Versatile Spider Venom Peptides and Their Medical and Agricultural Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Examples of Successful Protein Expression with SUMO Reference Protein Type Family Kda System (Pubmed ID)
Examples of Successful Protein Expression with SUMO Reference Protein Type Family kDa System (PubMed ID) 23 (FGF23), human Growth factor FGF superfamily ~26 E. coli 22249723 SARS coronavirus (SARS-CoV) membrane 3C-like (3CL) protease Viral membrane protein protein 33.8 E. coli 16211506 5′nucleotidase-related apyrase (5′Nuc) Saliva protein (apyrase) 5′nucleotidase-related proteins 65 E. coli 20351782 Acetyl-CoA carboxylase 1 (ACC1) Cytosolic enzyme Family of five biotin-dependent carboxylases ~7 E. coli 22123817 Acetyl-CoA carboxylase 2 (ACC2) BCCP domain Cytosolic enzyme Family of five biotin-dependent carboxylases ~7 E. coli 22123817 Actinohivin (AH) Lectin Anti-HIV lectin of CBM family 13 12.5 E. coli DTIC Allium sativum leaf agglutinin (ASAL) Sugar-binding protein Mannose-binding lectins 25 E. coli 20100526 Extracellular matrix Anosmin protein Marix protein 100 Mammalian 22898776 Antibacterial peptide CM4 (ABP-CM4) Antibacterial peptide Cecropin family of antimicrobial peptides 3.8 E. coli 19582446 peptide from centipede venoms of Scolopendra Antimicrobial peptide scolopin 1 (AMP-scolopin 1) small cationic peptide subspinipes mutilans 2.6 E. coli 24145284 Antitumor-analgesic Antitumor-analgesic peptide (AGAP) peptide Multifunction scorpion peptide 7 E. coli 20945481 Anti-VEGF165 single-chain variable fragment (scFv) Antibody Small antibody-engineered antibody 30 E. coli 18795288 APRIL TNF receptor ligand tumor necrosis factor (TNF) ligand 16 E. coli 24412409 APRIL (A proliferation-inducing ligand, also named TALL- Type II transmembrane 2, TRDL-1 and TNFSF-13a) protein Tumor necrosis factor (TNF) family 27.51 E. coli 22387304 Aprotinin/Basic pancreatic trypsin inhibitor (BPTI) Inhibitor Kunitz-type inhibitor 6.5 E. -
Dna Sequence Data Indicates the Polyphyl Y of the Family Ctenidae (Araneae )
1993. The Journal of Arachnology 21 :194–201 DNA SEQUENCE DATA INDICATES THE POLYPHYL Y OF THE FAMILY CTENIDAE (ARANEAE ) Kathrin C . Huber', Thomas S . Haider2, Manfred W . Miiller2, Bernhard A . Huber' , Rudolf J. Schweyen2, and Friedrich G . Barth' : 'Institut fair Zoologie, Althanstr . 14; 1090 Wien; and 2lnstitut fur Mikrobiologie and Genetik; Dr. Bohrgasse 9 ; 1030 Wien (Vienna), Austria . ABSTRACT. Mitochondrial DNA fragments comprising more than 400 bases of the 16S rDNA from nine spider species have been sequenced: Cupiennius salei, C. getazi, C. coccineus and Phoneutria boliviensis (Ctenidae), Pisaura mirabilis, Dolomedes fimbriatus (Pisauridae), Pardosa agrestis (Lycosidae), Clubiona pallidula (Clubi- onidae) and Ryuthela nishihirai (syn. Heptathela nishihirai; Heptathelidae: Mesothelae). Sequence divergence ranges from 3–4% among Cupiennius species and up to 36% in pairwise comparisons of the more distantly related spider DNAs. Maximally parsimonious gene trees based on these sequences indicate that Phoneutri a and Cupiennius are the most distantly related species of the examined Lycosoidea . The monophyly of the family Ctenidae is therefore doubted ; and a revision of the family, which should include DNA-data, is needed . Cupiennius salei (Ctenidae) is one of the most get a high copy number of the DNA segment of extensively studied species of spiders (see Lach - interest. The PCR depends on the availability of muth et al. 1985). The phylogeny of the Ctenidae , oligonucleotides that specifically bind to the a mainly South and Central American family, i s flanking sequences of this DNA segment. These poorly understood ; and systematists propose oligonucleotides serve as primers for a polymer- highly contradicting views on its classification ization reaction that copies the segment in vitro. -
Small Molecules in the Venom of the Scorpion Hormurus Waigiensis
