Litebird Lite(Light) Satellite for the Studies for B-Mode PolarizaOn and InflaOn from Cosmic Background RadiaOn DetecOn

Total Page:16

File Type:pdf, Size:1020Kb

Litebird� Lite(Light) Satellite for the Studies for B-Mode Polariza�On and Infla�On from Cosmic Background Radia�On Detec�On LiteBIRD! Lite(Light) satellite for the studies for B-mode polarizaon and Inflaon from cosmic background Radiaon Detec6on Tomotake Matsumura (ISAS/JAXA) on behalf of LiteBIRD working group! 2014/12/1-5, PLANCK2014, Ferrara! Explora(on of early Universe using CMB satellite COBE (1989) WMAP (2001) Planck (2009) Band 32−90GHz 23−94GHz 30−857GHz (353GHz) Detectors 6 radiometers 20 radiometers 11 radiometers + 52 bolometers Operaon temperature 300/140 K 90 K 100 mK Angular Resolu6no ~7° ~0.22° ~0.1° Orbit Sun Synch L2 L2 December 3, 2014 Planck2014@Ferrara, Italy 2 Explora(on of early Universe using CMB satellite Next generation B-mode probe COBE (1989) WMAP (2001) Planck (2009) Band 32−90GHz 23−94GHz 30−857GHz (353GHz) EE Detectors 6 radiometers 20 radiometers 11 radiometers + 52 bolometers Operaon temperature 300/140 K 90 K 100 mK Angular Resolu6no ~7° ~0.22° BB ~0.1° Orbit Sun Synch L2 L2 December 3, 2014 Planck2014@Ferrara, Italy 3 LiteBIRD LiteBIRD is a next generaon CMB polarizaon satellite to probe the inflaonary Universe. The science goal of LiteBIRD is to measure the tensor-to-scalar rao with the sensi6vity of δr =0.001. The design philosophy is driven to focus on the primordial B-mode signal. Primordial B-mode r = 0.2 Lensing B-mode r = 0.025 Plot made by Y. Chinone December 3, 2014 Planck2014@Ferrara, Italy 4 LiteBIRD working group >70 members, internaonal and interdisciplinary. KEK JAXA UC Berkeley Kavli IPMU MPA NAOJ Y. Chinone H. Fuke W. Holzapfel N. Katayama E. Komatsu S. Kashima K. Haori I. Kawano A. Lee (US PI) H. Nishino K. Karatsu M. Hazumi (PI) H. Matsuhara P. Richards Tohoku Univ. T. Noguchi M. Hasegawa T. Matsumura A. Suzuki Yokohama Natl. K. Ishidoshiro Y. Sekimoto N. Kimura K. Mitsuda Y. Hori Univ. M. Haori H. Morii T. Nishibori T. Fujino T. Morishima NICT R. Nagata K. Nishijo McGill U. I. Irie Y. Uzawa Konan Univ. M. Dobbs K. Mizukami S. Oguri A. Noda I. Ohta N. Sato S. Sakai S. Nakamura RIKEN K. Natsume K. Koga T. Suzuki Y. Sato LBNL Saitama Univ. T. Yamashita S. Mima O. Tajima K. Shinozaki J. Borrill M. Naruse C. Otani T. Tomaru H. Sugita Osaka Pref. Univ. Univ. of Tsukuba Stanford U. H. Yamaguchi Y. Takei H. Ogawa M. Nagai T. Namikawa M. Yoshida S. Utsunomiya K. Kimura T. Wada X-ray M. Kozu Sokendai N. Yamasaki N. Okada CMB exp. (Berkeley, Y. Akiba T. Yoshida astrophysics M. Inoue KEK, McGill, Eiichiro) Y. Inoue K. Yotsumoto (JAXA) H. Ishitsuka NIFS Y. Segawa Okayama Univ. IR astronomy S. Takada H. Watanabe H. Ishino (JAXA) A. Kibayashi Superconductivity detector Osaka Univ. Y. Kibe (Berkeley, Okayama, KEK, S. Takakura Y. Yamada JAXA engineering NAOJ, Riken etc.) December 3, 2014 SE office, MDSG 5 Mission design parameters The mission sensi6vity relies on a few key parameters. Angular resolu6on Science goal 90° 10° 2° 1° 0.2° Power Law 101 Chaotic (p=1) SSB (Ne=47-62) Chaotic (p=0.1) 100 LiteBIRD Requirements ] -1 2 10 K µ ) [ 10-2 r=0.1 /(2 l BB Primordial B-mode -3 r=0.01 Tradeoffs 10 l(l+1)C 10-4 r=0.001 10-5 Summary 10-6 LiteBIRD sensi(vity 2 10 25 50 100 250 500 10001500 Array sensi6vity multipole, l Sky coverage M. Hazumi et al. 2012 • Foreground subtrac6on: Observing frequency and the sensi6vity at each band • Array sensi6vity: Op6cal system and detectors • Angular coverage: Op6cal system December 3, 2014 • Full sky observaon: