Quad: a Millimeter-Wave Polarimeter for Observation of the Cosmic Microwave Background Radiation

Total Page:16

File Type:pdf, Size:1020Kb

Quad: a Millimeter-Wave Polarimeter for Observation of the Cosmic Microwave Background Radiation QUAD: A MILLIMETER-WAVE POLARIMETER FOR OBSERVATION OF THE COSMIC MICROWAVE BACKGROUND RADIATION A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY James R. Hinderks August 2005 c Copyright by James R. Hinderks 2005 All Rights Reserved ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Prof. Sarah E. Church Principal Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Prof. Giorgio Gratta I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Prof. Steven Kahn Approved for the University Committee on Graduate Studies. iii iv Abstract This thesis describes the design and performance of the QUaD experiment and presents some of its earliest results. QUaD is a millimeter-wavelength polarime- ter designed for observing the Cosmic Microwave Background (CMB). QUaD was commissioned at the MAPO observatory at the Amundsen-Scott South Pole Station in the Austral Summer of 2004/2005, achieved first light in Feb 2005, and began science observation in May. QUaD observes the CMB with an array of 31 polarization-sensitive Neutron Transmutation Doped (NTD) germanium bolometers split between two frequency bands centered at 100 and 150 GHz. The telescope is a 2.6 m on-axis Cassegrain design with beam sizes of 6.3 and 4.2 at the two respective observing frequencies. The resolution and scan strategy are optimized to probe the CMB E-mode power spectrum over a multipole range of 100 to 2500. The performance of the system has been characterized with commissioning observations and a high signal-to-noise map of the CMB temperature anisotropy has been made over a ∼ 50 square degree area. CMB polarization anisotropies, only recently detected, promise a wealth of new cosmological information. Their observation complements the many successful tem- perature anisotropy measurements already performed, confirming our basic under- standing of the early universe and leading to tighter constraints on cosmological parameters. Furthermore, polarization observations provide a probe of structure since the last scattering surface and promise unique constraints on inflation through the imprint of relict gravitational radiation. vi Acknowledgements QUaD has been a collaborative effort since the beginning and I feel privileged to have spent the past six years working with the talented group of scientists listed in Table 1.3 – I have learned a great deal from each one of you. This holds especially true for the Stanford QUaD team with whom I’ve spent innumerable hours in “the lab.” And of course, building a telescope isn’t much good if nobody puts it to use and keeps it in shape. So two gold stars to Robert “Do the Dew” Schwartz and Alan “No Worries” Day for being the best winter-over crew imaginable. Grad school has certainly been a long process. Throughout, Sarah has been a terrific advisor and mentor, and has made so many opportunities available to me. Thanks to the postdocs I worked with in my first two years at Stanford – Brian and Byron – for teaching me so much about doing physics. Thanks to Keith for teaching me a great deal about electronics, careful experimental technique, and about knowing when to just kludge something together. Thanks to Mel for all the great discussions on cosmology. Thanks to Brad, who was my fellow Church lab grad student for many years. Working with you was always fun – whether we were in the lab or on the summit of Mauna Kea. I’ll never forget learning how to install snow chains at 14,000’ or the night we nearly starved to death at South Point. And thanks to Ben – who has been my partner in crime working on QUaD for the past four years – for doing so much to make QUaD a success, and for being a great officemate and friend. Over the years, our lab has been fortunate enough to have a steady supply of top-quality undergraduates. Seebany, Judy, Marteen, Evan, Kapil, Elizabeth, Ali, and Tess: thanks for all your hard work and for making lab so much fun. Particular thanks go to Kapil for his invaluable CAD work on the focal plane and to Evan vii for his excellent senior thesis work on QUaD optical testing (and for his equally excellent shirts). Also QUaD never would have made it to the Pole on time without all the packing and shipping help from Tess, in the form of carpentry, manual labor, chocolate chip cookies, and of course exploding foam. Acknowledgement is also due to the great people of the Stanford Physics De- partment who helped make QUaD a success. Thanks to