootka irregular countenance of the seaway is mirrored by its Sound on Vancouver Island. Quadra followed in 1775, bathymetry as re-entrant troughs cut landward between but it was not until after Cook’s voyage of 1778 with the shallow banks and broad shoals and extend into Hecate Resolution and Discovery that the white man, or “Yets- Strait from northern Graham Island. From an haida” (iron men) as the Haida called them, began to oceanographic point of view it is a hybrid region, similar explore in earnest the northern coastal waters. During his in many respects to the offshore waters but considerably sojourn at Nootka that year Cook had received a number modified by estuarine processes characteristic of the of soft, luxuriant sea otter furs which, after his death in protected inland coastal waters.
    [Show full text]
  • Age Estimates of Two Large Misty Grouper, Epinephelus Mystacinus
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Aquila Digital Community Gulf and Caribbean Research Volume 21 | Issue 1 2009 Age Estimates of Two Large Misty Grouper, Epinephelus mystacinus (Serranidae) from Bermuda with a Comparison of the Age of Tropical Groupers in the Western Atlantic Brian E. Luckhurst Marine Resources Division, Bermuda John M. Dean University of South Carolina DOI: 10.18785/gcr.2101.09 Follow this and additional works at: http://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Luckhurst, B. E. and J. M. Dean. 2009. Age Estimates of Two Large Misty Grouper, Epinephelus mystacinus (Serranidae) from Bermuda with a Comparison of the Age of Tropical Groupers in the Western Atlantic. Gulf and Caribbean Research 21 (1): 73-77. Retrieved from http://aquila.usm.edu/gcr/vol21/iss1/9 This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf and CaribbeanGulf Research and Caribbean Vol 21, 73-77,Research 2009 Vol 21, 73-77, 2009 Manuscript receivedManuscript January 7,received 2009; Januaryaccepted 7, February 2009; accepted 6, 2009 February 6, 2009 Gulf and Caribbean Research Vol 21, 73-77, 2009 Manuscript received January 7, 2009; accepted February 6, 2009 SHORT COMMUNICATIONSHORT COMMUNICATION SHORT COMMUNICATION AGE ESTIMATESAGE ESTIMATES OF TWO OF LARGE TWO MISTYLARGE GROUPER, MISTY GROUPER, AGE ESTIMATES OF TWO LARGE MISTY GROUPER, EPINEPHELUSEPINEPHELUS MYSTACINUS MYSTACINUS (SERRANIDAE) (SERRANIDAE) FROM BERMUDA FROM BERMUDA EPINEPHELUS MYSTACINUS (SERRANIDAE) FROM BERMUDA WITH A WITHCOMPARISON A COMPARISON OF THE OFAGE THE OF AGETROPICAL OF TROPICAL WITH A COMPARISON OF THE AGE OF TROPICAL GROUPERSGROUPERS IN THE WESTERNIN THE WESTERN ATLANTIC ATLANTIC GROUPERS IN THE WESTERN ATLANTIC Brian E.
    [Show full text]
  • Diet Composition of Juvenile Black Grouper (Mycteroperca Bonaci) from Coastal Nursery Areas of the Yucatán Peninsula, Mexico
    BULLETIN OF MARINE SCIENCE, 77(3): 441–452, 2005 NOTE DIET COMPOSITION OF JUVENILE BLACK GROUPER (MYCTEROPERCA BONACI) FROM COASTAL NURSERY AREAS OF THE YUCATÁN PENINSULA, MEXICO Thierry Brulé, Enrique Puerto-Novelo, Esperanza Pérez-Díaz, and Ximena Renán-Galindo Groupers (Epinephelinae, Epinephelini) are top-level predators that influence the trophic web of coral reef ecosystems (Parrish, 1987; Heemstra and Randall, 1993; Sluka et al., 2001). They are demersal mesocarnivores and stalk and ambush preda- tors that sit and wait for larger moving prey such as fish and mobile invertebrates (Cailliet et al., 1986). Groupers contribute to the ecological balance of complex tropi- cal hard-bottom communities (Sluka et al., 1994), and thus large changes in their populations may significantly alter other community components (Parrish, 1987). The black grouper (Mycteroperca bonaci Poey, 1860) is an important commercial and recreational fin fish resource in the western Atlantic region (Bullock and Smith, 1991; Heemstra and Randall, 1993). The southern Gulf of Mexico grouper fishery is currently considered to be deteriorated and M. bonaci, along with red grouper (Epinephelus morio Valenciennes, 1828) and gag (Mycteroperca microlepis Goode and Bean, 1880), is one of the most heavily exploited fish species in this region (Co- lás-Marrufo et al., 1998; SEMARNAP, 2000). Currently, M. bonaci is considered a threatened species (Morris et al., 2000; IUCN, 2003) and has been classified as vul- nerable in U.S. waters because male biomass in the Atlantic dropped from 20% in 1982 to 6% in 1995 (Musick et al., 2000). The black grouper is usually found on irregular bottoms such as coral reefs, drop- off walls, and rocky ledges, at depths from 10 to 100 m (Roe, 1977; Manooch and Mason, 1987; Bullock and Smith, 1991; Heemstra and Randall, 1993).