biomedicines Article Small Molecules in the Venom of the Scorpion Hormurus waigiensis Edward R. J. Evans 1, Lachlan McIntyre 2, Tobin D. Northfield 3, Norelle L. Daly 1 and David T. Wilson 1,* 1 Centre for Molecular Therapeutics, AITHM, James Cook University, Cairns, QLD 4878, Australia; [email protected] (E.R.J.E.); [email protected] (N.L.D.) 2 Independent Researcher, P.O. Box 78, Bamaga, QLD 4876, Australia; [email protected] 3 Department of Entomology, Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA; [email protected] * Correspondence: [email protected]; Tel.: +61-7-4232-1707 Received: 30 June 2020; Accepted: 28 July 2020; Published: 31 July 2020 Abstract: Despite scorpion stings posing a significant public health issue in particular regions of the world, certain aspects of scorpion venom chemistry remain poorly described. Although there has been extensive research into the identity and activity of scorpion venom peptides, non-peptide small molecules present in the venom have received comparatively little attention. Small molecules can have important functions within venoms; for example, in some spider species the main toxic components of the venom are acylpolyamines. Other molecules can have auxiliary effects that facilitate envenomation, such as purines with hypotensive properties utilised by snakes. In this study, we investigated some non-peptide small molecule constituents of Hormurus waigiensis venom using LC/MS, reversed-phase HPLC, and NMR spectroscopy. We identified adenosine, adenosine monophosphate (AMP), and citric acid within the venom, with low quantities of the amino acids glutamic acid and aspartic acid also being present. -
Malelane Safari Lodge, Kruger National Park
INVERTEBRATE SPECIALIST REPORT Prepared For: Malelane Safari Lodge, Kruger National Park Dalerwa Ventures for Wildlife cc P. O. Box 1424 Hoedspruit 1380 Fax: 086 212 6424 Cell (Elize) 074 834 1977 Cell (Ian): 084 722 1988 E-mail: [email protected] [email protected] Table of Contents 1. EXECUTIVE SUMMARY ............................................................................................................................ 3 2. INTRODUCTION ........................................................................................................................................... 5 2.1 DESCRIPTION OF PROPOSED PROJECT .................................................................................................................... 5 2.1.1 Safari Lodge Development .................................................................................................................... 5 2.1.2 Invertebrate Specialist Report ............................................................................................................... 5 2.2 TERMS OF REFERENCE ......................................................................................................................................... 6 2.3 DESCRIPTION OF SITE AND SURROUNDING ENVIRONMENT ......................................................................................... 8 3. BACKGROUND ............................................................................................................................................. 9 3.1 LEGISLATIVE FRAMEWORK .................................................................................................................................. -
Animal Venom Derived Toxins Are Novel Analgesics for Treatment Of
Short Communication iMedPub Journals 2018 www.imedpub.com Journal of Molecular Sciences Vol.2 No.1:6 Animal Venom Derived Toxins are Novel Upadhyay RK* Analgesics for Treatment of Arthritis Department of Zoology, DDU Gorakhpur University, Gorakhpur, UP, India Abstract *Corresponding authors: Ravi Kant Upadhyay Present review article explains use of animal venom derived toxins as analgesics of the treatment of chronic pain and inflammation occurs in arthritis. It is a [email protected] progressive degenerative joint disease that put major impact on joint function and quality of life. Patients face prolonged inappropriate inflammatory responses and bone erosion. Longer persistent chronic pain is a complex and debilitating Department of Zoology, DDU Gorakhpur condition associated with a large personal, mental, physical