Dana for her indispensable organizational and administrative help. The extremely talented group of machinists who actually built much of the QUaD receiver – John, Mehmet, Matt, and Karl- heinz – deserve special recognition. And finally, thanks to Stewart, Joel, and Khoi for keeping the Varian building running smoothly, dealing with our endless stream of deliveries, and keeping the stock room filled with the assorted cable ties, resistors, and other random bits that saved the day on many occasions. A few more random words before wrapping this up. To Mike Z, thanks for the inspirational music and all the cowbell – it was hot. To Angiola, thanks for letting me try “one more test,” and for not leaving me on the floor by the water fountain. I wish you hadn’t stolen that towel though. To Ben, thanks for your awesome Dremel skills. To Cara, thanks for the jokes, the laughter, the offbeat news, and the stories about Speedy. Thanks to Dave and Becky for introducing me to the Earthquakes, to Hilton for always knowing where the free food was and to Phil for sending presents to cheer us up at the South Pole. Special thanks to Sarah, Mel, and Ben for all your helpful comments on this document. Best of luck to everyone continuing to work on QUaD, especially Ed, the team’s newest member. Finally, I arrive at the most important people – my family. Mom and Dad, thanks for instilling in me a love of science and of learning. I owe everything to the two of you. To my four amazing grandparents, thanks for all your love over the years. To the Suns, thank you for welcoming me into your wonderful family, and in particular thanks to Christina for providing me with a place to live over the last half year while I wrote this dissertation. And finally to Stephanie: it must be true love when you’re willing to spend weekend afternoons in the machine shop wearing safety goggles or in the lab inhaling solder fumes just to be with your husband. Thanks for being the best thing in my life. viii Contents Acknowledgements vii 1 Introduction 1 1.1CosmologyandtheCosmicMicrowaveBackground.......... 2 1.1.1 OriginandHistoryoftheCMB................. 2 1.1.2 TheModernCosmologicalPicture................ 3 1.1.3 CMBTemperatureAnisotropies................. 7 1.2ThePolarizationoftheCMB...................... 12 1.2.1 StokesParameters........................ 12 1.2.2 OriginsandCharacterizationofCMBPolarization....... 14 1.2.3 ExistingMeasurements...................... 22 1.3TheQUaDExperiment.......................... 24 1.3.1 Overview............................. 24 1.3.2 ScienceGoals........................... 26 1.4ThesisOutline............................... 28 2 Experiment Description 31 2.1TheSouthPoleObservingSite..................... 31 2.2TheDASIMount............................. 32 2.3Optics................................... 33 2.3.1 Overview............................. 33 2.3.2 LensesandColdStop....................... 34 ix 2.3.3 Filtering.............................. 36 2.3.4 CorrugatedFeeds......................... 39 2.3.5 PolarizationSensitiveBolometers................ 40 2.3.6 TheFocalPlane.......................... 42 2.4Cryogenics................................. 46 2.4.1 Cryostat.............................. 46 2.4.2 Sub-Kelvin Refrigerator ..................... 48 2.4.3 TheScienceCore......................... 52 2.4.4 Thermometry........................... 54 3 Readout Electronics 57 3.1Description................................ 57 3.1.1 BiasGenerator.......................... 59 3.1.2 LoadResistorBoxes....................... 61 3.1.3 FocalPlaneWiring........................ 63 3.1.4 JFETBoxes............................ 65 3.1.5 LockinAmplifiers......................... 67 3.1.6 TheDataAcquisitionSystem.................. 70 3.2Performance................................ 71 3.2.1 FunctionalityTests........................ 71 3.2.2 NoisePerformance........................ 77 3.2.3 ChannelCapacitance....................... 85 3.2.4 Microphonics........................... 89 3.2.5 RadioFrequencyInterference.................. 91 4 Receiver Characterization 93 4.1BolometerCharacterization....................... 93 4.1.1 BolometerModel......................... 93 4.1.2 LoadCurves............................ 95 4.2OpticalCharacterization.........................100 x 4.2.1 OpticalTestbed..........................100 4.2.2 SpectralBands..........................102 4.2.3 OpticalEfficiency.........................106 4.2.4 ResponsivityandTimeConstants................110 4.2.5 CosmicRaysandImpulseResponse...............113 4.3PolarizationProperties..........................116 4.3.1 Formalism.............................117
