Conus Venom Peptide Pharmacology

Total Page:16

File Type:pdf, Size:1020Kb

Conus Venom Peptide Pharmacology 1521-0081/12/6402-259–298$25.00 PHARMACOLOGICAL REVIEWS Vol. 64, No. 2 Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics 5322/3751766 Pharmacol Rev 64:259–298, 2012 ASSOCIATE EDITOR: ANNETTE C. DOLPHIN Conus Venom Peptide Pharmacology Richard J. Lewis, Se´bastien Dutertre, Irina Vetter, and MacDonald J. Christie Institute for Molecular Bioscience, the University of Queensland in St. Lucia, Brisbane, Queensland, Australia (R.J.L., S.D., I.V.); and Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia (M.J.C.) Abstract ................................................................................ 260 I. Introduction............................................................................. 260 II. ␻-Conotoxin inhibitors of voltage-gated calcium channels .................................... 263 A. Subtype selectivity ................................................................... 264 B. Structure-activity relationships ........................................................ 266 C. Calcium channel inhibition by conotoxins in pain management ........................... 267 II. Conotoxins interacting with voltage-gated sodium channels .................................. 269 Downloaded from A. ␮-Conotoxin inhibitors of voltage-gated sodium channels ................................. 271 B. ␮O-Conotoxin inhibitors of voltage-gated sodium channels................................ 272 C. Other conotoxin inhibitors of voltage-gated sodium channels.............................. 273 D. ␦-Conotoxin activators of voltage-gated sodium channels ................................. 273 E. ␫-Conotoxin activators of voltage-gated sodium channels.................................. 273 F. Sodium channel inhibition in pain management ......................................... 274 by guest on September 7, 2017 III. ␬-Conotoxins interacting with potassium channels .......................................... 277 A. ␬A-Conotoxins ....................................................................... 277 B. ␬O-Conotoxins ....................................................................... 277 C. ␬M-Conotoxins ....................................................................... 278 D. ␬J-Conotoxins........................................................................ 278 E. ␬I(2)-Conotoxins...................................................................... 279 F. Contryphan-Vn ...................................................................... 279 G. Conkunitzin-S1 ...................................................................... 279 IV. Conotoxins interacting with ligand-gated ion channels ...................................... 279 A. Conotoxin inhibitors of nicotinic acetylcholine receptors .................................. 279 ␴ B. -Conotoxin inhibitors of serotonin 5-hT3 receptors ...................................... 283 C. Ikot-Ikot conopeptide enhancers of ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors ............................................................................ 283 D. Conantokin inhibitors of N-methyl-D-aspartate receptors ................................. 284 E. Ligand-gated ion channels inhibitors in pain management ............................... 285 V. Conotoxins Interacting with G protein-coupled receptors and neurotransmitter transporters .......... 287 A. ␳-Conopeptide inhibitors of ␣1-adrenoceptors............................................ 287 B. ␹-Conopeptide inhibitors of the noradrenaline transporter ................................ 288 C. Conopeptides modulating vasopressin/oxytocin receptors ................................. 289 D. Neurotensin receptor agonists ......................................................... 289 Address correspondence to: Richard J. Lewis, Institute for Molecular Bioscience, the University of Queensland, Q4072, Australia. E-mail: [email protected] This work was supported by a National Health and Medical Research Council of Australia (NHMRC) Research Fellowship (to R.J.L., M.J.C.); an NHMRC Trainee Fellowship (to I.V.), a University of Queensland Postdoctoral Fellowship (to S.D.), and an NHMRC Program Grant (to R.J.L., M.J.C.). This article is available online at http://pharmrev.aspetjournals.org. http://dx.doi.org/10.1124/pr.111.005322. 