THE ATACAMA Cosi'vl0logy TELESCOPE: the RECEIVER and INSTRUMENTATION L2 D

Total Page:16

File Type:pdf, Size:1020Kb

THE ATACAMA Cosi'vl0logy TELESCOPE: the RECEIVER and INSTRUMENTATION L2 D https://ntrs.nasa.gov/search.jsp?R=20120002550 2019-08-30T19:06:35+00:00Z CORE Metadata, citation and similar papers at core.ac.uk Provided by NASA Technical Reports Server THE ATACAMA COSi'vl0LOGY TELESCOPE: THE RECEIVER AND INSTRUMENTATION L2 D. S. SWETZ , P. A. R. ADE\ j'vI. A !\fIRrl, J. \V'. ApPEL" E. S. BATTISTELLlfi,j, B. BURGERI, J. CHERVENAK', 2 lVI. J. DEVLIN], S. R. DICKER]. \V. B. DORIESE , R. DUNNER', T. ESSINGER-HILEMAN'. R. P. FISHER:', J. \V. FOWLER'. 4 2 1 lVI. HALPERN ,!.VI. HASSELFIELD4, G. C. HILTON , A. D. HINCKS\ K. D. IRWIN2. N. JAROSIK', M. KAlIL', J. KLEIN , . ull 11 I2 l l u 1 J. J\1. LAd "" M. LIMON , T. A. l'vIARRIAGE . D. MARSDEN , K. J\IARTOCCI : , P. J\IAUSKOPF: , H. MOSELEY', I4 2 C. B. NETTERFIELD , J\1. D. NIEMACK " l'vI. R. NOLTA ,L. A. PAGE". L. PARKER'. S. T. STAGGS", O. STRYZAK', 1 U jHi E. R. SWlTZER : , R. THORNTON • C. TUCKER'], E. \VOLLACK', Y. ZHAO" Draft version July 5, 2010 ABSTRACT The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instru­ ment is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was com­ missioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance. Subject heading8: Microwave Telescopes, CMB Observations 1. INTRODUCTION secondary effects on CMB anisotropy, from, for exam­ Measurements of the Cosmic Microwave Background ple, the Sunyaev-Zel'dovich (SZ) effect and gravitational (CMB) provide a wealth of information about the origin lensing, which arc important for understanding structure and evolution of the Universe. Current measurements of formation. the angular power spectrum from tenths of a degree to \Ve have built the Atacama Cosmology Telescope all sky have provided estimates of cosmological paramters (ACT), a eustom six-meter telescope, to address these and have begun to quantify the big bang process (e.g., scientific questions. ACT features a cryogenic receiver, Komatsu et al. (2009), Brown et al. (2009), Chiang et the Millimeter Bolometer Array Camera (:\·IBAC), that al. (2009), Sievers et al. (2009)). Detailed measurements operates at three frequencies: 148 GHz, 218 GHz, and at arc minute scales are placing tighter constraints on the 277 GHz. Each frequency band is imaged by a 32 x 32 standard cosmological model and probe possible devia­ array of transition-edge sensor (TES) bolometers. The tions. These higher resolution measurements also reveal telescope was commissioned at its site in late 2007, at which time the 148 GHz channel was installed in MBAC. 1 Department of Physics and Astronomy, University of Pennsyl­ The remaining two frequencies were installed in June vania, 209 South 33rd Street, Philadelphia, PA. USA 19104 2008. Since then the telescope and completed camera 2 NIST Quantum Devices Group, 325 Broadway :'vlailcode have collected approximately twelve months of data over 817.03, Boulder, CO, USA 80305 two observing seasons. 3 School of Physics and Astronomy, Cardiff University. The Pa­ rade, Cardiff, Wales, UK CF24 3AA This paper presents the instrument and complements a 4 Department of Physics and Astronomy, University of British set of ACT papers presenting the first generation of ex­ Columbia, Vancouver, BC, Canada V6T lZ4 perimental results. The paper is organized as follows. ,5 Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ, USA 08544 In Section 2 we discuss the optical design and struc­ 6 Department of Physics, University of Rome "La Sapienza", Pi­ ture characteristics, site location, and telescope opera­ azzale Aldo l\loro 5. 