Recommended publications
  • 19 International Workshop on Low Temperature Detectors
    19th International Workshop on Low Temperature Detectors Program version 1.24 - British Summer Time 1 Date Time Session Monday 19 July 14:00 - 14:15 Introduction and Welcome 14:15 - 15:15 Oral O1: Devices 1 15:15 - 15:25 Break 15:25 - 16:55 Oral O1: Devices 1 (continued) 16:55 - 17:05 Break 17:05 - 18:00 Poster P1: MKIDs and TESs 1 Tuesday 20 July 14:00 - 15:15 Oral O2: Cold Readout 15:15 - 15:25 Break 15:25 - 16:55 Oral O2: Cold Readout (continued) 16:55 - 17:05 Break 17:05 - 18:30 Poster P2: Readout, Other Devices, Supporting Science 1 20:00 - 21:00 Virtual Tour of NIST Quantum Sensor Group Labs Wednesday 21 July 14:00 - 15:15 Oral O3: Instruments 15:15 - 15:25 Break 15:25 - 16:55 Oral O3: Instruments (continued) 16:55 - 17:05 Break 17:05 - 18:30 Poster P3: Instruments, Astrophysics and Cosmology 1 18:00 - 19:00 Vendor Exhibitor Hour Thursday 22 July 14:00 - 15:15 Oral O4A: Rare Events 1 Oral O4B: Material Analysis, Metrology, Other 15:15 - 15:25 Break 15:25 - 16:55 Oral O4A: Rare Events 1 (continued) Oral O4B: Material Analysis, Metrology, Other (continued) 16:55 - 17:05 Break 17:05 - 18:30 Poster P4: Rare Events, Materials Analysis, Metrology, Other Applications 20:00 - 21:00 Virtual Tour of NIST Cleanoom Monday 26 July 23:00 - 00:15 Oral O5: Devices 2 00:15 - 00:25 Break 00:25 - 01:55 Oral O5: Devices 2 (continued) 01:55 - 02:05 Break 02:05 - 03:30 Poster P5: MMCs, SNSPDs, more TESs Tuesday 27 July 23:00 - 00:15 Oral O6: Warm Readout and Supporting Science 00:15 - 00:25 Break 00:25 - 01:55 Oral O6: Warm Readout and Supporting Science
    [Show full text]
  • CMB Telescopes and Optical Systems to Appear In: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation
    CMB Telescopes and Optical Systems To appear in: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation Shaul Hanany ([email protected]) University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, USA, Michael Niemack ([email protected]) National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA, and Lyman Page ([email protected]) Princeton University, Department of Physics, Princeton NJ, USA. March 26, 2012 Abstract The cosmic microwave background radiation (CMB) is now firmly established as a funda- mental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB ob- servations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by arXiv:1206.2402v1 [astro-ph.IM] 11 Jun 2012 the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We con- clude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.
    [Show full text]
  • The Design of the Ali CMB Polarization Telescope Receiver
    The design of the Ali CMB Polarization Telescope receiver M. Salatinoa,b, J.E. Austermannc, K.L. Thompsona,b, P.A.R. Aded, X. Baia,b, J.A. Beallc, D.T. Beckerc, Y. Caie, Z. Changf, D. Cheng, P. Chenh, J. Connorsc,i, J. Delabrouillej,k,e, B. Doberc, S.M. Duffc, G. Gaof, S. Ghoshe, R.C. Givhana,b, G.C. Hiltonc, B. Hul, J. Hubmayrc, E.D. Karpela,b, C.-L. Kuoa,b, H. Lif, M. Lie, S.-Y. Lif, X. Lif, Y. Lif, M. Linkc, H. Liuf,m, L. Liug, Y. Liuf, F. Luf, X. Luf, T. Lukasc, J.A.B. Matesc, J. Mathewsonn, P. Mauskopfn, J. Meinken, J.A. Montana-Lopeza,b, J. Mooren, J. Shif, A.K. Sinclairn, R. Stephensonn, W. Sunh, Y.-H. Tsengh, C. Tuckerd, J.N. Ullomc, L.R. Valec, J. van Lanenc, M.R. Vissersc, S. Walkerc,i, B. Wange, G. Wangf, J. Wango, E. Weeksn, D. Wuf, Y.-H. Wua,b, J. Xial, H. Xuf, J. Yaoo, Y. Yaog, K.W. Yoona,b, B. Yueg, H. Zhaif, A. Zhangf, Laiyu Zhangf, Le Zhango,p, P. Zhango, T. Zhangf, Xinmin Zhangf, Yifei Zhangf, Yongjie Zhangf, G.-B. Zhaog, and W. Zhaoe aStanford University, Stanford, CA 94305, USA bKavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA cNational Institute of Standards and Technology, Boulder, CO 80305, USA dCardiff University, Cardiff CF24 3AA, United Kingdom eUniversity of Science and Technology of China, Hefei 230026 fInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 gNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 hNational Taiwan University, Taipei 10617 iUniversity of Colorado Boulder, Boulder, CO 80309, USA jIN2P3, CNRS, Laboratoire APC, Universit´ede Paris, 75013 Paris, France kIRFU, CEA, Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France lBeijing Normal University, Beijing 100875 mAnhui University, Hefei 230039 nArizona State University, Tempe, AZ 85004, USA oShanghai Jiao Tong University, Shanghai 200240 pSun Yat-Sen University, Zhuhai 519082 ABSTRACT Ali CMB Polarization Telescope (AliCPT-1) is the first CMB degree-scale polarimeter to be deployed on the Tibetan plateau at 5,250 m above sea level.
