Organisms That May Be Imported Without a Permit, See Section 7 (1) A)

Total Page:16

File Type:pdf, Size:1020Kb

Organisms That May Be Imported Without a Permit, See Section 7 (1) A) Appendix II - organisms that may be imported without a permit, see section 7 (1) a). General condition: The import must be in accordance with the due care requirements in chapter V. Scientific name Norwegian/English name Condition Vertebrata Virveldyr; Vertebrates Mammalia (Klasse) Pattedyr; Mammals Camelidae Kameldyr Lama glama L., 1758 Lama; Llama Only for agricultural purposes. Vicugna pacos L., 1758 Alpakka; Alpaca Only for agricultural purposes. Canidae Hundefamilien; Canids Vulpes vulpes (L., 1758) Sølvrev; Silver Fox From breeding. Only Silver Foxes and crossings between Silver Fox and Arctic Fox/Polar Fox for fur famring in secured facilities. Vulpes lagopus (L., 1758) Blårev; Domesticated From breeding. Only Arctic syn. Alopex lagopus (L., Arctic Fox, Polar Fox Fox/Polar Fox and 1758) crossings between Arctic Fox/Polar Fox and Silver Fox for fur farming in secured facilities. Chinchillidae Chinchillafamilien; Chinchillas and Viscachas Chinchilla lanigera Chinchilla; Chinchilla, Domesticated. (Molina, 1782) Long-tailed Chinchilla Cricetidae Hamsterfamilien; Cricetids Mesocricetus auratus Gullhamster; Golden Domesticated. Waterhouse, 1839 Hamster Cricetulus griseus Milne- Kinesisk hamster; Chinese Domesticated. Edwards, 1867 Hamster Phodopus campbelli Campbells (stripet) Domesticated, including (Thomas, 1905) dverghamster; Campbell’s crossings with Phodopus Russian Dwarf Hamster sungorus. 1 Appendix II - organisms that may be imported without a permit, see section 7 (1) a). General condition: The import must be in accordance with the due care requirements in chapter V. Scientific name Norwegian/English name Condition Phodopus sungorus (Pallas, Russisk (sibirsk) Domesticated, including 1773) dverghamster; Siberian crossings with Phodopus Hamster, Djungarian campbelli. Hamster Phodopus roborovski Roborovski dverghamster; Domesticated. (Satunin, 1903) Roborovski Hamster Caviidae Marsvinfamilien; Guinea Pigs Cavia porcellus (L., 1758) Marsvin; Guinea Pig Domesticated. Leporidae Harefamilien; Leporids Oryctolagus cuniculus (L., Kanin; Rabbit Domesticated. 1758) Muridae Musefamilien; Murids Mus musculus L., 1758 Husmus; House Mouse Domesticated, including examples for laboratorie purposes. Rattus norvegicus Brunrotte; Brown Rat Domesticated, including (Berkenhout, 1769) hodded rat and examples for laboratorie purposes. Meriones unguiculatus Ørkenrotte; Mongolian Domesticated. Milne-Edwards, 1867 Gerbil Mustelidae Mårdyrfamilien; Weasels Mustela putorius (L., 1758) Ilder; European Polecat From breeding. Neovison vison (Schreber, Mink; American Mink From breeding. Only for 1777) fur farming in secured facilities. Octodontidae Buskrottefamilien; Degus Octodon degus (Molina, Degus; Degu Domesticated. 1782) 2 Appendix II - organisms that may be imported without a permit, see section 7 (1) a). General condition: The import must be in accordance with the due care requirements in chapter V. Scientific name Norwegian/English name Condition Aves (Klasse) Fugler; Birds Dromaiidae Emu; Emus Dromaius novaehollandiae Emu; Emu Domesticated. From (Latham, 1790) breeding. Only for agricultural purposes. Rheidae Nanduer; Rheas Rhea americana (L., 1758) Stornandu; Greater Rhea Domesticated. From breeding. Only for agricultural purposes. Psittacidae Papegøyefugler; Parrots Psittacidae spp. Alle arter papegøyefugler inkludert Cacatuinae. inkludert kakaduer; Parrots - All species including Cockatoos Fringillidae Finkefamilien; Finches Serinus canaria (L., 1758) Kanariirisk (tidl. kanarifugl); Atlantic Canary Estrildidae Astrildefamilien; Weaver- finches Poephila guttata Vieillot, Sebrafink; Zebra Finch 1817 Chloebia gouldiae (Gould, Gouldfink; Gouldian Finch 1844) Padda oryzivora (L., 1758) Javaspurv/risfugl; Java Sparrow Arthropoda Leddyr; Arthropods Arachnida (Klasse) Edderkopper; Spiders Theraphosidae Theraposinae Amerikanske taranteller; (Underfamilie) New World Tarantulas 3 Appendix II - organisms that may be imported without a permit, see section 7 (1) a). General condition: The import must be in accordance with the due care requirements in chapter V. Scientific name Norwegian/English name Condition Aphonopelma hentzi Texas Brown Tarantula (Girard, 1852) Aphonopelma seemanni Striped-knee Tarantula (F.O. P.