1-00185 Rome, Italv tion. Section 3 details t.he design of t.he l\IBAC cryostat., 7 Code 553/665, NASA/Goddard Sp~ce Flight Center, Green­ cold optics, and detectors. Telescope control, data ac­ belL MD, USA 20771 8 Departamento de Astronomfa y Astroffsica, Facultad de Ffsica, quisition, merging, and related topics are discussed in Pontificia Universidad Cat6lica, Casilla 306, Santiago 22, Chile Section '4. Finally, we present the image quality of the 9 Kavli Institute for Particle Astrophysics and Cosmology, Stan­ system in Section 5. Companion papers that detail the ford University, Stanford, CA. USA 94305-4085 beams and scientific results are Hincks et a1. (2009) and 10 Department of Physics, Stanford University. Stanford, CA, USA 94305-4085 Fowler et al. (2010). 11 Columbia Astrophysics Laboratory, 550 W. 120th St. Mail Code 5247, New York, NY USA 10027 2. THE ATACAMA COSl\IOLOGY TELESCOPE 12 of Astrophysical Sciences, Peyton Hall. Prince- Princeton, NJ USA 08544 2.1. Construction and Optics Kadi Institute for Cosmological Physics. 5620 South Ellis Ave., Chicago, IL. USA 60637 The dianlE'ter of the six-meter primary refiector vms set 14 Department of Physics, University of Toronto. 60 St. George by the requirement to obtain arcminutc-resolution at the Street, Toronto. ON. Canada M5S lA7 ACT frequencies. The primary and two-meter secondary 1:0 Canadian Institute for Theoretical Astrophysics, University of are arranged in an off-axis Gregorian configuration to Toronto, ON, Canada M5S 3H8 Department of Physics, \Vest Chester University of Pennsyl­ give an unobstructed image of the sky. The primary vania, \Vest Chester, PA, USA 19383 focal length was fixed at 5.2 m. This results in a COIn- 2 D. Swetz et al. pact arrangement between the primary and secondary secondary, it does little to reduce the effective spillover. reflectors, making it easier to achieve the fast scanning Measurements of the detectors indicate that there is as specifications of the telescope (Section 2.3). The design much as 2 3% spillover that does not get reflected to the is dm,cribed in Fowler et al. (2007). The telescope was cold sky. As a result, the secondary bailiing is being re­ built by Amec Dynamic Structures Ltd. (now Empire designed to ensure that the majority of the spillover is Dynamic Structures). redirected to the sky in future observations. Figure 1 shows the major components of the telescope structure and Table 1 the important parameters. To min­ 2.2. Site Location, Band Selection, and Logistics imize ground pick-up during scanning, the telescope has The ACT site is at an altitude of 5190 m near the two ground screens. A large. stationary outer ground peak of Cerro Toco in the Atacama Desert of north­ screen surrounds the telescope. A second, inner ground ern Chile. The telescope location provides visibility to screen connects the open sides of the primary reflector approximately 70% of the sky. The high elevation and to the secondary reflector, and moves with the telescope low precipitable water vapor (PWV) at this location pro­ during scanning. A climate-controlled receiver cabin is vides excellent millimeter and submillimeter atmospheric situated underneath the primary and secondary reflec­ transparency and has attracted several other millimeter­ tors. The telescope was designed to work with MBAC wave experiments. The specific ACT site has also been (Section 3), and also to be able to accommodate future used by the TOCO (Miller et al. 2003) and Millimeter receivers. INTerferometer (Fowler et al. 2005) telescopes. The ACT bands were selected to discriminate be­ TABLE 1 tween the SZ, CMB, and point sources. The bands PHYSICAL PROPERTIES OF THE TELESCOPE AJ\:D OPTICS were also chosen to avoid three large emission features, an oxygen emission line at 119 GHz and water emis­ sion lines at 183 GHz and 325 GHz (e.g, Danese and Telescope height 12 m Altitude 5190 m Partrige (1989)). Using the National Radio Astronomy 67°47'15/1W Ground screen height 13 m Longitude Observatory/European Southern Observatory monitor­ Total mass 52 t Latitude 22°57'31/1S ing data and an atmospheric modeling program devel­ oped by Pardo et al. (200l), the opacity and Raleigh­ Jeans (RJ) brightness temperatures are extrapolated to """WCUll range FOVa 1 deg2 Max. az speed 2°/8 the ACT bands. The level of emission in the continuum Primary reflector Dia 6m Max. az ace. 10°/82 where the ACT bands lie is due to O2 and H2 0 in com­ No. primary panels 71 Elev range 30?5 60° parable parts. Thus, the transmission and absorption in Secondary reflector Dia 2m Max. elev ;;peed 0.2°/s the bands is a function of the FWV in the atmosphere. 11 Seasonal changes in the weather provide sustained peri­ a At telescope Gregorian focus ods with low amounts of water vapor and naturally set the ACT observing season to April through December when the PWV is lowest due to the colder weather. Using the Gregorian design as a starting point, the re­ The ACT site is approximately 50 km from the town flector shapes were numerically optimized to increase the of San Pedro de Atacama (altitude rv 2750m), the loca­ field of view over a classic Gregorian using Code V optical tion of lodging and the main field office. Travel to the design software. 1 At the Gregorian focus before reimag­ site from :.Jorth America takes approximately one day. ing (Section 3.1), the telescope achieves a Strehl ratio The roads are clear year-round with brief periods of in­ greater than 0.9 over a 1 square-degree field at 277 GHz.
Recommended publications
  • The Atacama Cosmology Telescope: Extragalactic Sources at 148 Ghz in the 2008 Survey
    Haverford College Haverford Scholarship Faculty Publications Astronomy 2011 The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey Tobias A. Marriage Jean-Baptise Juin Yen-Ting Lin Bruce Partridge Haverford College, [email protected] Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey Marriage, Tobias A.; Baptiste Juin, Jean; Lin, Yen-Ting; Marsden, Danica; Nolta, Michael R.; Partridge, Bruce; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Bertrand Doriese, W.; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernández-Monteagudo, Carlos; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin M.; Handel Hughes, David; Hughes, John P.; Infante, Leopoldo; Irwin, Kent D.; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M.; Limon, Michele; Lupton, Robert H.; Martocci, Krista; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B.; Niemack, Michael .;D Page, Lyman A.; Parker, Lucas; Quintana, Hernan; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jon; Spergel, David N.; Staggs, Suzanne T.; Swetz, Daniel S.; Switzer, Eric R.; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wilson, Grant; Wollack, Ed; Zhao, Yue The Astrophysical Journal, Volume 731, Issue 2, article id. 100, 15 pp. (2011). This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship.