Orbit and Scan strategy 6 Observing frequency range N. Katayama and E. Komatsu (ApJ 737, 78 (2011), arXiv:1101.5210) employed the “the pixel-based polarized foreground removal using template method” and survey the proper observing frequency range: à ≥ 5 bands in 50-270GHz Avoid CO lines! WMAP 23GHz • Place 6 bands at 60, 78, 100, 140, 195, 280 GHz. Δν/ν=0.23 per band • Avoid CO lines. Δν/ν=0.3 per band December 3, 2014 Planck2014@Ferrara, Italy 7 Foreground subtraC(on exerCise using a template method with 6 bands We apply the template method to the Planck sky model (Dust polarizaon frac6on is set to be ×3) using the 6 bands, and test the recovery of tensor-to- scalar rao, r. Use l <47 and fsky of 50%. Method II: Δ-template with uniform β distribu(on Method II’: Δ-template with a prior in β distribu(on Method III: itera(ve Δ-template recover recover r rin December 3, 2014 Planck2014@Ferrara, Italy Natsume et al. in prep. 8 Observing frequency range Auer the Planck CMB polarizaon data are released, we will revisit to this op6mizaon with Planck data. Avoid CO lines! WMAP 23GHz • In case of a need for more bands, we have an op6on to vary the band center Δν/ν=0.23 per band for each detector and increase the number of bands effec6vely while keeping the detector count constant. Δν/ν=0.3 per band • We have a room to place a band < 60 GHz and > 280 GHz. December 3, 2014 Planck2014@Ferrara, Italy 9 Observing frequency range Auer the Planck CMB polarizaon data are released, we will revisit to this op6mizaon with Planck data. Avoid CO lines! WMAP 23GHz • In case of a need for more bands, we have an op6on to vary the band center Δν/ν=0.23 per band for each detector and increase the number of bands effec6vely while keeping the detector count constant. Δν/ν=0.3 per band • We have a room to place a band < 60 GHz and > 280 GHz. December 3, 2014 Planck2014@Ferrara, Italy 10 Opcal system Modified cross-Dragone op6cal system achieves - Beam size of <1 deg for > 70 GHz the compact and telecentric wide field of view. - Wide field of view ±15 degs The ground based CMB experiment, ABS, GroundBIRD, QUIET, - Size(<〜φ2m×t2m) employs this type of op6cal system. - Telecentric focal plane - Low sidelobe performance - Beam calibraon capability GRASP10 simulaons at 60GHz. A simple baffle at aperture can suppress most of the sidelobe. December 3, 2014 Planck2014@Ferrara, Italy 11 Opcal system Modified cross-Dragone op6cal system achieves - Beam size of <1 deg for > 70 GHz the compact and telecentric wide field of view. - Wide field of view ±15 degs The ground based CMB experiment, ABS, GroundBIRD, QUIET, - Size(<〜φ2m×t2m) employs this type of op6cal system. - Telecentric focal plane - Low sidelobe performance - Beam calibraon capability GRASP10 simulaons at 60GHz. A simple baffle at aperture can suppress most of the sidelobe. The primary and secondary mirrors and baffles are ac6vely cooled by the Srling and JT cooler at 4 K (warm launch). December 3, 2014 Planck2014@Ferrara, Italy 12 Detector and readout • Sensi6vity:Op6cal NEP = 2 ×10-18 W/√Hz • Broad frequency coverage:~50 – 300 GHz • Mul6-pixel array: ~2000 • High yield • Low power consump6on (< 100W total) • Controlled sidelobe at a feed • High TRL Transi6on edge sensor (TES) bolometer Microwave kine6c inductance detector (MKID) Example from POLARBEAR focal plane Example of MKID from NAOJ. PB-1 NEP 〜 6×10-18 W/√Hz 1274 TESs with 80% yield. Single band at 200GHz NET per array: 23 μK√s MUX=600 PB-2 More examples from 2 bands/pixel(95,150GHz) JPL, SRON and others. 