-Cambridge, 1897) Aphonopelma texense Rio Grande Copper (Simon, 1891) Tarantula Chromatopelma Greenbottle Blue Tarantula cyaneopubescens (Strand, 1907) Cyriocosmus elegans Trinidad Dwarf Tiger (Simon, 1889) Rump Euathlus pulcherrimaklaasi Metallic Femur Beauty (Schmidt, 1991) Euathlus truculentus Chilean Beautiful (Ausserer, 1875) Euathlus vulpinus (Karsch, Chilean Ocellated 1880) Eupalaestrus campestratus Pink Zebra Beauty (Simon, 1891) Grammostola aureostriata Chaco Golden Knee (Schmidt & Bullmer, 2001) Grammostola burzaquensis Argentinean Rose Ibarra, 1946 Tarantula Grammostola grossa Argentina Giant Tawny (Ausserer, 1871) Red/ Pampas Tawny Red/ Giant Tawny Red Grammostola iheringi Entre Rios Tarantula (Keyserling, 1891) Grammostola mollicoma Brazilian Giant Tawny Red (Ausserer, 1875) Grammostola pulchra Brazilian Black Tarantula Mello- Leitao, 1921 Grammostola rosea Chilean Rose Hair/ Chilean (Walckenaer, 1837) Rose Lasiodora difficilis Mello- Fiery Redrump Leitao, 1921 Lasiodora klugi (C.L. Baja Scarlet/ Scarlet Koch, 1841) Birdeater/ Bahia Scarlet Lasiodora parahybana Brazilian Salmon Pink Mello- Leitao, 1917 4 Appendix II - organisms that may be imported without a permit, see section 7 (1) a). General condition: The import must be in accordance with the due care requirements in chapter V. Scientific name Norwegian/English name Condition Lasiodorides striatus Brazilian Brown Giant (Schmidt & Antonelli, 1996) Megaphobema robustum Colombian Giant Redleg/ (Ausserer, 1875) Columbian Giant Megaphobema velvetosoma Ecuadorian Brownvelvet Schmidt, 1995 Tarantula Metriopelma zebratum Costa Rican Suntiger Banks, 1909 Tarantula Nhandu chromatus White Striped Birdeater Schmidt, 2004 Nhandu coloratovillosus Brazilian Black & White (Schmidt, 1998) Nhandu vulpinus (Schmidt, Brazilian Giant Blonde 1998) Pamphobeteus antinous Bolivian Blueleg Pocock, 1903 Pamphobeteus fortis Colombian Brown (Ausserer, 1875) Pamphobeteus Ecuadorian Birdeater ultramarinus Schmidt, 1995 Paraphysa parvula Chilean Gold Burst (Pocock, 1903) Tarantula Paraphysa scrofa (Molina, Chilean Copper Tarantula 1788) Phormictopus cancerides Haitian Brown (Latreille, 1806) Theraphosa apophysis Goliath Pinkfoot/ Pinkfoot Tinter, 1991 Goliath Theraphosa blondi Goliath Bird Eater Latreille, 1804 Thrixopelma ockerti Peruvian Orange Rump Schmidt, 1994 Thrixopelma pruriens Chilean Spiny/ Peruvian Schmidt, 1998 Green Velvet Xenesthis immanis Colombian Lesserblack Ausserer, 1875 5 Appendix II - organisms that may be imported without a permit, see section 7 (1) a). General condition: The import must be in accordance with the due care requirements in chapter V. Scientific name Norwegian/English name Condition Xenesthis intermedia Amazon Blue Bloom Schiapelli & Gerschman, 1945 Aviculariinae Amerikanske taranteller; New World Tarantulas Avicularia aurantiaca Yellow Banded Pinktoe Bauer, 1996 Avicularia avicularia (L., Pinktoe Tarantula 1758) Avicularia bicegoi Mello- Brazilian Pinktoe Leitao, 1923 Avicularia braunshauseni Goliath Pinktoe Tesmoingt, 1999 Avicularia fasciculata Amazon Sapphire Pink Toe Strand, 1907 Avicularia geroldi Brazilian Blue and Red Tesmoingt, 1999 Pinktoe Avicularia huriana Ecuadorian Pinktoe Tesmoingt, 1996 Avicularia juruensis Mello- Yellow Banded Pinktoe Leitao, 1923 Avicularia laeta (C.L. Puerto Rican Treespider/ Koch, 1842) Puerto Rican Pinktoe Avicularia metallica Metallic Pinktoe/ Whitetoe Ausserer, 1875 Avicularia minatrix Venezuelan Red Stripe Pocock, 