    [Show full text]
  • A Measurement of the Cosmic Microwave Background B-Mode Polarization with Polarbear
    Publications of the Korean Astronomical Society pISSN: 1225-1534 30: 625 ∼ 628, 2015 September eISSN: 2287-6936 c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/PKAS.2015.30.2.625 A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION WITH POLARBEAR The Polarbear collaboration: P.A.R. Ade29, Y. Akiba33, A.E. Anthony2,5, K. Arnold14, M. Atlas14, D. Barron14, D. Boettger14, J. Borrill3,32, S. Chapman9, Y. Chinone17,13, M. Dobbs25, T. Elleflot14, J. Errard32,3, G. Fabbian1,18, C. Feng14, D. Flanigan13,10, A. Gilbert25, W. Grainger28, N.W. Halverson2,5,15, M. Hasegawa17,33, K. Hattori17, M. Hazumi17,33,20, W.L. Holzapfel13, Y. Hori17, J. Howard13,16, P. Hyland24, Y. Inoue33, G.C. Jaehnig2,15, A.H. Jaffe11, B. Keating14, Z. Kermish12, R. Keskitalo3, T. Kisner3,32, M. Le Jeune1, A.T. Lee13,27, E.M. Leitch4,19, E. Linder27, M. Lungu13,8, F. Matsuda14, T. Matsumura17, X. Meng13, N.J. Miller22, H. Morii17, S. Moyerman14, M.J. Myers13, M. Navaroli14, H. Nishino20, A. Orlando14, H. Paar14, J. Peloton1, D. Poletti1, E. Quealy13,26, G. Rebeiz6, C.L. Reichardt13, P.L. Richards13,31, C. Ross9, I. Schanning14, D.E. Schenck2,5, B.D. Sherwin13,21, A. Shimizu33, C. Shimmin13,7, M. Shimon30,14, P. Siritanasak14, G. Smecher34, H. Spieler27, N. Stebor14, B. Steinbach13, R. Stompor1, A. Suzuki13, S. Takakura23,17, T. Tomaru17, B. Wilson14, A. Yadav14, O. Zahn27 1AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cit´e,France 2Center for Astrophysics and Space
    [Show full text]
  • The Q/U Imaging Experiment (QUIET): the Q-Band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller
    The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2010 c 2010 Laura Newburgh All Rights Reserved Abstract The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Phase I of the Q/U Imaging ExperimenT (QUIET) measures the Cosmic Microwave Background polarization anisotropy spectrum at angular scales 25 1000. QUIET has deployed two independent receiver arrays. The 40-GHz array took data between October 2008 and June 2009 in the Atacama Desert in northern Chile. The 90-GHz array was deployed in June 2009 and observations are ongoing. Both receivers observe four 15◦ 15◦ regions of the sky in the southern hemisphere that are expected × to have low or negligible levels of polarized foreground contamination. This thesis will describe the 40 GHz (Q-band) QUIET Phase I instrument, instrument testing, observations, analysis procedures, and preliminary power spectra. Contents 1 Cosmology with the Cosmic Microwave Background 1 1.1 The Cosmic Microwave Background . 1 1.2 Inflation . 2 1.2.1 Single Field Slow Roll Inflation . 3 1.2.2 Observables . 4 1.3 CMB Anisotropies . 6 1.3.1 Temperature . 6 1.3.2 Polarization . 7 1.3.3 Angular Power Spectrum Decomposition . 8 1.4 Foregrounds . 14 1.5 CMB Science with QUIET . 15 2 The Q/U Imaging ExperimenT Q-band Instrument 19 2.1 QUIET Q-band Instrument Overview .
    [Show full text]
  • 19 International Workshop on Low Temperature Detectors
    19th International Workshop on Low Temperature Detectors Program version 1.24 - British Summer Time 1 Date Time Session Monday 19 July 14:00 - 14:15 Introduction and Welcome 14:15 - 15:15 Oral O1: Devices 1 15:15 - 15:25 Break 15:25 - 16:55 Oral O1: Devices 1 (continued) 16:55 - 17:05 Break 17:05 - 18:00 Poster P1: MKIDs and TESs 1 Tuesday 20 July 14:00 - 15:15 Oral O2: Cold Readout 15:15 - 15:25 Break 15:25 - 16:55 Oral O2: Cold Readout (continued) 16:55 - 17:05 Break 17:05 - 18:30 Poster P2: Readout, Other Devices, Supporting Science 1 20:00 - 21:00 Virtual Tour of NIST Quantum Sensor Group Labs Wednesday 21 July 14:00 - 15:15 Oral O3: Instruments 15:15 - 15:25 Break 15:25 - 16:55 Oral O3: Instruments (continued) 16:55 - 