    [Show full text]
  • Clover: Measuring Gravitational-Waves from Inflation
    ClOVER: Measuring gravitational-waves from Inflation Executive Summary The existence of primordial gravitational waves in the Universe is a fundamental prediction of the inflationary cosmological paradigm, and determination of the level of this tensor contribution to primordial fluctuations is a uniquely powerful test of inflationary models. We propose an experiment called ClOVER (ClObserVER) to measure this tensor contribution via its effect on the geometric properties (the so-called B-mode) of the polarization of the Cosmic Microwave Background (CMB) down to a sensitivity limited by the foreground contamination due to lensing. In order to achieve this sensitivity ClOVER is designed with an unprecedented degree of systematic control, and will be deployed in Antarctica. The experiment will consist of three independent telescopes, operating at 90, 150 or 220 GHz respectively, and each of which consists of four separate optical assemblies feeding feedhorn arrays arrays of superconducting detectors with phase as well as intensity modulation allowing the measurement of all three Stokes parameters I, Q and U in every pixel. This project is a combination of the extensive technical expertise and experience of CMB measurements in the Cardiff Instrumentation Group (Gear) and Cavendish Astrophysics Group (Lasenby) in UK, the Rome “La Sapienza” (de Bernardis and Masi) and Milan “Bicocca” (Sironi) CMB groups in Italy, and the Paris College de France Cosmology group (Giraud-Heraud) in France. This document is based on the proposal submitted to PPARC by the UK groups (and funded with 4.6ML), integrated with additional information on the Dome-C site selected for the operations. This document has been prepared to obtain an endorsement from the INAF (Istituto Nazionale di Astrofisica) on the scientific quality of the proposed experiment to be operated in the Italian-French base of Dome-C, and to be submitted to the Commissione Scientifica Nazionale Antartica and to the French INSU and IPEV.
    [Show full text]
  • The Cℓover Experiment
    Invited Paper The CℓOVER Experiment L. Piccirillo1, P. Ade2, M. D. Audley3, C. Baines1, R. Battye1, M. Brown3, P. Calisse2, A. Challinor5,6, W. D. Duncan7, P. Ferreira4, W. Gear2, D. M. Glowacka3, D. Goldie3, P.K. Grimes4, M. Halpern8, V. Haynes1, G. C. Hilton7, K. D. Irwin7, B. Johnson4, M. Jones4, A. Lasenby3, P. Leahy1, J. Leech4, S. Lewis1, B. Maffei1, L. Martinis1, P. D. Mauskopf2, S. J. Melhuish1, C. E. North4, D. O'Dea3, S. Parsley2, G. Pisano1, C. D. Reintsema7, G. Savini2, R.V. Sudiwala2, D. Sutton4, A. Taylor4, G. Teleberg2, D. Titterington3, V. N. Tsaneva3, C. Tucker2, R. Watson1, S. Withington3, G. Yassin4, J. Zhang2 1 School of Physics and Astronomy, University of Manchester, UK 2 School of Physics and Astronomy, Cardiff University, UK 3 Cavendish Laboratory, University of Cambridge, Cambridge, UK 4 Astrophysics, University of Oxford, Oxford, UK 5 Institute of Astronomy, University of Cambridge, Cambridge, UK 6 DAMTP, University of Cambridge, Cambridge, UK 7 National Institute of Standards and Technology, USA 8 University of British Columbia, Canada CℓOVER is a multi-frequency experiment optimised to measure the Cosmic Microwave Background (CMB) polarization, in particular the B- mode component. CℓOVER comprises two instruments observing respectively at 97 GHz and 150/225 GHz. The focal plane of both instruments consists of an array of corrugated feed-horns coupled to TES detectors cooled at 100 mK. The primary science goal of CℓOVER is to be sensitive to gravitational waves down to r ~ 0.03 (at 3σ) in two years of operations. 1 Introduction The Cosmic Microwave Background (CMB) Radiation is a very powerful tool to study the origin and evolution of the Universe.