7588 TESs (1897×2pol×2band) Z. Kermish Ph.D. thesis Readout is DfMUX with UC Berkeley MUX=40 by McGill Univ. K. Karatsu et al. 2013 High TRL by the use in various CMB experiments. Ajrac6ve features and rapid progress in the MKID Need space qualified low loading TES and low power development. Poten6al candidate for a future consump6on readout. mission in next a few years. Both TES and MKID are exposed to the proton beams (10 years eq. at L2). They are in the process of measuring the effect. Planck2014@Ferrara, Italy 13 FoCal plane design with TES op(ons tri-chroic(140/195/280GHz) The sensivity with this focal plane UC Berkeley TES op(on configuraon is opmized based on the mapping speed. tri-chroic(60/78/100GHz) Bath temperature of 100mK • The readout is based on the DfMUX (64 mux) that is employed by POLARBEAR (40 mux). • The power consump6on from the readout electronics is 62 W (2W per SQUID). The space qualified DfMUX system is under developing at Univ. of McGill. December 3, 2014 Planck2014@Ferrara, Italy 14 T. Matsumura et al. 2013 Scan strategy at L2 Sun • JAXA H2 rocket compable • 3 years of observaons Precession angle β Spin angle α An6-sun direcon December 3, 2014 Planck2014@Ferrara, Italy 15 SystemaC effeCts BB • Systemac effects (require each effect is below 1/100 of lensing Cl ) Type EffeCt ReQuirement in ReQuirement in Note bias Case random case Diff. gain 0.01% 0.3 % Instantaneous Diff. Beam width 0.7% 2 % FP average ease them by (up to) Diff. beam poin6ng 3.5 arcsec. 16 arcsec. an order of magnitude. Diff. beam ellip6city 7% @ ell=2 2.7 % Differen6al effect (False polarizaon) 0.04% @ ell=300 Poin6ng knowledge 6 arcmin. 25 arcmin. 20 degs.×30 degs FOV Abs. gain Parity preserved 3% Calibraon in every 10 min. Beam size stability Parity preserved O(10%) (Paern modulaon) Non. Differen6al effect Angle calibraon 1 arcmin. 12 degs. December 3, 2014 Planck2014@Ferrara, Italy Table from R. Nagata 16 Scan strategy LiteBIRD Robust to large angular scale Higher crosslink and robust to signal (low l) with given 1/f noise. the polarizaon systemacs. Scan path We choose (α、β)=(65,30)degs in order to op6mize the crosslink, i.e. minimize the required abs. poin6ng error.
Recommended publications
  • The Q/U Imaging Experiment (QUIET): the Q-Band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller
    The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2010 c 2010 Laura Newburgh All Rights Reserved Abstract The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Phase I of the Q/U Imaging ExperimenT (QUIET) measures the Cosmic Microwave Background polarization anisotropy spectrum at angular scales 25 1000. QUIET has deployed two independent receiver arrays. The 40-GHz array took data between October 2008 and June 2009 in the Atacama Desert in northern Chile. The 90-GHz array was deployed in June 2009 and observations are ongoing. Both receivers observe four 15◦ 15◦ regions of the sky in the southern hemisphere that are expected × to have low or negligible levels of polarized foreground contamination. This thesis will describe the 40 GHz (Q-band) QUIET Phase I instrument, instrument testing, observations, analysis procedures, and preliminary power spectra. Contents 1 Cosmology with the Cosmic Microwave Background 1 1.1 The Cosmic Microwave Background . 1 1.2 Inflation . 2 1.2.1 Single Field Slow Roll Inflation . 3 1.2.2 Observables . 4 1.3 CMB Anisotropies . 6 1.3.1 Temperature . 6 1.3.2 Polarization . 7 1.3.3 Angular Power Spectrum Decomposition . 8 1.4 Foregrounds . 14 1.5 CMB Science with QUIET . 15 2 The Q/U Imaging ExperimenT Q-band Instrument 19 2.1 QUIET Q-band Instrument Overview .