259 260 LEWIS ET AL. VI. Conclusions and outlook.................................................................. 289 Acknowledgments ....................................................................... 290 References .............................................................................. 291 Abstract——Conopeptides are a diverse group of re- and therapeutic potential of cone snail venom peptide cently evolved venom peptides used for prey capture families acting at voltage-gated ion channels (␻-, ␮-, and/or defense. Each species of cone snails produces in ␮O-, ␦-, ␫-, and ␬-conotoxins), ligand-gated ion channels excess of 1000 conopeptides, with those pharmacolog- (␣-conotoxins, ␴-conotoxin, ikot-ikot, and conan- ically characterized (ϳ0.1%) targeting a diverse range tokins), G-protein-coupled receptors (␳-conopeptides, of membrane proteins typically with high potency and conopressins, and contulakins), and neurotransmitter specificity. The majority of conopeptides inhibit volt- transporters (␹-conopeptides), with expanded discus- age- or ligand-gated ion channels, providing valuable sion on the clinical potential of sodium and calcium research tools for the dissection of the role played by channel inhibitors and ␣-conotoxins. Expanding the specific ion channels in excitable cells. It is notewor- discovery of new bioactives using proteomic/tran- thy that many of these targets are found to be ex- scriptomic approaches combined with high-through- pressed in pain pathways, with several conopeptides put platforms and better defining conopeptide struc- having entered the clinic as potential treatments for ture-activity relationships using relevant membrane pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one protein crystal structures are expected to grow the now marketed for intrathecal treatment of severe pain already significant impact conopeptides have had as [ziconotide (Prialt)]. This review discusses the diver- both research probes and leads to new therapies. sity, pharmacology, structure-activity relationships, I. Introduction tation, venom peptides have coevolved with sophisti- cated and specialized envenomation machinery com- The interrogation of chemical diversity with therapeuti- prising fangs, barbs, modified teeth, harpoons, cally relevant screens remains the dominant discovery en- nematocysts, spines, or sprays. Not surprisingly, gine for the pharmaceutical industry. Although most suc- cess with this approach has been achieved by exploring given that most venoms are delivered intravenously, natural product extracts composed mostly of smaller or- there are multiple examples of convergent evolution of ganic molecules, there is a growing realization that pep- a relatively small number of structural scaffolds that tides are an underused source of leads for new therapeu- possess the requisite stability to remain intact, both tics. This realization is now gaining momentum following within the venom and in plasma after envenomation. the disappointments of combinatorial chemistry, increas- These “privileged” structural frameworks have pro- ing failure rates of small molecules in clinical development, vided the scaffolds for an explosion in sequence diver- and the limitations of small-molecule–based approaches sity that explains much of the chemical diversity for many druggable targets. Sources of peptides include found in present-day venoms. plant cyclotides (Henriques and Craik, 2010), phage dis- Among the venomous species, cone snails within the play libraries (Pande et al., 2010), and venom peptides family Conidae are unique for their ability to use a diverse (Lewis and Garcia, 2003). Among these sources, venom array of small disulfide-bridged peptides (conopeptides or peptides provide arguably the largest source of chemical conotoxins) for prey capture (Fig. 1). Conopeptides have diversity, being driven by evolutionary pressure for im- evolved across all phylogenetic clades and feeding strate- proved prey capture and/or defense. This diversity has gies of cone snails from at least 16 genetically distinct arisen