and socioeconomic University, Gorakhpur, UttarPradesh, India. burden. However, for mitigation of inflammation and sever pain in joints synthetic analgesics are used to provide quick relief from pain but they impose many long Tel: 9838448495 term side effects. Venom toxins showed high affinity to voltage gated channels, and pain receptors. These are strong inhibitors of ion channels which enable them as potential therapeutic agents for the treatment of pain. Present article Citation: Upadhyay RK (2018) Animal Venom emphasizes development of a new class of analgesic agents in form of venom Derived Toxins are Novel Analgesics for derived toxins for the treatment of arthritis. Treatment of Arthritis. J Mol Sci. Vol.2 No.1:6 Keywords: Analgesics; Venom toxins; Ion channels; Channel inhibitors; Pain; Inflammation Received: February 04, 2018; Accepted: March 12, 2018; Published: March 19, 2018 Introduction such as the back, spine, and pelvis. -
Colección De Arañas (Araneae) De La Facultad De Ciencias Naturales De La Universidad Autónoma De Querétaro
ISSN: 2448-4768 Bol. Soc. Mex. Ento. (n. s.) Número especial 3: 67-71 2017 COLECCIÓN DE ARAÑAS (ARANEAE) DE LA FACULTAD DE CIENCIAS NATURALES DE LA UNIVERSIDAD AUTÓNOMA DE QUERÉTARO Guillermo Blas-Cruz, Alizon Daniela Suárez-Guzmán, Nicté Santillán-González, Sergio Yair Hurtado-Jasso, Abraham Rodríguez-Álvarez* y Daniela Blé-Carrasco. Avenida de las Ciencias S/N. Juriquilla. Delegación Santa Rosa Jauregui, Querétaro, C. P. 76230, México. *Autor para correspondencia: [email protected] Recibido: 10/04/2017, Aceptado: 11/05/2017 RESUMEN: Las arañas comprenden tres subórdenes: Mesothelae, Mygalomorphae y Araneomorphae que actualmente abarcan 46,617 especies. Hasta el año 2014 se conocían 2,295 especies en México, de las cuales cerca del 70 % son endémicas, por lo que son los animales con mayor endemismo nacional. La Colección de Artrópodos de la FCN-UAQ cuenta con 197 especímenes de arañas identificadas, por lo que se revisaron e inventariaron las arañas que hasta ahora la conforman. Se identificaron identidades taxonómicas a nivel género para aneomorfas y se registraron especies para las migalomorfas, además se incluyó el sexo de cada individuo, registrando así 22 familias y 44 géneros para las araneoformas y dos familias, 14 géneros para las migalomorfas. La finalidad del estudio es la formalización de una colección de arañas para referencia y no únicamente se utilicen los ejemplares para docencia. Palabras clave: Arañas, Colección biológica, identidades taxonómicas, género, familia. Collection of spiders (Araneae) of the Facultad de Ciencias Naturales of the Universidad Autónoma de Queretaro ABSTRACT: The spiders can be put in three suborders: Mesothelae, Mygalomorphe and Araneomorphae, which all together have 46,617 species. -
Fasanbi SHOWCASE
Threatened Species Monitoring PROGRAMME Threatened Species in South Africa: A review of the South African National Biodiversity Institutes’ Threatened Species Programme: 2004–2009 Acronyms ADU – Animal Demography Unit ARC – Agricultural Research Council BASH – Big Atlassing Summer Holiday BIRP – Birds in Reserves Project BMP – Biodiversity Management Plan BMP-S – Biodiversity Management Plans for Species CFR – Cape Floristic Region CITES – Convention on International Trade in Endangered Species CoCT – City of Cape Town CREW – Custodians of Rare and Endangered Wildflowers CWAC – Co-ordinated Waterbird Counts DEA – Department of Environmental Affairs DeJaVU – December January Atlassing Vacation Unlimited EIA – Environmental Impact Assessment EMI – Environmental Management Inspector GBIF – Global Biodiversity Information Facility GIS – Geographic Information Systems IAIA – International Association for Impact Assessment IAIAsa – International Association for Impact Assessment South Africa IUCN – International Union for Conservation of Nature LAMP – Long Autumn Migration Project LepSoc – Lepidopterists’ Society of Africa MCM – Marine and Coastal Management MOA – memorandum of agreement MOU – memorandum of understanding NBI – National Botanical Institute NEMA – National Environmental Management Act NEMBA – National Environmental Management Biodiversity Act NGO – non-governmental organization NORAD – Norwegian Agency for Development Co–operation QDGS – quarter-degree grid square SABAP – Southern African Bird Atlas Project SABCA – Southern African -