    [Show full text]
  • CMB S4 Stage-4 CMB Experiment
    Cosmic Microwave Background past and future June 3rd, 2016 28th Rencontres de Blois Akito KUSAKA Lawrence Berkeley National Laboratory Light New TeV Particle? Higgs 5th force? Yukawa Inflation n Dark Dark Energy 퐵 /퐵 Matter My summary of “Snowmass Questions” 2014 2.7K blackbody What is CMB? Light from Last Scattering Surface LSS: Boundary between plasma and neutral H COBE/FIRAS Mather et. al. (1990) Planck Collaboration (2014) The Universe was 1100 times smaller Fluctuations seeding “us” 2015 Planck Collaboration (2015) Wk = 0 0.005 (w/ BAO) Gaussian Planck Collaboration (2014) Polarization Quadrupole anisotropy creates linear polarization via Thomson scattering http://background.uchicago.edu/~whu/polar/webversion/polar.html Polarization – E modes and B modes E modes: curl free component 푘 B modes: divergence free component 푘 CMB Polarization Science Inflation / Gravitational Waves Gravitational Lensing / Neutrino Mass Light Relativistic Species And more… B-mode from Inflation It’s about the stuff here A probe into the Early Universe Hot High Energy ~3000K (~0.25eV) Photons 1016 GeV ? ~1010K (~1MeV) Neutrinos Gravitational waves Sound waves Source of GW? : inflation Inflation › Rapid expansion of universe Quantum fluctuation of metric during inflation › Off diagonal component (T) primordial gravitational waves Unique probe into gravity quantum mechanics connection Ratio to S (on-diagonal): r=T/S Lensing B-mode Deflection by lensing (Nearly) Gaussian Non-Gaussian (Nearly) pure E modes Non-zero B modes It’s about the stuff here Lensing B-mode Abazajian et. al. (2014) Deflection by lensing (Nearly) Gaussian Non-Gaussian (Nearly) pure E modes Non-zero B modes Accurate mass measurement may resolve neutrino mass hierarchy.
    [Show full text]
  • Muse: a Novel Experiment for CMB Polarization Measurement Using Highly Multimoded Bolometers
    The Atacama B-mode Search Status and Prospect CMB 2013 June 11th, 2013, Okinawa, Japan Akito Kusaka (Princeton University) for ABS Collaboration Before starting my talk… Atmosphere is unpolarized ABS (Atacama B-mode Search) Princeton, Johns Hopkins, NIST, UBC, U. Chile What is ABS? Ground based CMB polarization (with T sensitivity) Angular scale: l~100(~2), B-mode from GW TES bolometer at 150 GHz › 240 pixel / 480 bolometers › ~80% of channels are regularly functional › NEQ ~ 30 mKs (w/ dead channels, pol. efficiency included) Unique Systematic error mitigation › Cold optics › Continuously rotating half-wave plate Site Chile, Cerro Toco › ~5150 m. › Extremely low moisture › Year-round access › Observing throughout the year › And day and night ACT, ABS, PolarBear, CLASS Cerro Chajnantor 5612 m (5150 m) Cerro Toco 5600 m TAO, CCAT Google Earth / Google Map / Google Earth 1 km APEX QUIET, CBI ALMA (5050 m) ASTE & NANTEN2 (4800 m) Possible combined analysis among CMB experiments Many figures / pictures are from theses of ABS instrument T. Essinger-Hileman and J. W. Appel (+ K. Visnjic and L. P. Parker soon) Optics 4 K cooled side-fed Dragone dual reflector. ~60 cm diameter mirrors. 25 cm aperture diameter. Optics Aperture The optics maximize throughput for small aperture 12 radius field of view Good image quality across the wide field of view ABS focal plane Feedhorn coupled Focal plane ~300 mK Polarization sensitive TES Ex TES Inline filter OMT Ey TES 1.6 mm 5 mm ~30 cm Fabricated at NIST Focal Plane Elements Individually machined
    [Show full text]
  • Wide-Survey of the QUIJOTE CMB Experiment Presented By: Federica Guidi (IAC, ULL), on Behalf of the QUIJOTE Collaboration
    Wide-survey of the QUIJOTE CMB experiment Presented by: Federica Guidi (IAC, ULL), on behalf of the QUIJOTE collaboration. I present the status and the recent results of the QUIJOTE (Q-U-I JOint TEnerife) experiment. QUIJOTE is a project that operates from the Teide Observatory, with the aim to characterize the emission of the galactic foregrounds at microwave wavelengths, and to study the polarization of the Cosmic Microwave Background, targeting the detection of the primordial gravitational waves, the so called ”B-modes”, down to a value of the tensor to scalar ratio of r = 0.05. Recently, one of the two instruments of QUIJOTE, the Multi Frequency Instrument (MFI), concluded a wide-survey campaign, during which we observed the full northern sky, at 11, 13, 17 and 19 GHz. The wide survey maps of QUIJOTE will be delivered soon to the community. Here I present the current status of the maps, and I summarize few scientific results related to them, with special emphasis on the low frequency Galactic foregrounds, such as the Synchrotron and the Anomalous Microwave Emission. XIV.0 Reunión Científica 13-15 julio 2020 Context of the research: QUIJOTE: a polarimetric CMB experiment for the characterization of the low frequency galactic foregrounds ● CMB polarization experiments are searching for the polarization pattern imprinted by primordial gravitational waves: the “B-modes”. ● QUIJOTE is a polarimetric CMB experiment installed at the Teide observatory since 2012. ● QUIJOTE extends the Planck and WMAP coverage to low frequency, with two instruments: ○ Multi Frequency Instrument (MFI): 11, 13, 17, 19 GHz; ○ Thirty and Forty GHz Instrument (TFGI): Q Q Q Q J J 30-40 GHz.