17:05 Break 17:05 - 18:30 Poster P3: Instruments, Astrophysics and Cosmology 1 18:00 - 19:00 Vendor Exhibitor Hour Thursday 22 July 14:00 - 15:15 Oral O4A: Rare Events 1 Oral O4B: Material Analysis, Metrology, Other 15:15 - 15:25 Break 15:25 - 16:55 Oral O4A: Rare Events 1 (continued) Oral O4B: Material Analysis, Metrology, Other (continued) 16:55 - 17:05 Break 17:05 - 18:30 Poster P4: Rare Events, Materials Analysis, Metrology, Other Applications 20:00 - 21:00 Virtual Tour of NIST Cleanoom Monday 26 July 23:00 - 00:15 Oral O5: Devices 2 00:15 - 00:25 Break 00:25 - 01:55 Oral O5: Devices 2 (continued) 01:55 - 02:05 Break 02:05 - 03:30 Poster P5: MMCs, SNSPDs, more TESs Tuesday 27 July 23:00 - 00:15 Oral O6: Warm Readout and Supporting Science 00:15 - 00:25 Break 00:25 - 01:55 Oral O6: Warm Readout and Supporting Science
    [Show full text]
  • CMB Telescopes and Optical Systems to Appear In: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation
    CMB Telescopes and Optical Systems To appear in: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation Shaul Hanany ([email protected]) University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, USA, Michael Niemack ([email protected]) National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA, and Lyman Page ([email protected]) Princeton University, Department of Physics, Princeton NJ, USA. March 26, 2012 Abstract The cosmic microwave background radiation (CMB) is now firmly established as a funda- mental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB ob- servations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by arXiv:1206.2402v1 [astro-ph.IM] 11 Jun 2012 the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We con- clude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.
    [Show full text]
  • The Design of the Ali CMB Polarization Telescope Receiver
    The design of the Ali CMB Polarization Telescope receiver M. Salatinoa,b, J.E. Austermannc, K.L. Thompsona,b, P.A.R. Aded, X. Baia,b, J.A. Beallc, D.T. Beckerc, Y. Caie, Z. Changf, D. Cheng, P. Chenh, J. Connorsc,i, J. Delabrouillej,k,e, B. Doberc, S.M. Duffc, G. Gaof, S. Ghoshe, R.C. Givhana,b, G.C. Hiltonc, B. Hul, J. Hubmayrc, E.D. Karpela,b, C.-L. Kuoa,b, H. Lif, M. Lie, S.-Y. Lif, X. Lif, Y. Lif, M. Linkc, H. Liuf,m, L. Liug, Y. Liuf, F. Luf, X. Luf, T. Lukasc, J.A.B. Matesc, J. Mathewsonn, P. Mauskopfn, J. Meinken, J.A. Montana-Lopeza,b, J. Mooren, J. Shif, A.K. Sinclairn, R. Stephensonn, W. Sunh, Y.-H. Tsengh, C. Tuckerd, J.N. Ullomc, L.R. Valec, J. van Lanenc, M.R. Vissersc, S. Walkerc,i, B. Wange, G. Wangf, J. Wango, E. Weeksn, D. Wuf, Y.-H. Wua,b, J. Xial, H. Xuf, J. Yaoo, Y. Yaog, K.W. Yoona,b, B. Yueg, H. Zhaif, A. Zhangf, Laiyu Zhangf, Le Zhango,p, P. Zhango, T. Zhangf, Xinmin Zhangf, Yifei Zhangf, Yongjie Zhangf, G.-B. Zhaog, and W. Zhaoe aStanford University, Stanford, CA 94305, USA bKavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA cNational Institute of Standards and Technology, Boulder, CO 80305, USA dCardiff University, Cardiff CF24 3AA, United Kingdom eUniversity of Science and Technology of China, Hefei 230026 fInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 gNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 hNational Taiwan University, Taipei 10617 iUniversity of Colorado Boulder, Boulder, CO 80309, USA jIN2P3, CNRS, Laboratoire APC, Universit´ede Paris, 75013 Paris, France kIRFU, CEA, Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France lBeijing Normal University, Beijing 100875 mAnhui University, Hefei 230039 nArizona State University, Tempe, AZ 85004, USA oShanghai Jiao Tong University, Shanghai 200240 pSun Yat-Sen University, Zhuhai 519082 ABSTRACT Ali CMB Polarization Telescope (AliCPT-1) is the first CMB degree-scale polarimeter to be deployed on the Tibetan plateau at 5,250 m above sea level.