1903 Avicularia purpurea Kirk, Ecuadorian Purple 1990 Tarantula Avicularia versicolor Antilles Pinktoe Walckenaer, 1837 Ephebopus cyanognathus French Guyanan Blue West & Marshall, 2000 Fang, Blue Fang Ephebopus murinus Skeleton Tarantula (Walckenaer, 1837) Ephebopus rufescens West Burgundy Skeleton & Marshall, 2000 Ephebopus uatuman Lucas, Blue Fang Silva & Bertani, 1992 6 Appendix II - organisms that may be imported without a permit, see section 7 (1) a). General condition: The import must be in accordance with the due care requirements in chapter V. Scientific name Norwegian/English name Condition Tapinauchenius gigas Orange Chevron Tarantula Caporiacco, 1954 Tapinauchenius purpureus Purple Treespider (Schmidt, 1995) Tapinauchenius Metallic Tree subcaeruleus Bauer & Antonelli, 1997 Eumenophorinae Afrikanske taranteller; Old World Tarantulas Citharischius crawshayi King Baboon Pocock, 1900 Hysterocrates ederi Guinea Goliath Baboon Charpentier, 1995 Hysterocrates gigas Cameroon Red Baboon Pocock, 1897 Hysterocrates hercules Hercules Baboon Pocock, 1899 Harpactirinae Afrikanske taranteller; Old World Tarantulas Pterinochilus murinus Mombassa Golden Pocock, 1897 Starburst Pterinochilus vorax African Lesser Baboon Pocock, 1897 Harpactirella lightfooti Purcell, 1902 Ornithoctoninae Asiatiske taranteller; Old World Tarantulas Haplopelma lividum Smith, Cobalt Blue 1996 Haplopelma minax Thailand Black tarantula (Thorell, 1897) Poecilotheriinae Asiatiske taranteller; Old World Tarantulas Poecilotheria fasciata Sri-Lankan Ornamental (Latreille, 1804) 7 Appendix II - organisms that may be imported without a permit, see section 7 (1) a). General condition: The import must be in accordance with the due care requirements in chapter V. Scientific name Norwegian/English name Condition Poecilotheria formosa Finely Formed Parachute
Recommended publications
  • I. Origin and Diversification of Insect Wings II. Wing Color Patterns And
    DIVISION OF EVOLUTIONARY DEVELOPMENTAL BIOLOGY functional effects of altered transcription of each of these wing genes in the ancestrally wingless firebrats. In addition, we are performing comparative analyses of the function of these same genes in “primitively winged” (hemimetabolous) Professor NIIMI, Teruyuki insects, to obtain additional clues relevant to understanding the origin and evolution of insect wings. Assistant Professor: OHDE, Takahiro Interestingly, our previous work showed that vg express- ANDO, Toshiya ing epidermal tissue forms lateral outgrowths in non-winged Technical Staff: MIZUTANI, Takeshi NIBB Research Fellow: MORITA, Shinichi segments in the mealworm beetle (Ohde et al., 2013). From Visiting Graduate Student: MASE, Mutsuki these facts, we hypothesize that ancestral lateral body wall YATOMI, Johichiro outgrowths evolved into functional wings. To test this YUZAKI, Karen hypothesis, we are now comparing the role of vg and other KONISHI, Yusuke “wing genes” between wings and lateral outgrowths in a Technical Assistant: KAWAGUCHI, Haruka MORITA, Junko basal winged insect, Gryllus bimaculatus, and non-winged Secretary: SAITO, Eiko insect, Thermobia domestica (Figure 1). II. Wing color patterns and mimicry of The Division of Evolutionary Developmental Biology was ladybird beetles started in June 2015. We focus on the evolutionary novelties Insect wing color patterns demonstrate a tremendous range acquired by insects through evolution, in order to elucidate of diversity and have evolved to fulfill various ecologi- the molecular and evolutionary mechanisms leading to the cally important functions such as intraspecific sexual sig- large variety of traits that they display. From this wealth naling, mimesis, mimicry, and warning against predators. of exciting traits, our lab currently focuses on promoting The molecular mechanisms responsible for generating such research into (1) the origin and diversification of insect patterns, however, remain unknown for most species.