    [Show full text]
  • Delft University of Technology Groundbird Observation of CMB
    Delft University of Technology GroundBIRD Observation of CMB Polarization with a Rapid Scanning and MKIDs Nagasaki, T.; Choi, J.; Génova-Santos, R. T.; Karatsu, K.; Lee, K.; Naruse, M.; Suzuki, J.; Taino, T.; Tomita, N.; More Authors DOI 10.1007/s10909-018-2077-y Publication date 2018 Document Version Accepted author manuscript Published in Journal of Low Temperature Physics Citation (APA) Nagasaki, T., Choi, J., Génova-Santos, R. T., Karatsu, K., Lee, K., Naruse, M., Suzuki, J., Taino, T., Tomita, N., & More Authors (2018). GroundBIRD: Observation of CMB Polarization with a Rapid Scanning and MKIDs. Journal of Low Temperature Physics, 193(5-6), 1066-1074. https://doi.org/10.1007/s10909-018- 2077-y Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) GroundBIRD - Observation of CMB polarization with a rapid scanning and MKIDs T.
    [Show full text]
  • Kinetic Inductance Detectors for the OLIMPO Experiment: In–Flight Operation and Performance
    Prepared for submission to JCAP Kinetic Inductance Detectors for the OLIMPO experiment: in–flight operation and performance S. Masi,a;b;1 P. de Bernardis,a;b A. Paiella,a;b F. Piacentini,a;b L. Lamagna,a;b A. Coppolecchia,a;b P. A. R. Ade,c E. S. Battistelli,a;b M. G. Castellano,d I. Colantoni,d;e F. Columbro,a;b G. D’Alessandro,a;b M. De Petris,a;b S. Gordon, f C. Magneville,g P. Mauskopf, f;h G. Pettinari,d G. Pisano,c G. Polenta,i G. Presta,a;b E. Tommasi,i C. Tucker,c V. Vdovin,l;m A. Volpei and D. Yvong aDipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy bIstituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le A. Moro 2, 00185 Roma, Italy cSchool of Physics and Astronomy, Cardiff University, Cardiff CF24 3YB, UK dIstituto di Fotonica e Nanotecnologie - CNR, Via Cineto Romano 42, 00156 Roma, Italy ecurrent address: CNR-Nanotech, Institute of Nanotechnology c/o Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185, Roma, Italy f School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA gIRFU, CEA, Université Paris-Saclay, F-91191 Gif sur Yvette, France hDepartment of Physics, Arizona State University, Tempe, AZ 85257, USA iItalian Space Agency, Roma, Italy lInstitute of Applied Physics RAS, State Technical University, Nizhnij Novgorov, Russia mASC Lebedev PI RAS, Moscow, Russia E-mail: [email protected] Abstract. We report on the performance of lumped–elements Kinetic Inductance Detector (KID) arrays for mm and sub–mm wavelengths, operated at 0:3 K during the stratospheric flight of the OLIMPO payload, at an altitude of 37:8 km.