    [Show full text]
  • Clover: Measuring Gravitational-Waves from Inflation
    ClOVER: Measuring gravitational-waves from Inflation Executive Summary The existence of primordial gravitational waves in the Universe is a fundamental prediction of the inflationary cosmological paradigm, and determination of the level of this tensor contribution to primordial fluctuations is a uniquely powerful test of inflationary models. We propose an experiment called ClOVER (ClObserVER) to measure this tensor contribution via its effect on the geometric properties (the so-called B-mode) of the polarization of the Cosmic Microwave Background (CMB) down to a sensitivity limited by the foreground contamination due to lensing. In order to achieve this sensitivity ClOVER is designed with an unprecedented degree of systematic control, and will be deployed in Antarctica. The experiment will consist of three independent telescopes, operating at 90, 150 or 220 GHz respectively, and each of which consists of four separate optical assemblies feeding feedhorn arrays arrays of superconducting detectors with phase as well as intensity modulation allowing the measurement of all three Stokes parameters I, Q and U in every pixel. This project is a combination of the extensive technical expertise and experience of CMB measurements in the Cardiff Instrumentation Group (Gear) and Cavendish Astrophysics Group (Lasenby) in UK, the Rome “La Sapienza” (de Bernardis and Masi) and Milan “Bicocca” (Sironi) CMB groups in Italy, and the Paris College de France Cosmology group (Giraud-Heraud) in France. This document is based on the proposal submitted to PPARC by the UK groups (and funded with 4.6ML), integrated with additional information on the Dome-C site selected for the operations. This document has been prepared to obtain an endorsement from the INAF (Istituto Nazionale di Astrofisica) on the scientific quality of the proposed experiment to be operated in the Italian-French base of Dome-C, and to be submitted to the Commissione Scientifica Nazionale Antartica and to the French INSU and IPEV.
    [Show full text]
  • Planck Early Results. XX. New Light on Anomalous Microwave Emission from Spinning Dust Grains
    A&A 536, A20 (2011) Astronomy DOI: 10.1051/0004-6361/201116470 & c ESO 2011 Astrophysics Planck early results Special feature Planck early results. XX. New light on anomalous microwave emission from spinning dust grains Planck Collaboration: P. A. R. Ade72, N. Aghanim46,M.Arnaud58, M. Ashdown56,4, J. Aumont46, C. Baccigalupi70,A.Balbi28, A. J. Banday77,7,63,R.B.Barreiro52, J. G. Bartlett3,54,E.Battaner79, K. Benabed47, A. Benoît45,J.-P.Bernard77,7, M. Bersanelli25,41, R. Bhatia5, J. J. Bock54,8, A. Bonaldi37,J.R.Bond6,J.Borrill62,73,F.R.Bouchet47, F. Boulanger46, M. Bucher3,C.Burigana40,P.Cabella28, B. Cappellini41, J.-F. Cardoso59,3,47,S.Casassus76, A. Catalano3,57, L. Cayón18, A. Challinor49,56,10, A. Chamballu43, R.-R. Chary44,X.Chen44,L.-Y.Chiang48, C. Chiang17,P.R.Christensen67,29,D.L.Clements43, S. Colombi47, F. Couchot61, A. Coulais57, B. P. Crill54,68, F. Cuttaia40,L.Danese70, R. D. Davies55,R.J.Davis55,P.deBernardis24,G.deGasperis28,A.deRosa40, G. de Zotti37,70, J. Delabrouille3, J.-M. Delouis47, C. Dickinson55, S. Donzelli41,50,O.Doré54,8,U.Dörl63, M. Douspis46, X. Dupac32, G. Efstathiou49,T.A.Enßlin63,H.K.Eriksen50, F. Finelli40, O. Forni77,7, M. Frailis39, E. Franceschi40,S.Galeotta39, K. Ganga3,44,R.T.Génova-Santos51,30,M.Giard77,7, G. Giardino33, Y. Giraud-Héraud3, J. González-Nuevo70,K.M.Górski54,81,S.Gratton56,49, A. Gregorio26, A. Gruppuso40,F.K.Hansen50,D.Harrison49,56,G.Helou8, S. Henrot-Versillé61, D. Herranz52,S.R.Hildebrandt8,60,51,E.Hivon47, M.