multiple times in nature in animals as diverse as superfamilies, many of which are subject to extensive post- sea anemones, jellyfish, centipedes, spiders, scorpi- translational modifications (Table 1). This highly evolved ons, cone snails, cephalopods, echinoderms, snakes, hunting strategy, developed in parallel with the deploy- lizards, fish, platypus and arguably even fleas, mos- ment of a hollow, barbed harpoon, allows normally herbiv- quitoes, kissing bugs, leeches, ticks, and vampire bats orous molluscs to prey on animals as diverse as worms (Fry et al., 2009). Ensuring their successful implemen- (vermivorous species), fish (piscivorous species), and other molluscs (molluscivorous species). Successful implementa- 1Abbreviations: 5-HT , 5-hydroxytryptamine ; ACh, acetylcho- 3 3 tion of this strategy has allowed this single genus of widely line; AChBP, acetylcholine binding protein; Am2766, CKQAG- ␣ distributed marine molluscs to evolve into more than 500 ESCDIFSQNCCVGTCAFICIE-NH2; AMPA, -amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid; AR, adrenergic receptor; Cav, Conus species. Cone snails hunt prey mostly
Recommended publications
  • Prospecção De Peptídeos Neuroativos Da Peçonha Da Aranha Caranguejeira Acanthoscurria Paulensis
    UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS Programa de Pós-Graduação em Biologia Animal Laboratório de Toxinologia CAROLINE BARBOSA FARIAS MOURÃO Prospecção de peptídeos neuroativos da peçonha da aranha caranguejeira Acanthoscurria paulensis Brasília 2012 CAROLINE BARBOSA FARIAS MOURÃO Prospecção de peptídeos neuroativos da peçonha da aranha caranguejeira Acanthoscurria paulensis Dissertação apresentada ao Programa de Pós-Graduação em Biologia Animal do Instituto de Ciências Biológicas da Universidade de Brasília como requisito parcial à obtenção do título de Mestre. Orientadora: Dra. Elisabeth Ferroni Schwartz Brasília 2012 À minha mãe, Jaqueline Barbosa, pelo apoio incondicional. À minha família, meu exemplo e suporte. Ao Lucas Caridade, por todo o carinho. À Dra. Elisabeth Schwartz, que proporcionou a realização deste projeto. À Toxinologia, que por envolver áreas tão diversas e complementares, nos permite enjoar temporariamente de uma enquanto nos divertimos com outra. Agradecimentos Primeiramente à minha querida mãe, pelo amor, suporte, incentivo e por ter sempre apoiado minhas escolhas acadêmicas. A toda minha família, pelo exemplo de união, suporte e por estarem sempre presentes. Ao meu primo Pedro Henrique pela ajuda em campo. Ao Lucas Caridade, pelo amor, companheirismo e motivação. Obrigada por fazer tudo parecer mais simples e por ser tão paciente. À Dra. Elisabeth Schwartz, pela orientação, incentivo, sugestões, e pela confiança depositada em mim. Obrigada pela oportunidade. Ao Dr. Carlos Bloch Jr., do Laboratório de Espectrometria de Massas – EMBRAPA Recursos Genéticos e Biotecnologia, por permitir acesso ao laboratório e pelos ensinamentos e sugestões ao longo desses anos. Ao Eder Barbosa, pela amizade e por me auxiliar em todos os sequenciamentos de novo realizados neste trabalho.
    [Show full text]
  • The Andean Tarantulas Euathlus Ausserer, 1875, Paraphysa Simon
    This article was downloaded by: [Fernando Pérez-Miles] On: 05 May 2014, At: 07:07 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Natural History Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tnah20 The Andean tarantulas Euathlus Ausserer, 1875, Paraphysa Simon, 1892 and Phrixotrichus Simon, 1889 (Araneae: Theraphosidae): phylogenetic analysis, genera redefinition and new species descriptions Carlos Perafána & Fernando Pérez-Milesa a Universidad de La República, Facultad de Ciencias, Sección Entomología, Iguá 4225, Montevideo, Uruguay Published online: 01 May 2014. To cite this article: Carlos Perafán & Fernando Pérez-Miles (2014): The Andean tarantulas Euathlus Ausserer, 1875, Paraphysa Simon, 1892 and Phrixotrichus Simon, 1889 (Araneae: Theraphosidae): phylogenetic analysis, genera redefinition and new species descriptions, Journal of Natural History, DOI: 10.1080/00222933.2014.902142 To link to this article: http://dx.doi.org/10.1080/00222933.2014.902142 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information.