    [Show full text]
  • Beyondplanck VI. Noise Characterization and Modelling
    Astronomy & Astrophysics manuscript no. noise_paper ©ESO 2020 November 16, 2020 BeyondPlanck VI. Noise characterization and modelling H. T. Ihle11?, M. Bersanelli4; 9; 10, C. Franceschet4; 10, E. Gjerløw11, K. J. Andersen11, R. Aurlien11, R. Banerji11, S. Bertocco8, M. Brilenkov11, M. Carbone14, L. P. L. Colombo4, H. K. Eriksen11, J. R. Eskilt11, M. K. Foss11, U. Fuskeland11, S. Galeotta8, M. Galloway11, S. Gerakakis14, B. Hensley2, D. Herman11, M. Iacobellis14, M. Ieronymaki14, H. T. Ihle11, J. B. Jewell12, A. Karakci11, E. Keihänen3; 7, R. Keskitalo1, G. Maggio8, D. Maino4; 9; 10, M. Maris8, A. Mennella4; 9; 10, S. Paradiso4; 9, B. Partridge6, M. Reinecke13, M. San11, A.-S. Suur-Uski3; 7, T. L. Svalheim11, D. Tavagnacco8; 5, H. Thommesen11, D. J. Watts11, I. K. Wehus11, and A. Zacchei8 1 Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A. 2 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, U.S.A. 3 Department of Physics, Gustaf Hällströmin katu 2, University of Helsinki, Helsinki, Finland 4 Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, Milano, Italy 5 Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, Trieste, Italy 6 Haverford College Astronomy Department, 370 Lancaster Avenue, Haverford, Pennsylvania, U.S.A. 7 Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University of Helsinki, Helsinki, Finland 8 INAF - Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, Trieste, Italy 9 INAF-IASF Milano, Via E. Bassini 15, Milano, Italy 10 INFN, Sezione di Milano, Via Celoria 16, Milano, Italy 11 Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway 12 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, U.S.A.
    [Show full text]
  • Measuring the Polarization of the Cosmic Microwave Background
    Measuring the Polarization of the Cosmic Microwave Background CAPMAP and QUIET Dorothea Samtleben, Kavli Institute for Cosmological Physics, University of Chicago Outline Theory point of view Ø What can we learn from the Cosmic Microwave Background (CMB)? Ø How to characterize and describe the CMB Ø Why is the CMB polarized? Experiment point of view Ø CMB polarization experiments Ø CAPMAP experiment, first results Ø Future of CMB measurements Ø QUIET experiment, status and plans Where does the CMB come from? Ø Temperature cool enough that electrons and protons form first atoms => The universe became transparent Ø Photons from that ‘last scattering surface’ give direct snapshot of the infant universe Ø Still around today but cooled down (shifted to microwaves) due to expansion of the universe CMB observations Interstellar CN absorption lines 1941! Accidental discovery 1965 Blackbody Radiation, homogenous, isotropic DT £ (1- 3)x10-3 (Partridge & Wilkinson, 1967) WHY? T Rescue by Inflationary models Inflation increases volume of universe by 1063 in 10-30 seconds Consequences (observables) for CMB: Ø Homogenous, isotropic blackbody radiation Ø Scale-invariant temperature fluctuations Ø On small scales (within horizon) temperature fluctuations from ‘accoustic oscillations’ (radiation pressure vs gravitational attraction) Ø Polarization anisotropies, correlated with temperature anisotropies Ø Gravitational waves, produced by inflation, cause distinct pattern in CMB polarization anisotropy Ø Reionization period will impact the fluctuation pattern
    [Show full text]
  • The Large Scale Polarization Explorer (LSPE) for CMB Measurements: Performance Forecast
    Prepared for submission to JCAP The large scale polarization explorer (LSPE) for CMB measurements: performance forecast The LSPE collaboration G. Addamo,a P. A. R. Ade,b C. Baccigalupi,c A. M. Baldini,d P. M. Battaglia,e E. S. Battistelli, f;g A. Baù,h P. de Bernardis, f;g M. Bersanelli,i; j M. Biasotti,k;l A. Boscaleri,m B. Caccianiga, j S. Caprioli,i; j F. Cavaliere,i; j F. Cei, f;n K. A. Cleary,o F. Columbro, f;g G. Coppi,p A. Coppolecchia, f;g F. Cuttaia,q G. D’Alessandro, f;g G. De Gasperis,r;s M. De Petris, f;g V. Fafone,r;s F. Farsian,c L. Ferrari Barusso,k;l F. Fontanelli,k;l C. Franceschet,i; j T.C. Gaier,u L. Galli,d F. Gatti,k;l R. Genova-Santos,t;v M. Gerbino,D;C M. Gervasi,h;w T. Ghigna,x D. Grosso,k;l A. Gruppuso,q;H R. Gualtieri,G F. Incardona,i; j M. E. Jones,x P. Kangaslahti,o N. Krachmalnicoff,c L. Lamagna, f;g M. Lattanzi,D;C M. Lumia,a R. Mainini,h D. Maino,i; j S. Mandelli,i; j M. Maris,y S. Masi, f;g S. Matarrese,z A. May,A L. Mele, f;g P. Mena,B A. Mennella,i; j R. Molina,B D. Molinari,q;E;C;D G. Morgante,q U. Natale,C;D F. Nati,h P. Natoli,C;D L. Pagano,C;D A. Paiella, f;g F.