    [Show full text]
  • Muse: a Novel Experiment for CMB Polarization Measurement Using Highly Multimoded Bolometers
    The Atacama B-mode Search Status and Prospect CMB 2013 June 11th, 2013, Okinawa, Japan Akito Kusaka (Princeton University) for ABS Collaboration Before starting my talk… Atmosphere is unpolarized ABS (Atacama B-mode Search) Princeton, Johns Hopkins, NIST, UBC, U. Chile What is ABS? Ground based CMB polarization (with T sensitivity) Angular scale: l~100(~2), B-mode from GW TES bolometer at 150 GHz › 240 pixel / 480 bolometers › ~80% of channels are regularly functional › NEQ ~ 30 mKs (w/ dead channels, pol. efficiency included) Unique Systematic error mitigation › Cold optics › Continuously rotating half-wave plate Site Chile, Cerro Toco › ~5150 m. › Extremely low moisture › Year-round access › Observing throughout the year › And day and night ACT, ABS, PolarBear, CLASS Cerro Chajnantor 5612 m (5150 m) Cerro Toco 5600 m TAO, CCAT Google Earth / Google Map / Google Earth 1 km APEX QUIET, CBI ALMA (5050 m) ASTE & NANTEN2 (4800 m) Possible combined analysis among CMB experiments Many figures / pictures are from theses of ABS instrument T. Essinger-Hileman and J. W. Appel (+ K. Visnjic and L. P. Parker soon) Optics 4 K cooled side-fed Dragone dual reflector. ~60 cm diameter mirrors. 25 cm aperture diameter. Optics Aperture The optics maximize throughput for small aperture 12 radius field of view Good image quality across the wide field of view ABS focal plane Feedhorn coupled Focal plane ~300 mK Polarization sensitive TES Ex TES Inline filter OMT Ey TES 1.6 mm 5 mm ~30 cm Fabricated at NIST Focal Plane Elements Individually machined
    [Show full text]
  • A Ground-Based Probe of Cosmic Microwave Background Polarization
    Q/U Imaging ExperimenT (QUIET): a ground-based probe of cosmic microwave background polarization Immanuel Buder for the QUIET Collaboration Department of Physics, U. of Chicago, 933 E. 56th St., Chicago, IL USA 60637 ABSTRACT QUIET is an experimental program to measure the polarization of the Cosmic Microwave Background (CMB) radiation from the ground. Previous CMB polarization data have been used to constrain the cosmological parameters that model the history of our universe. The exciting target for current and future experiments is detecting and measuring the faint polarization signals caused by gravity waves from the inflationary epoch which 30 occurred < 10− s after the Big Bang. QUIET has finished an observing season at 44 GHz (Q-Band); observing at 95 GHz (W-Band) is ongoing. The instrument incorporates several technologies and approaches novel to CMB experiments. We describe the observing strategy, optics design, detector technology, and data acquisition. These systems combine to produce a polarization sensitivity of 64 (57) µK for a 1 s exposure of the Phase I Q (W) Band array. We describe the QUIET Phase I instrument and explain how systematic errors are reduced and quantified. Keywords: QUIET, cosmic microwave background, cosmology observations, instrumentation: polarimeters 1. INTRODUCTION QUIET is an experimental program to measure the polarization anisotropy of the Cosmic Microwave Background (CMB). In the last few years, increasingly precise measurements1–4 of the polarization have helped both to verify the standard cosmological model and to provide some constraints on cosmological parameters. The polarization of the CMB is uniquely sensitive to primordial gravity waves, which create characteristic degree scale divergence free polarization patterns on the sky known as B-modes.