    [Show full text]
  • Animal Venom Components: New Approaches for Pain Treatment
    Approaches in Poultry, Dairy & Veterinary Sciences ApproachesAppro Poult Dairy in Poultry,& Vet Sci Dairy & CRIMSON PUBLISHERS C Wings to the Research Veterinary Sciences ISSN: 2576-9162 Mini Review Animal Venom Components: New Approaches for Pain Treatment Ana Cristina N Freitas and Maria Elena de Lima* Departamento de Bioquímica e Imunologia, Brazil *Corresponding author: Maria E de Lima, Departamento de Bioquímica e Imunologia, Belo Horizonte, Minas Gerais, Brazil Submission: September 09, 2017; Published: November 06, 2017 Abbreviations: NSAID: Non-Steroidal Anti-Inflammatory Drugs; FDA: Food and Drug Administration; nAChRs: Nicotinic Acetylcholine Receptors; ASICs: Acid-Sensing Ion Channel Introduction This comment has the aim to be illustrative, highlighting some At the moment, there are a great number of animal toxins examples of venoms that have shown a great potential as analgesics. that are being studied for treatment or research of many different It is not our goal to write a review of this subject, considering it is disorders, including pain. The components isolated from animal not pertinent in a brief text like this. venoms gained this interest because of their usual high potency and selectivity in which they act on their molecular targets, such Nowadays there is a lot of concern and discussion about animal as ion channels or receptors [3]. Currently, a large number of welfare, since the role that animals play in human life is far beyond pharmaceutical companies are interested in the development of of being just our pets. Animals are very important as source of drugs based on toxins. One of the most successful cases, regarding pain treatment, was the development of Ziconotide (PRIALT).
    [Show full text]
  • Arachnides 55
    The electronic publication Arachnides - Bulletin de Terrariophile et de Recherche N°55 (2008) has been archived at http://publikationen.ub.uni-frankfurt.de/ (repository of University Library Frankfurt, Germany). Please include its persistent identifier urn:nbn:de:hebis:30:3-371590 whenever you cite this electronic publication. ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 55 DECEMBRE 2008 ISSN 1148-9979 1 EDITORIAL Voici le second numéro d’Arachnides depuis sa reparution. Le numéro 54 a été bien reçu par les lecteurs, sa version électronique facilitant beaucoup sa diffusion (rapidité et gratuité !). Dans ce numéro 55, de nombreux articles informent sur de nouvelles espèces de Theraphosidae ainsi qu’un bilan des nouvelles espèces de scorpions pour l’année 2007. Les lecteurs qui auraient des articles à soumettre, peuvent nous les faire parvenir par courrier éléctronique ou à l’adresse de l’association : DUPRE, 26 rue Villebois Mareuil, 94190 Villeneuve St Geoges. Une version gratuite est donc disponible sur Internet sur simple demande par l’intermédiaire du courrier électronique : [email protected]. Les annonces de parution sont relayées sur divers sites d’Internet et dans la presse terrariophile. L’A.P.C.I. vous annonce également que la seconde exposition Natures Exotiques de Verrières-le-Buisson aura lieu les 20 et 21 juin 2009. Dès que nous aurons la liste des exposants, nous en ferons part dans un futur numéro. Gérard DUPRE. E X O N A T U R E S I Mygales Q Scorpions U Insectes E Reptiles S Plantes carnivores Cactus.....
    [Show full text]
  • Araneae (Spider) Photos
    Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.