    [Show full text]
  • 1 It's All Geek to Me: Translating Names Of
    IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning.
    [Show full text]
  • Birth of Maria Sibylla Merian Naturalist and Artist Maria Sibylla Merian Was Born on April 2, 1647, in Frankfurt-Am- Main, Germany
    This Day in History… April 2, 1647 Birth of Maria Sibylla Merian Naturalist and artist Maria Sibylla Merian was born on April 2, 1647, in Frankfurt-am- Main, Germany. Merian spent her life studying insects and plants and capturing them in beautifully detailed paintings and drawings. Merian’s father was an engraver and publisher, but he died when she was three. Her mother remarried artist Jacob Marrel in 1651 and he encouraged her to paint and draw. When she was 13, Merian did her first painting of plants and insects based on live specimens she collected. She was fascinated by caterpillars and collected all she could find so she could witness how they changed into beautiful butterflies and moths. Merian married her stepfather’s apprentice, Johann Andreas Graff, in 1665 and they moved to Nuremberg in 1670. She The set of four Merian Botanicals stamps were continued to paint and design embroidery. She also gave drawing issued for Women’s lessons to the daughters of wealthy families. This helped raise her History Month in 1997. social standing while also giving her access to some of the area’s finest gardens, where she could continue to collect and study insects. While other female artists included insects in their paintings of flowers, few others bred or studied them like Merian did. She published her first book on insects in 1679, which focused on their metamorphosis. At the time, little was known about this process. Some This stamp pictures a people wrote about it, but most people believed they were “born of flowering pineapple mud” – having been born spontaneously.
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • Arachnides 57
    The electronic publication Arachnides - Bulletin de Terrariophile et de Recherche N°57 (2009) has been archived at http://publikationen.ub.uni-frankfurt.de/ (repository of University Library Frankfurt, Germany). Please include its persistent identifier urn:nbn:de:hebis:30:3-371618 whenever you cite this electronic publication. ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 57 Novembre 2009 ISSN 1148-9979 1 NOUVELLES ESPECES DE SCORPIONS (ARACHNIDA, SCORPIONES) DECRITES EN 2008. ADDITIF G. DUPRE Nous complétons la précédente synthèse (Arachnides n°56) à partir d’articles pour lesquels nous n’avons pris connaissance qu’en 2009. Il y a donc 41 nouvelles espèces de décrites en 2008. I. Buthidae C.L. Koch, 1837. 10 nouvelles espèces dont 2 étant des revalidations. Androctonus togolensis Lourenço, 2008, Togo (Mandouri, région de Dapango) Dans le même article, l’auteur revalide l’espèce Androctonus eburneus Pallary, 1928 du sud de l’Algérie (Djanet). Buthus yemenensis Lourenço, 2008, Yemen (Province du Dhamar, district d’Anis, sud de Ma’bar). Dans le même article , l’auteur revalide l’espèce Buthus berberensis Pocock, 1900 de Somalie. Tityus longidigitus Gonzalez-Sponga, 2008a, Venezuela (Estados Monagas) Tityus quiriquirensis Gonzalez-Sponga, 2008a, Venezuela (Estados Monagas) Tityus romeroi Gonzalez-Sponga, 2008a, Venezuela (Estados Bolivar) Tityus sanfernandoi Gonzalez-Sponga, 2008a, Venezuela (Estados Sucre) Tityus ivani Gonzalez-Sponga, 2008b, Venezuela (Estados Méripa) Tityus maturinensis Gonzalez-Sponga, 2008b, Venezuela (Estados Monagas). III. Chactidae Pocock, 1893. 3 nouvelles espèces. Brotheas bolivianus Lourenço 2008, Bolivie (ouest de Manoa) Chactas iutensis Gonzalez-Sponga, 2008b, Venezuela (Estados Mérida) Chactas venegasi Gonzalez-Sponga, 2008b, Venezuela (Estados Mérida) REFERENCES : GONZALEZ-SPONGA M.A., 2008a.