    [Show full text]
  • Far Sidelobes from Baffles and Telescope Support Structures in the Atacama Cosmology Telescope
    Far Sidelobes from Baffles and Telescope Support Structures in the Atacama Cosmology Telescope Patricio A. Gallardoa, Nicholas F. Cothardb, Roberto Pudduc, Rolando Dünnerd, Brian J. Koopmana, Michael D. Niemacka, Sara M. Simone, and Edward J. Wollackf aDepartment of Physics, Cornell University, Ithaca, NY 14853 USA bDepartment of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA cInstituto de Astrofísica, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile dInstituto de Astrofísica y Centro de Astroingeniería, Facultad de Física, Pontificia Universidad Católica de Chile, 7820436 Macul, Santiago, Chile eDepartment of Physics, University of Michigan, Ann Arbor, MI, 48103 fNASA/Goddard Space Flight Center, Greenbelt, MD, USA ABSTRACT The Atacama Cosmology Telescope (ACT) is a 6 m telescope located in the Atacama Desert, designed to measure the cosmic microwave background (CMB) with arcminute resolution. ACT, with its third generation polarization sensitive array, Advanced ACTPol, is being used to measure the anisotropies of the CMB in five frequency bands in large areas of the sky (∼ 15; 000 deg2). These measurements are designed to characterize the large scale structure of the universe, test cosmological models and constrain the sum of the neutrino masses. As the sensitivity of these wide surveys increases, the control and validation of the far sidelobe response becomes increasingly important and is particularly challenging as multiple reflections, spillover, diffraction and scattering become difficult to model and characterize at the required levels. In this work, we present a ray trace model of the ACT upper structure which is used to describe much of the observed far sidelobe pattern. This model combines secondary mirror spillover measurements with a 3D CAD model based on photogrammetry measurements to simulate the beam of the camera and the comoving ground shield.
    [Show full text]
  • Development and Preliminary Results of Point Source Observations
    The Atacama Cosmology Telescope: Development and Preliminary Results of Point Source Observations Ryan P. Fisher A DISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF PHYSICS [Adviser: Joseph W. Fowler] November 2009 c Copyright by Ryan Patrick Fisher, 2009. All rights reserved. Abstract The Atacama Cosmology Telescope (ACT) is a six meter diameter telescope designed to measure the millimeter sky with arcminute angular resolution. The instrument is cur- rently conducting its third season of observations from Cerro Toco in the Chilean Andes. The primary science goal of the experiment is to expand our understanding of cosmology by mapping the temperature fluctuations of the Cosmic Microwave Background (CMB) at angular scales corresponding to multipoles up to ` ∼ 10000: The primary receiver for current ACT observations is the Millimeter Bolometer Ar- ray Camera (MBAC). The instrument is specially designed to observe simultaneously at 148 GHz, 218 GHz and 277 GHz. To accomplish this, the camera has three separate de- tector arrays, each containing approximately 1000 detectors. After discussing the ACT experiment in detail, a discussion of the development and testing of the cold readout elec- tronics for the MBAC is presented. Currently, the ACT collaboration is in the process of generating maps of the microwave sky using our first and second season observations. The analysis used to generate these maps requires careful data calibration to produce maps of the arcminute scale CMB tem- perature fluctuations. Tests and applications of several elements of the ACT calibrations are presented in the context of the second season observations.