Morphological and Molecular Evidence Support the Taxonomic Separation of the Medically Important Neotropical Spiders Phoneutria Depilata (Strand, 1909) and P
ZooKeys 1022: 13–50 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1022.60571 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Morphological and molecular evidence support the taxonomic separation of the medically important Neotropical spiders Phoneutria depilata (Strand, 1909) and P. boliviensis (F.O. Pickard-Cambridge, 1897) (Araneae, Ctenidae) Nicolas A. Hazzi1,2, Gustavo Hormiga1 1 The George Washington University, Department of Biological Sciences, Washington, D.C. 20052, USA 2 Fundación Ecotonos, Cra 72 No. 13ª-56, Cali, Colombia Corresponding author: Nicolas A. Hazzi ([email protected]) Academic editor: M. Arnedo | Received 9 November 2020 | Accepted 9 February 2021 | Published 8 March 2021 http://zoobank.org/C0A606CC-48EC-43CB-A7F3-0D62D8125F13 Citation: Hazzi NA, Hormiga G (2021) Morphological and molecular evidence support the taxonomic separation of the medically important Neotropical spiders Phoneutria depilata (Strand, 1909) and P. boliviensis (F.O. Pickard- Cambridge, 1897) (Araneae, Ctenidae). ZooKeys 1022: 13–50. https://doi.org/10.3897/zookeys.1022.60571 Abstract The species of the genus Phoneutria (Ctenidae), also called banana spiders, are considered amongst the most venomous spiders in the world. In this study we revalidate P. depilata (Strand, 1909), which had been synonymized with P. bolivienesis (F.O. Pickard-Cambridge, 1897), using morphological and nucleotide sequence data (COI and ITS-2) together with species delimitation methods. We synonymized Ctenus peregrinoides, Strand, 1910 and Phoneutria colombiana Schmidt, 1956 with P. depilata. Furthermore, we designated Ctenus signativenter Strand, 1910 as a nomen dubium because the exact identity of this spe- cies cannot be ascertained with immature specimens, but we note that the type locality suggests that the C. -
Biodiversity and Community Structure of Spiders in Saran, Part of Indo-Gangetic Plain, India
Asian Journal of Conservation Biology, December 2015. Vol. 4 No. 2, pp. 121-129 AJCB: FP0062 ISSN 2278-7666 ©TCRP 2015 Biodiversity and Community structure of spiders in Saran, part of Indo-Gangetic Plain, India N Priyadarshini1*, R Kumari1, R N Pathak1, A K Pandey2 1Department of Zoology, D. A. V. College, J. P. University, Chhapra, India 2School of Environmental Studies, Jawaharlal Nehru University, New Delhi, India (Accepted November 21, 2015) ABSTRACT Present study was conducted to reveals the community structure and diversity of spider species in different habitat types (gardens, crop fields and houses) of Saran; a part of Indo – Gangetic Plain, India. This area has very rich diversity of flora and fauna due to its climatic conditions, high soil fer- tility and plenty of water availability. The spiders were sampled using two semi-quantitative methods and pitfall traps. A total of 1400 individual adult spiders belonging to 50 species, 29 genera and 15 families were recorded during 1st December 2013 to 28th February 2014. Spider species of houses were distinctive from other habitats it showed low spider species richness. The dominant spider fami- lies were also differs with habitat types. Araneidae, Pholcidae and Salticidae were the dominant spi- der families in gardens, houses and crop fields respectively. Comparison of beta diversity showed higher dissimilarity in spider communities of gardens and houses and higher similarity between spi- der communities of crop fields and gardens. We find that spiders are likely to be more abundant and species rich in gardens than in other habitat types. Habitat structural component had great impact on spider species richness and abundance in studied habitats. -