    [Show full text]
  • Versatile Spider Venom Peptides and Their Medical and Agricultural Applications
    Accepted Manuscript Versatile spider venom peptides and their medical and agricultural applications Natalie J. Saez, Volker Herzig PII: S0041-0101(18)31019-5 DOI: https://doi.org/10.1016/j.toxicon.2018.11.298 Reference: TOXCON 6024 To appear in: Toxicon Received Date: 2 May 2018 Revised Date: 12 November 2018 Accepted Date: 14 November 2018 Please cite this article as: Saez, N.J., Herzig, V., Versatile spider venom peptides and their medical and agricultural applications, Toxicon (2019), doi: https://doi.org/10.1016/j.toxicon.2018.11.298. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Versatile spider venom peptides and their medical and agricultural applications 2 3 Natalie J. Saez 1, #, *, Volker Herzig 1, #, * 4 5 1 Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia 6 7 # joint first author 8 9 *Address correspondence to: 10 Dr Natalie Saez, Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 11 4072, Australia; Phone: +61 7 3346 2011, Fax: +61 7 3346 2101, Email: [email protected] 12 Dr Volker Herzig, Institute for Molecular Bioscience, The University of Queensland, St.
    [Show full text]
  • VKM Rapportmal
    VKM Report 2016: 36 Assessment of the risks to Norwegian biodiversity from the import and keeping of terrestrial arachnids and insects Opinion of the Panel on Alien Organisms and Trade in Endangered species of the Norwegian Scientific Committee for Food Safety Report from the Norwegian Scientific Committee for Food Safety (VKM) 2016: Assessment of risks to Norwegian biodiversity from the import and keeping of terrestrial arachnids and insects Opinion of the Panel on Alien Organisms and Trade in Endangered species of the Norwegian Scientific Committee for Food Safety 29.06.2016 ISBN: 978-82-8259-226-0 Norwegian Scientific Committee for Food Safety (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Suggested citation: VKM (2016). Assessment of risks to Norwegian biodiversity from the import and keeping of terrestrial arachnids and insects. Scientific Opinion on the Panel on Alien Organisms and Trade in Endangered species of the Norwegian Scientific Committee for Food Safety, ISBN: 978-82-8259-226-0, Oslo, Norway VKM Report 2016: 36 Assessment of risks to Norwegian biodiversity from the import and keeping of terrestrial arachnids and insects Authors preparing the draft opinion Anders Nielsen (chair), Merethe Aasmo Finne (VKM staff), Maria Asmyhr (VKM staff), Jan Ove Gjershaug, Lawrence R. Kirkendall, Vigdis Vandvik, Gaute Velle (Authors in alphabetical order after chair of the working group) Assessed and approved The opinion has been assessed and approved by Panel on Alien Organisms and Trade in Endangered Species (CITES). Members of the panel are: Vigdis Vandvik (chair), Hugo de Boer, Jan Ove Gjershaug, Kjetil Hindar, Lawrence R.
    [Show full text]
  • FERNANDO HITOMI MATSUBARA.Pdf
    UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Biológicas Departamento de Biologia Celular FERNANDO HITOMI MATSUBARA CLONAGEM E EXPRESSÃO HETERÓLOGA DE UM PEPTÍDEO DA FAMÍLIA DAS NOTINAS PRESENTE NO VENENO DA ARANHA MARROM (Loxosceles intermedia) CURITIBA 2011 FERNANDO HITOMI MATSUBARA CLONAGEM E EXPRESSÃO HETERÓLOGA DE UM PEPTÍDEO DA FAMÍLIA DAS NOTINAS PRESENTE NO VENENO DA ARANHA MARROM (Loxosceles intermedia) Dissertação apresentada ao Programa de Pós- Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, como parte das exigências para a obtenção do título de Mestre em Biologia Celular e Molecular Orientador: Prof. Dr. Silvio Sanches Veiga a a Co-orientadora: Prof . Dr . Olga Meiri Chaim CURITIBA 2011 Aos meus pais pela oportunidade que me concederam de poder me dedicar integralmente aos estudos. Pelo apoio incondicional e generosidade constante. Muito Obrigado! AGRADECIMENTOS Ao meu orientador, Prof. Dr. Silvio Sanches Veiga, por todos os ensinamentos, incentivos e confiança nesses 2 anos. Por proporcionar a oportunidade de me integrar ao Laboratório de Matriz Extracelular e Biotecnologia de Venenos e conviver com um grupo especial de pessoas. À minha co-orientadora, Profa Dra Olga Meiri Chaim, por ser um exemplo de competência e dedicação. Por ser generosa e, sobretudo, humana, aconselhando e motivando a todo instante. Muito obrigado! À Luiza Helena Gremski, pela prontidão em me ajudar em todos os experimentos. Por ser um exemplo de profissionalismo e disciplina. Muito obrigado por toda a paciência e disposição! À Profa. Dra. Andréa Senff Ribeiro, por todos os conselhos acadêmicos e pessoais. Pelos incentivos e momentos descontraídos! À Dilza Trevisan Silva, por todo o auxílio técnico e pela grande amizade! Por tornar todos os momentos divertidos e leves! Pelo companheirismo em absolutamente todas as horas! À Valéria Pereira Ferrer, por todo o auxílio técnico e pela grande amizade! Por ser exemplo de conduta ética e pela paciência.