    [Show full text]
  • The Cℓover Experiment
    Invited Paper The CℓOVER Experiment L. Piccirillo1, P. Ade2, M. D. Audley3, C. Baines1, R. Battye1, M. Brown3, P. Calisse2, A. Challinor5,6, W. D. Duncan7, P. Ferreira4, W. Gear2, D. M. Glowacka3, D. Goldie3, P.K. Grimes4, M. Halpern8, V. Haynes1, G. C. Hilton7, K. D. Irwin7, B. Johnson4, M. Jones4, A. Lasenby3, P. Leahy1, J. Leech4, S. Lewis1, B. Maffei1, L. Martinis1, P. D. Mauskopf2, S. J. Melhuish1, C. E. North4, D. O'Dea3, S. Parsley2, G. Pisano1, C. D. Reintsema7, G. Savini2, R.V. Sudiwala2, D. Sutton4, A. Taylor4, G. Teleberg2, D. Titterington3, V. N. Tsaneva3, C. Tucker2, R. Watson1, S. Withington3, G. Yassin4, J. Zhang2 1 School of Physics and Astronomy, University of Manchester, UK 2 School of Physics and Astronomy, Cardiff University, UK 3 Cavendish Laboratory, University of Cambridge, Cambridge, UK 4 Astrophysics, University of Oxford, Oxford, UK 5 Institute of Astronomy, University of Cambridge, Cambridge, UK 6 DAMTP, University of Cambridge, Cambridge, UK 7 National Institute of Standards and Technology, USA 8 University of British Columbia, Canada CℓOVER is a multi-frequency experiment optimised to measure the Cosmic Microwave Background (CMB) polarization, in particular the B- mode component. CℓOVER comprises two instruments observing respectively at 97 GHz and 150/225 GHz. The focal plane of both instruments consists of an array of corrugated feed-horns coupled to TES detectors cooled at 100 mK. The primary science goal of CℓOVER is to be sensitive to gravitational waves down to r ~ 0.03 (at 3σ) in two years of operations. 1 Introduction The Cosmic Microwave Background (CMB) Radiation is a very powerful tool to study the origin and evolution of the Universe.
    [Show full text]
  • No Slide Title
    Program for Small Scale Anisotropy Measurements and the Ability to set Limits on Inflation. A. Lee, L.Page and J. Ruhl 1 l>1000 CMB/SZ Experiments ACBAR (Bolometric feed array) ACT SPT AMiBA (Taiwan, Interferometer) SuZie Upgrade AMI (UK, Interferometer) SZA (Interferometer) APEX VSA (Interferometer) Bolocam (Bolometric Camera, CSO) CBI (Interferometer) 2 Selected Bolometer-Array and SZ Roadmap APEX SCUBA2 (~400 bolometers) (12000 bolometers) SZA Chile (Interferometer) Owens Valley ACT (3000 bolometers) Chile CMBPOL 2003 2005 2007 2004 2006 2008 SPT ALMA Polarbear-I (1000 bolometers) (Interferometer) (300 bolometers) South Pole Chile California Planck (50 bolometers) L2 3 ACT Collaboration Cardiff NASA/GSFC Princeton Peter Ade Domonic Benford Joe Fowler Cindy Hunt Jay Chervenak Norm Jarosik Phil Mauskopf Harvey Moseley Robert Lupton Carl Stahle Bob Margolis Columbia Ed Wollack Lyman Page Uros Seljak Amber Miller Penn David Spergel CUNY Angelica de Oliveira Costa Suzanne Staggs Martin Spergel Mark Devlin Simon Dicker Rutgers Haverford Bhuvnesh Jain Laura Ferrarese Steve Boughn Raul Jimenez Arthur Kosowsky Bruce Partridge Jeff Klein Jack Hughes Max Tegmark Ted Williams INOAE Licia Verde David Hughes Univ. de Catolica UMass Hernan Quintana NIST/Boulder Grant Wilson Univ. of Toronto Randy Doriese Univ. of British Columbia Kent Irwin Barth Netterfield Mark Halpern 4 Science: Observations: AtacamaACT Cosmology Telescope Growth of structure CMB: l>1000 Eqn. of state Cluster (SZ, KSZ X-rays, & optical) Neutrino mass Diffuse SZ Ionization history
    [Show full text]