    [Show full text]
  • A New Species of North American Tarantula , Aphonopelma Paloma (Araneae, Mygalomorphae, Theraphosidae )
    1992. The Journal of Arachnology 20 :189—199 A NEW SPECIES OF NORTH AMERICAN TARANTULA , APHONOPELMA PALOMA (ARANEAE, MYGALOMORPHAE, THERAPHOSIDAE ) Thomas R. Prentice: Department of Entomology, University of California, Riverside , California 92521, US A ABSTRACT. Aphonopelma paloma new species, is distinguished from all other North American tarantula s by its unusually small size and presence of setae partially or completely dividing the scopula of tarsus IV i n both sexes. Both sexes also are characterized by a general reduction of the scopula on metatarsus IV . Males are characterized by a swollen third femur . In 1939 and 1940 R. V. Chamberlin and W. with anterior and posterior edges in the same Ivie described almost all of the currently recog- plane. All ink drawings except femora were aide d nized North American theraphosid spiders . De- by a camera lucida. Palpal bulb and seminal re- spite the acknowledged significance of their work , ceptacles were cleared in 10% NaOH (for 12 hr. it is difficult to apply Chamberlin's keys wit h at 50 °C.) prior to illustration . Scanning electron much success even in dealing with specimen s micrographs were taken with a JEOL JSM C35 . from type localities, primarily because their small Abbreviations for eyes are standard for Araneae. sample sizes did not allow variational assess- For leg spination, abbreviations are as follows : ment. Eleven of these species descriptions were a = apical, b = basal, d = dorsal, e = preapical, based on single males, five on single females, an d L = left, m = medial, p = prolateral direction, r three on two males each (Chamberlin & Ivie 1939; = retrolateral direction, R = right, usu .
    [Show full text]
  • A Passion for Rhinoceros and Stag Beetles in Japan
    SCARABS CZ CN MNCHEM, NBYS QCFF WIGY. Occasional Issue Number 67 Print ISSN 1937-8343 Online ISSN 1937-8351 September, 2011 A Passion for Rhinoceros and Stag Beetles WITHIN THIS ISSUE in Japan Dynastid and Lucanid Enthusiasm in Japan ........ 1 by Kentaro Miwa University of Nebraska-Lincoln Bug People XXIV ........... 10 Department of Entomology In Past Years XLVI ......... 11 [email protected] Guatemala Scarabs IV ... 20 BACK ISSUES Available At These Sites: Coleopterists Society www.coleopsoc.org/de- fault.asp?Action=Show_ Resources&ID=Scarabs University of Nebraska A large population of the general public in Japan enjoys collecting and www-museum.unl.edu/ rearing insects. Children are exposed to insects at early ages because their research/entomology/ parents are interested in insects. My son went on his first collecting trip Scarabs-Newsletter.htm on a cool day in March in Nebraska when he was four months old. EDITORS I am from Shizuoka, Japan. I am currently pursuing my Ph.D in En- Rich Cunningham tomology at the University of Nebraska-Lincoln and studying biology [email protected] and applied ecology of insets in cropping systems. Among many insect Olivier Décobert taxa I am interested in, dynastines and lucanids are my favorite groups. [email protected] I have enjoyed collecting and rearing these beetles throughout my life. Barney Streit I began collecting beetles with my parents and grandparents when barneystreit@hotmail. com I was two years old. When I was about six, I learned to successfully rear some Japanese species. Since I came to the United States, I have been enjoying working with American species.