The Case of Embrik Strand (Arachnida: Araneae) 22-29 Arachnologische Mitteilungen / Arachnology Letters 59: 22-29 Karlsruhe, April 2020
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arachnologische Mitteilungen Jahr/Year: 2020 Band/Volume: 59 Autor(en)/Author(s): Nentwig Wolfgang, Blick Theo, Gloor Daniel, Jäger Peter, Kropf Christian Artikel/Article: How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae) 22-29 Arachnologische Mitteilungen / Arachnology Letters 59: 22-29 Karlsruhe, April 2020 How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae) Wolfgang Nentwig, Theo Blick, Daniel Gloor, Peter Jäger & Christian Kropf doi: 10.30963/aramit5904 Abstract. When the museums of Lübeck, Stuttgart, Tübingen and partly of Wiesbaden were destroyed during World War II between 1942 and 1945, also all or parts of their type material were destroyed, among them types from spider species described by Embrik Strand bet- ween 1906 and 1917. He did not illustrate type material from 181 species and one subspecies and described them only in an insufficient manner. These species were never recollected during more than 110 years and no additional taxonomically relevant information was published in the arachnological literature. It is impossible to recognize them, so we declare these 181 species here as nomina dubia. Four of these species belong to monotypic genera, two of them to a ditypic genus described by Strand in the context of the mentioned species descriptions. Consequently, without including valid species, the five genera Carteroniella Strand, 1907, Eurypelmella Strand, 1907, Theumella Strand, 1906, Thianella Strand, 1907 and Tmeticides Strand, 1907 are here also declared as nomina dubia. Palystes modificus minor Strand, 1906 is a junior synonym of P. -
Molecular Basis of the Remarkable Species Selectivity of an Insecticidal
www.nature.com/scientificreports OPEN Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the Received: 03 February 2016 Accepted: 20 June 2016 African spider Augacephalus Published: 07 July 2016 ezendami Volker Herzig1,*, Maria Ikonomopoulou1,*,†, Jennifer J. Smith1,*, Sławomir Dziemborowicz2, John Gilchrist3, Lucia Kuhn-Nentwig4, Fernanda Oliveira Rezende5, Luciano Andrade Moreira5, Graham M. Nicholson2, Frank Bosmans3 & Glenn F. King1 The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroachPeriplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1–S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species. -
UC Davis UC Davis Previously Published Works
UC Davis UC Davis Previously Published Works Title Heterogeneity in Kv2 Channel Expression Shapes Action Potential Characteristics and Firing Patterns in CA1 versus CA2 Hippocampal Pyramidal Neurons. Permalink https://escholarship.org/uc/item/2m94393j Journal eNeuro, 4(4) ISSN 2373-2822 Authors Palacio, Stephanie Chevaleyre, Vivien Brann, David H et al. Publication Date 2017-07-01 DOI 10.1523/ENEURO.0267-17.2017 Peer reviewed eScholarship.org Powered by the California Digital Library University of California New Research Neuronal Excitability Heterogeneity in Kv2 Channel Expression Shapes Action Potential Characteristics and Firing Patterns in CA1 versus CA2 Hippocampal Pyramidal Neurons Stephanie Palacio,1 Vivien Chevaleyre,2 David H. Brann,3 Karl D. Murray,4 Rebecca A. Piskorowski,2 and James S. Trimmer1,5 DOI:http://dx.doi.org/10.1523/ENEURO.0267-17.2017 1Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, 2INSERM U894, Team Synaptic Plasticity and Neural Networks, Université Paris Descartes, Paris 75014, France, 3Department of Neuroscience, Columbia University, New York, NY 10032, 4Center for Neuroscience, University of California, Davis, CA 95616, and 5Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA 95616 Abstract The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well- established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated Kϩ (Kv) channels and the contribution of these channels to the distinct properties of intrinsic excitability, action potential (AP) waveform, firing patterns and neurotrans- mission between CA1 and CA2 PNs.