    [Show full text]
  • Molecular Simulations of Disulfide-Rich Venom Peptides With
    molecules Review Review Molecular SimulationsSimulations ofof Disulfide-RichDisulfide-Rich VenomVenom Peptides withwith IonIon ChannelsChannels andand MembranesMembranes Evelyne Deplazes 1,2 Evelyne Deplazes 1,2 1 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 1 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, WA 6102, Australia; [email protected] Perth, WA 6102, Australia; [email protected] 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia QLD 4072, Australia Academic Editor: Roberta Galeazzi Academic Editor: Roberta Galeazzi Received: 8 February 2017; Accepted: 24 February 2017; Published: date Received: 8 February 2017; Accepted: 24 February 2017; Published: 27 February 2017 Abstract:Abstract: Disulfide-richDisulfide-rich peptides isolated isolated from from the the venom venom of of arthropods arthropods and and marine marine animals animals are are a arich rich source source of of potent potent and and selective selective modulators modulators of of ion ion channels. channels. This This makes these peptides valuable leadlead moleculesmolecules forfor thethe developmentdevelopment ofof newnew drugsdrugs toto treattreat neurologicalneurological disorders.disorders. Consequently,Consequently, much effort goes into understanding understanding their their mechanis mechanismm
    [Show full text]
  • Microprotein Hit Finding Library Uncovers Bee Venom PLA2 Inhibited by Spider Venom Emily Knight1,2 and Steven Trim1 1) Venomtech Limited, Sandwich, UK
    Microprotein Hit Finding Library Uncovers Bee Venom PLA2 Inhibited by Spider Venom Emily Knight1,2 and Steven Trim1 1) Venomtech Limited, Sandwich, UK. 2) Canterbury Christ Church University, Canterbury, UK. Introduction Phospholipase A2 (PLA2) enzymes are a large and diverse family of enzymes which are involved in the metabolism of potent inflammation mediators such as prostaglandins, leukotrienes and platelet activating factor (Huang et al., 1999). PLA2 enzymes have a role in inflammatory conditions such as atherosclerosis and rheumatoid arthritis. PLA2 inhibition is therefore considered an attractive target for therapeutic application in such inflammatory conditions. Toxic forms of PLA2 enzymes are present in many venoms, particularly those of Hymenoptera (Bees, Wasps and Ants). More recently, PLA2 enzymes have been discovered for the first time in venom of Theraphosidae (tarantula spiders) (Ferreira et al., 2016). PLA2 inhibitors have been documented in snake serum, presumably as protection against accidental envenomation (Dunn & Broady, 2001), but no such inhibitors have been discovered thus far in spiders. We therefore set out to investigate the potential presence of novel PLA2 inhibitors in theraphosid venom using the Targeted-Venom Discovery Array™ hit finding strategy. Venom libraries contain a diversity of pharmacological actives, including microproteins and peptides, which deliver hits on nearly all targets, especially those difficult to hit with small molecule libraries. Materials and Methods Venoms were selected to provide a wide coverage of genera of Theraphosidae (commonly known as tarantulas). EnzChek® Phospholipase A2 Assay Kit (Molecular Probes®, Invitrogen) was used to study PLA2 activity. The assays were performed in 384 well format using a reaction volume of 25 μl per well.