    [Show full text]
  • Pet Health and Happiness Is Our Primary Concern
    Pet Health and Happiness Is Our Primary Concern CONCISE CARE SHEETS PINK-TOES find more caresheets at nwzoo.com/care AND TREE SPIDERS INTRO QUICK TIPS PSALMOPOEUS The tropics of the New World or Americas are home to many popular The Trinidad Chevron (Psalmopoeus tree-dwelling tarantulas. These include a wide variety of “Pink-toes” of the » 76-82°F with a drop in tem- cambridgei] and Venezuelan Suntiger (P. genus Avicularia, the closely related Antilles “pink-toe” or tree tarantula perature at night (72-76ºF) irminia) are the best known members of (Caribena versicolor), the lightning-fast and agile Tapinauchenius and » Requires 70-80% humidity, a genus popular with tarantula keepers. a handful of species of Psalmopoeus like the Venezuelan Suntiger and but also good ventilation. Both are fairly large (P. cambridgei can Trinidad Chevron. » Most species will eat a reach a legspan of seven inches) and variety of arthropods and make exceptional display subjects for These tarantulas are found in a variety of subtropical and tropical habitats, small vertebrates yet thrive the spacious vertically-oriented forest but their general care is similar enough to cover them all in a single care on roaches or crickets in terrarium. Psalmopoeus tarantulas are sheet. Optimal captive husbandry is focused on providing warm, humid captivity. very hardy and often more forgiving of air in an enclosure that allows for sufficient ventilation. It is a balancing drier conditions than other New World act of sorts, but the conscientious and cautious keeper soon learns to err arboreal tarantulas. Both the Chevron on the side of good airflow as it is easier to add moisture than to correct and Suntiger appreciate a couple of layers of vertical cork bark slabs to overly damp or stagnant conditions.
    [Show full text]
  • Toxins-67579-Rd 1 Proofed-Supplementary
    Supplementary Information Table S1. Reviewed entries of transcriptome data based on salivary and venom gland samples available for venomous arthropod species. Public database of NCBI (SRA archive, TSA archive, dbEST and GenBank) were screened for venom gland derived EST or NGS data transcripts. Operated search-terms were “salivary gland”, “venom gland”, “poison gland”, “venom”, “poison sack”. Database Study Sample Total Species name Systematic status Experiment Title Study Title Instrument Submitter source Accession Accession Size, Mb Crustacea The First Venomous Crustacean Revealed by Transcriptomics and Functional Xibalbanus (former Remipedia, 454 GS FLX SRX282054 454 Venom gland Transcriptome Speleonectes Morphology: Remipede Venom Glands Express a Unique Toxin Cocktail vReumont, NHM London SRP026153 SRR857228 639 Speleonectes ) tulumensis Speleonectidae Titanium Dominated by Enzymes and a Neurotoxin, MBE 2014, 31 (1) Hexapoda Diptera Total RNA isolated from Aedes aegypti salivary gland Normalized cDNA Instituto de Quimica - Aedes aegypti Culicidae dbEST Verjovski-Almeida,S., Eiglmeier,K., El-Dorry,H. etal, unpublished , 2005 Sanger dideoxy dbEST: 21107 Sequences library Universidade de Sao Paulo Centro de Investigacion Anopheles albimanus Culicidae dbEST Adult female Anopheles albimanus salivary gland cDNA library EST survey of the Anopheles albimanus transcriptome, 2007, unpublished Sanger dideoxy Sobre Enfermedades dbEST: 801 Sequences Infeccionsas, Mexico The salivary gland transcriptome of the neotropical malaria vector National Institute of Allergy Anopheles darlingii Culicidae dbEST Anopheles darlingi reveals accelerated evolution o genes relevant to BMC Genomics 10 (1): 57 2009 Sanger dideoxy dbEST: 2576 Sequences and Infectious Diseases hematophagyf An insight into the sialomes of Psorophora albipes, Anopheles dirus and An. Illumina HiSeq Anopheles dirus Culicidae SRX309996 Adult female Anopheles dirus salivary glands NIAID SRP026153 SRS448457 9453.44 freeborni 2000 An insight into the sialomes of Psorophora albipes, Anopheles dirus and An.