    [Show full text]
  • Caribbean Wildlife Undersea 2017
    Caribbean Wildlife Undersea life This document is a compilation of wildlife pictures from The Caribbean, taken from holidays and cruise visits. Species identification can be frustratingly difficult and our conclusions must be checked via whatever other resources are available. We hope this publication may help others having similar problems. While every effort has been taken to ensure the accuracy of the information in this document, the authors cannot be held re- sponsible for any errors. Copyright © John and Diana Manning, 2017 1 Angelfishes (Pomacanthidae) Corals (Cnidaria, Anthozoa) French angelfish 7 Bipinnate sea plume 19 (Pomacanthus pardu) (Antillogorgia bipinnata) Grey angelfish 8 Black sea rod 20 (Pomacanthus arcuatus) (Plexaura homomalla) Queen angelfish 8 Blade fire coral 20 (Holacanthus ciliaris) (Millepora complanata) Rock beauty 9 Branching fire coral 21 (Holacanthus tricolor) (Millepora alcicornis) Townsend angelfish 9 Bristle Coral 21 (Hybrid) (Galaxea fascicularis) Elkhorn coral 22 Barracudas (Sphyraenidae) (Acropora palmata) Great barracuda 10 Finger coral 22 (Sphyraena barracuda) (Porites porites) Fire coral 23 Basslets (Grammatidae) (Millepora dichotoma) Fairy basslet 10 Great star coral 23 (Gramma loreto) (Montastraea cavernosa) Grooved brain coral 24 Bonnetmouths (Inermiidae) (Diploria labyrinthiformis) Boga( Inermia Vittata) 11 Massive starlet coral 24 (Siderastrea siderea) Bigeyes (Priacanthidae) Pillar coral 25 Glasseye snapper 11 (Dendrogyra cylindrus) (Heteropriacanthus cruentatus) Porous sea rod 25 (Pseudoplexaura
    [Show full text]
  • Fish Assemblages Associated with Red Grouper Pits at Pulley Ridge, A
    419 Abstract—Red grouper (Epineph- elus morio) modify their habitat by Fish assemblages associated with red grouper excavating sediment to expose rocky pits, providing structurally complex pits at Pulley Ridge, a mesophotic reef in the habitat for many fish species. Sur- Gulf of Mexico veys conducted with remotely op- erated vehicles from 2012 through 2015 were used to characterize fish Stacey L. Harter (contact author)1 assemblages associated with grouper Heather Moe1 pits at Pulley Ridge, a mesophotic 2 coral ecosystem and habitat area John K. Reed of particular concern in the Gulf Andrew W. David1 of Mexico, and to examine whether invasive species of lionfish (Pterois Email address for contact author: [email protected] spp.) have had an effect on these as- semblages. Overall, 208 grouper pits 1 Southeast Fisheries Science Center were examined, and 66 fish species National Marine Fisheries Service, NOAA were associated with them. Fish as- 3500 Delwood Beach Road semblages were compared by using Panama City, Florida 32408 several factors but were considered 2 Harbor Branch Oceanographic Institute to be significantly different only on Florida Atlantic University the basis of the presence or absence 5600 U.S. 1 North of predator species in their pit (no Fort Pierce, Florida 34946 predators, lionfish only, red grou- per only, or both lionfish and red grouper). The data do not indicate a negative effect from lionfish. Abun- dances of most species were higher in grouper pits that had lionfish, and species diversity was higher in grouper pits with a predator (lion- The red grouper (Epinephelus morio) waters (>70 m) of the shelf edge and fish, red grouper, or both).
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • (Teleostei: Pempheridae) from the Western Indian Ocean
    Zootaxa 3780 (2): 388–398 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3780.2.10 http://zoobank.org/urn:lsid:zoobank.org:pub:F42C1553-10B0-428B-863E-DCA8AC35CA44 Pempheris bexillon, a new species of sweeper (Teleostei: Pempheridae) from the Western Indian Ocean RANDALL D. MOOI1,2 & JOHN E. RANDALL3 1The Manitoba Museum, 190 Rupert Ave., Winnipeg MB, R3B 0N2 Canada. E-mail: [email protected] 2Department of Biological Sciences, Biological Sciences Bldg., University of Manitoba, Winnipeg MB, R3T 2N2 Canada 3Bishop Museum, 1525 Bernice St., Honolulu, HI 96817-2704 USA. E-mail: [email protected] Abstract Pempheris bexillon new species is described from the 129 mm SL holotype and 11 paratypes (119–141 mm SL) from the Comoro Islands. Twelve other specimens have been examined from the Agaléga Islands, Mascarene Islands, and Bassas da India (Madagascar). It is differentiated from other Pempheris by the following combination of characters: a yellow dor- sal fin with a black, distal margin along its full length, broadest on anterior rays (pupil-diameter width) and gradually nar- rowing posteriorly, the last ray with only a black tip; large, deciduous cycloid scales on the flank; dark, oblong spot on the pectoral-fin base; anal fin with a dark margin; segmented anal-fin rays 38–45 (usually >40); lateral-line scales 56–65; and total gill rakers on the first arch 31–35; iris reddish-brown. Tables of standard meristic and color data for type material of all nominal species of cycloid-scaled Pempheris in the Indo-Pacific are provided.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]