    [Show full text]
  • THE ATACAMA Cosi'vl0logy TELESCOPE: the RECEIVER and INSTRUMENTATION L2 D
    https://ntrs.nasa.gov/search.jsp?R=20120002550 2019-08-30T19:06:35+00:00Z CORE Metadata, citation and similar papers at core.ac.uk Provided by NASA Technical Reports Server THE ATACAMA COSi'vl0LOGY TELESCOPE: THE RECEIVER AND INSTRUMENTATION L2 D. S. SWETZ , P. A. R. ADE\ j'vI. A !\fIRrl, J. \V'. ApPEL" E. S. BATTISTELLlfi,j, B. BURGERI, J. CHERVENAK', 2 lVI. J. DEVLIN], S. R. DICKER]. \V. B. DORIESE , R. DUNNER', T. ESSINGER-HILEMAN'. R. P. FISHER:', J. \V. FOWLER'. 4 2 1 lVI. HALPERN ,!.VI. HASSELFIELD4, G. C. HILTON , A. D. HINCKS\ K. D. IRWIN2. N. JAROSIK', M. KAlIL', J. KLEIN , . ull 11 I2 l l u 1 J. J\1. LAd "" M. LIMON , T. A. l'vIARRIAGE . D. MARSDEN , K. J\IARTOCCI : , P. J\IAUSKOPF: , H. MOSELEY', I4 2 C. B. NETTERFIELD , J\1. D. NIEMACK " l'vI. R. NOLTA ,L. A. PAGE". L. PARKER'. S. T. STAGGS", O. STRYZAK', 1 U jHi E. R. SWlTZER : , R. THORNTON • C. TUCKER'], E. \VOLLACK', Y. ZHAO" Draft version July 5, 2010 ABSTRACT The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instru­ ment is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz.
    [Show full text]
  • A Millimeter-Wave Galactic Plane Survey with the BICEP Polarimeter
    A Millimeter-wave Galactic Plane Survey with the BICEP Polarimeter The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bierman, E. M, J. Kovac et al. 2011. "A Millimeter-Wave Galactic Plane Survey with the BICEP Polarimeter." The Astrophysical Journal 741: 81. Published Version doi:10.1088/0004-637X/741/2/81 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12712844 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 741:81 (21pp), 2011 November 10 doi:10.1088/0004-637X/741/2/81 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A MILLIMETER-WAVE GALACTIC PLANE SURVEY WITH THE BICEP POLARIMETER E. M. Bierman1, T. Matsumura2, C. D. Dowell2,3, B. G. Keating1,P.Ade4, D. Barkats5, D. Barron1, J. O. Battle3, J. J. Bock2,3,H.C.Chiang2,6, T. L. Culverhouse2, L. Duband7,E.F.Hivon8, W. L. Holzapfel9, V. V. Hristov2, J. P. Kaufman1, J. M. Kovac2,10,C.L.Kuo11,A.E.Lange2, E. M. Leitch3,P.V.Mason2, N. J. Miller1, H. T. Nguyen3, C. Pryke12,S.Richter2,G.M.Rocha2, C. Sheehy12, Y. D. Takahashi9, and K. W. Yoon13 1 University of California, San Diego, USA; [email protected] 2 California Institute of Technology, USA 3 Jet Propulsion Laboratory, USA 4 University of Wales, UK 5 Joint ALMA Office-NRAO,
    [Show full text]
  • The Quad Experiment
    New Astronomy Reviews 50 (2006) 984–992 www.elsevier.com/locate/newastrev The QUaD experiment C. Pryke Kavli Institute for Cosmological Physics, Department of Astronomy and Astrophysics, The Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637-1433, USA Available online 7 November 2006 For the QUaD Collaboration. Abstract QUaD is a 31 pixel array of polarization sensitive bolometer pairs coupled to a 2.6 m Cassegrain radio telescope. The telescope is attached to the mount originally built for the DASI experiment and located at the South Pole. The telescope system is described along with details of instrumental characterization studies which we have performed. A first season of CMB observations is complete and the second season underway. Details of the current status of these observations and their analysis are presented. Ó 2006 Published by Elsevier B.V. Keywords: Cosmic microwave background; Polarization Contents 1. Introduction . 985 2. The QUaD experiment. 986 2.1. Telescope.............................................................................. 986 2.2. Focalpane............................................................................. 986 2.3. Telescopescanning....................................................................... 987 3. Instrument performance and characterization . 987 3.1. Gaincalibrationandstability................................................................ 987 3.2. Atmosphericrejection..................................................................... 988 3.3.