    [Show full text]
  • Spider and Scorpion Case
    Spider and Scorpion case Black widow spider (Lactrodectus hesperus) Black widows are notorious spiders identified by the colored, hourglass-shaped mark on their abdomens. Several species answer to the name, and they are found in temperate regions around the world. This spider's bite is much feared because its venom is reported to be 15 times stronger than a rattlesnake's. In humans, bites produce muscle aches, nausea, and a paralysis of the diaphragm that can make breathing difficult; however, contrary to popular belief, most people who are bitten suffer no serious damage—let alone death. But bites can be fatal—usually to small children, the elderly, or the infirm. Fortunately, fatalities are fairly rare; the spiders are nonaggressive and bite only in self-defense, such as when someone accidentally sits on them. These spiders spin large webs in which females suspend a cocoon with hundreds of eggs. Spiderlings disperse soon after they leave their eggs, but the web remains. Black widow spiders also use their webs to ensnare their prey, which consists of flies, mosquitoes, grasshoppers, beetles, and caterpillars. Black widows are comb- footed spiders, which means they have bristles on their hind legs that they use to cover their prey with silk once it has been trapped. To feed, black widows puncture their insect prey with their fangs and administer digestive enzymes to the corpses. By using these enzymes, and their gnashing fangs, the spiders liquefy their prey's bodies and suck up the resulting fluid. Giant desert hairy scorpion (Hadrurus arizonensis) Hadrurus arizonensis is distributed throughout the Sonora and Mojave deserts.
    [Show full text]
  • Complete Mitochondrial Genome of Prismognathus Prossi (Coleoptera: Lucanidae) with Phylogenetic Implications
    © Entomologica Fennica. 10 July 2019 Complete mitochondrial genome of Prismognathus prossi (Coleoptera: Lucanidae) with phylogenetic implications Jing Liu, Yuyan Cao, Shiju Zhou, Yongjing Chen & Xia Wan* Liu, J., Cao, Y.Y.,Zhou, S.J., Chen, Y.J. & Wan, X. 2019: Complete mitochondrial genome of Prismognathus prossi (Coleoptera: Lucanidae) with phylogenetic im- plications. — Entomol. Fennica 30: 90–96. https://doi.org/10.33338/ef.82927 The complete mitochondrial genome of a Chinese stag beetle, Prismognathus prossi, was generated using the Illumina next-generation sequencing. The mito- genome sequence is 15,984 bp in length, the nucleotide composition is A 36.6%, C 17.5%, T 34.3% and G 11.6% with the AT-content of 70.9%. The sequence has similar features with other reported insect mitogenomes, consisting of 13 protein- coding genes (PCGs), 22 transfer RNAgenes, two ribosomal RNAs and a control region. All of the protein-coding genes start with the typical ATN initiation codon except for COI. Maximum Likelihood (ML) and Bayesian Inference (BI) indi- cated that P. prossi share an affinity with Lucanus mazama, Lucanus fortunei and Cyclommatus vitalisi. J. Liu, Y.Y. Cao, S.J. Zhou, Y.J. Chen & X. Wan, Department of Ecology, School of Resources and Engineering, Anhui University, Anhui, Hefei, 23000, China. E-mails: Jing Liu: [email protected]; Yuyan Cao: 1210252162@163. com; Shiju Zhou: [email protected]; Yongjing Chen: cyj1452394259 @163.com: Xia Wan (* corresponding author): [email protected] Received 28 February 2018, accepted 13 September 2018 1. Introduction (Sheffield et al. 2009, Kim et al. 2013, Wu et al.
    [Show full text]
  • Masterarbeit / Master's Thesis
    MASTERARBEIT / MASTER’S THESIS Titel der Masterarbeit / Title of the Master‘s Thesis „Circadian abnormalities in the Cav1.4 IT mouse model for congenital stationary night blindness 2” verfasst von / submitted by Daniel Üblagger, BSc angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc) Wien, 2017 / Vienna 2017 Studienkennzahl lt. Studienblatt / A 066 834 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Masterstudium Molekulare Biologie degree programme as it appears on the student record sheet: Betreut von / Supervisor: Univ. Prof. Dr. Daniela D. Pollak-Monje Quiroga Contents 1 Introduction .............................................................................................. 1 2+ 1.1 Voltage-gated Ca channels ........................................................................ 1 1.1.1 L-type calcium channels ............................................................................................. 3 1.1.2 Channelopathies in CaV 1.4 channels ......................................................................... 6 1.1.2.1 Congenital stationary night blindness type 2 ....................................................... 6 1.1.2.2 Mouse model for congenital stationary night blindness type 2 .......................... 8 1.2 The circadian clock ...................................................................................... 9 1.2.1 The molecular core of the circadian clock .................................................................
    [Show full text]