    [Show full text]
  • Morphology, Evolution and Usage of Urticating Setae by Tarantulas (Araneae: Theraphosidae)
    ZOOLOGIA 30 (4): 403–418, August, 2013 http://dx.doi.org/10.1590/S1984-46702013000400006 Morphology, evolution and usage of urticating setae by tarantulas (Araneae: Theraphosidae) Rogério Bertani1,3 & José Paulo Leite Guadanucci2 1 Laboratório Especial de Ecologia e Evolução, Instituto Butantan. Avenida Vital Brazil 1500, 05503-900 São Paulo SP, Brazil. E-mail: [email protected] 2 Laboratório de Zoologia de Invertebrados, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK. Rodovia MGT 367, km 583, 39100-000 Diamantina, MG, Brazil. E-mail: [email protected] 3 Corresponding author. ABSTRACT. Urticating setae are exclusive to New World tarantulas and are found in approximately 90% of the New World species. Six morphological types have been proposed and, in several species, two morphological types can be found in the same individual. In the past few years, there has been growing concern to learn more about urticating setae, but many questions still remain unanswered. After studying individuals from several theraphosid species, we endeavored to find more about the segregation of the different types of setae into different abdominal regions, and the possible existence of patterns; the morphological variability of urticating setae types and their limits; whether there is variability in the length of urticating setae across the abdominal area; and whether spiders use different types of urticat- ing setae differently. We found that the two types of urticating setae, which can be found together in most theraphosine species, are segregated into distinct areas on the spider’s abdomen: type III occurs on the median and posterior areas with either type I or IV surrounding the patch of type III setae.
    [Show full text]
  • Voltage-Gated Sodium Channels Are Targets for Toxins from the Venom of the Spider Heriaeus Melloteei1 A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias ISSN 1990-7478, Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2009, Vol. 3, No. 3, pp. 245–253. © Pleiades Publishing, Ltd., 2009. Original Russian Text © A.S. Nikolsky, B. Billen, A.A. Vassilevski, S.Yu. Filkin, J. Tytgat, E.V. Grishin, 2009, published in Biologicheskie Membrany, 2009, Vol. 26, No. 3, pp. 249– 257. Voltage-Gated Sodium Channels Are Targets for Toxins from the Venom of the Spider Heriaeus melloteei1 A. S. Nikolskya, B. Billenb, A. A. Vassilevskia, S. Yu. Filkina, J. Tytgatb, E. V. Grishina aShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997 Russia; e-mail: [email protected]. bLaboratory of Toxicology, University of Leuven, Campus Gasthuisberg, O&N 2, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium Received March 27, 2009 Abstract—Three novel peptides were isolated from the venom of the spider Heriaeus melloteei (Thomisidae) and characterized. The peptides named Hm-1, 2 and 3 blocked voltage-gated Na+ channels at concentrations in the order of 100 nM. Activity of the purified peptides was investigated in Na+ channel isoforms of mammals and insects. Hm-1 and 2 appeared to act as pore blockers, whereas Hm-3 modulated the channel activation pro- cess. The toxins described exhibit minor similarity with other known peptides and may therefore constitute new groups of Na≅+ channel ligands. Key words: spider venom, voltage-gated sodium channels, toxin, peptide structure, blocker, modulator DOI: 10.1134/S1990747809030027 1 Voltage-gated sodium (Na+) channels play a crucial segments S5 and S6 of the four domains, which also role in processes of propagating action potentials in contain the selectivity filter.
    [Show full text]