    [Show full text]
  • The Atacama Cosmology Telescope: Lensing of CMB Temperature and Polarization Derived from Cosmic Infrared Background Cross-Correlation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Haverford College: Haverford Scholarship Haverford College Haverford Scholarship Faculty Publications Physics 2015 The Atacama Cosmology Telescope: Lensing of CMB Temperature and Polarization Derived from Cosmic Infrared Background Cross-Correlation Alexander van Engelen Blake D. Sherwin Neelima Sehgal Graeme E. Addison Bruce Partridge Haverford College, [email protected] Follow this and additional works at: https://scholarship.haverford.edu/physics_facpubs Repository Citation van Engelen, A., et al. (2015). "The Atacama Cosmology Telescope: Lensing of CMB Temperature and Polarization Derived from Cosmic Infrared Background Cross-Correlation," Astrophysical Journal 808 (1). This Journal Article is brought to you for free and open access by the Physics at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. The Astrophysical Journal, 808:7 (9pp), 2015 July 20 doi:10.1088/0004-637X/808/1/7 © 2015. The American Astronomical Society. All rights reserved. THE ATACAMA COSMOLOGY TELESCOPE: LENSING OF CMB TEMPERATURE AND POLARIZATION DERIVED FROM COSMIC INFRARED BACKGROUND CROSS-CORRELATION Alexander van Engelen1,2, Blake D. Sherwin3, Neelima Sehgal2, Graeme E. Addison4, Rupert Allison5, Nick Battaglia6, Francesco de Bernardis7, J. Richard Bond1, Erminia Calabrese5, Kevin Coughlin8, Devin Crichton9, Rahul Datta8, Mark J. Devlin10, Joanna Dunkley5, Rolando Dünner11, Patricio Gallardo7, Emily Grace12, Megan Gralla9, Amir Hajian1, Matthew Hasselfield4,13, Shawn Henderson7, J. Colin Hill14, Matt Hilton15, Adam D. Hincks4, Renée Hlozek13, Kevin M. Huffenberger16, John P. Hughes17, Brian Koopman7, Arthur Kosowsky18, Thibaut Louis5, Marius Lungu10, Mathew Madhavacheril2, Loïc Maurin11, Jeff McMahon8, Kavilan Moodley15, Charles Munson8, Sigurd Naess5, Federico Nati19, Laura Newburgh20, Michael D.
    [Show full text]
  • The South Pole Telescope Bolometer Array and the Measurement of Secondary Cosmic Microwave Background Anisotropy at Small Angular Scales
    The South Pole Telescope bolometer array and the measurement of secondary Cosmic Microwave Background anisotropy at small angular scales by Erik D. Shirokoff A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor William Holzapfel, Chair Professor Bernard Sadoulet Professor Chung-Pei Ma Fall 2011 The South Pole Telescope bolometer array and the measurement of secondary Cosmic Microwave Background anisotropy at small angular scales Copyright 2011 by Erik D. Shirokoff 1 Abstract The South Pole Telescope bolometer array and the measurement of secondary Cosmic Microwave Background anisotropy at small angular scales by Erik D. Shirokoff Doctor of Philosophy in Physics University of California, Berkeley Professor William Holzapfel, Chair The South Pole Telescope (SPT) is a dedicated 10-meter diameter telescope optimized for mm-wavelength surveys of the Cosmic Microwave Background (CMB) with arcminute reso- lution. The first instrument deployed at SPT features a 960 element array of horn-coupled bolometers. These devices consist of fully lithographed spider-web absorbers and aluminum- titanium bilayer transition edge sensors fabricated on adhesive-bonded silicon wafers with embedded metal backplanes. The focal plane is cooled using a closed cycle pulse-tube re- frigerator, and read-out using Frequency Domain Multiplexed Superconducting Quantum Interference Devices (SQUIDs.) Design features were chosen to optimize sensitivy in the atmospheric observing bands available from the ground, and for stability with the frequency domain multiplexed readout system employed at SPT, and performance was verified with a combination of laboratory tests and field observations.
    [Show full text]