    [Show full text]
  • European Cosmic Microwave Background Studies: Context and Roadmap
    European Cosmic Microwave Background Studies: Context and Roadmap A list of contributors can be found in the appendix. September 17, 2018 Contents 1 Introductory Summary 1 2 Science 1 3 Experimental Landscape 2 4 Proposed Roadmap 5 1 Introductory Summary Figure 1: Constraints on parameters of the base-ΛCDM The Cosmic Microwave Background has been one of the model from the separate Planck EE, TE, and TT high- primary drivers behind the advent of so-called precision l spectra combined with low-` polarization (lowE), and, cosmology. Europe in general, and the Planck Satellite in the case of EE also with BAO, compared to the joint in particular, has recently played a large role in the field. result using Planck TT,TE,EE+lowE. Parameters on the But as with any endeavor, planning and investment must bottom axis are sampled MCMC parameters with flat pri- be maintained in order to ensure that the European CMB ors, and parameters on the left axis are derived parameters −1 −1 community continues to thrive. The European CMB Co- (with H0 in km s Mpc ). Contours contain 68 % and ordinators have taken it upon themselves to proselytize for 95 % of the probability. From Planck Collaboration et al. such planning. With this Florence Process, we attempt to (2018) inventory the community's priorities and to clearly present them in order to help with resource prioritization. There are at least three broad CMB science axes, which 2 Science here we'll call the Primordial Universe, Large-Scale Struc- ture, and Spectroscopy. While we can do all these different While a satellite such as Planck, with an approximately things with the CMB, to do each well does take some spe- 1.7 m mirror and an orbit at the second Sun-Earth La- cialization and differentiation.
    [Show full text]
  • THE ATACAMA Cosi'vl0logy TELESCOPE: the RECEIVER and INSTRUMENTATION L2 D
    https://ntrs.nasa.gov/search.jsp?R=20120002550 2019-08-30T19:06:35+00:00Z CORE Metadata, citation and similar papers at core.ac.uk Provided by NASA Technical Reports Server THE ATACAMA COSi'vl0LOGY TELESCOPE: THE RECEIVER AND INSTRUMENTATION L2 D. S. SWETZ , P. A. R. ADE\ j'vI. A !\fIRrl, J. \V'. ApPEL" E. S. BATTISTELLlfi,j, B. BURGERI, J. CHERVENAK', 2 lVI. J. DEVLIN], S. R. DICKER]. \V. B. DORIESE , R. DUNNER', T. ESSINGER-HILEMAN'. R. P. FISHER:', J. \V. FOWLER'. 4 2 1 lVI. HALPERN ,!.VI. HASSELFIELD4, G. C. HILTON , A. D. HINCKS\ K. D. IRWIN2. N. JAROSIK', M. KAlIL', J. KLEIN , . ull 11 I2 l l u 1 J. J\1. LAd "" M. LIMON , T. A. l'vIARRIAGE . D. MARSDEN , K. J\IARTOCCI : , P. J\IAUSKOPF: , H. MOSELEY', I4 2 C. B. NETTERFIELD , J\1. D. NIEMACK " l'vI. R. NOLTA ,L. A. PAGE". L. PARKER'. S. T. STAGGS", O. STRYZAK', 1 U jHi E. R. SWlTZER : , R. THORNTON • C. TUCKER'], E. \VOLLACK', Y. ZHAO" Draft version July 5, 2010 ABSTRACT The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instru­ ment is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz.
    [Show full text]
  • The QUIJOTE Experiment and Other CMB Projects at the Teide Observatory José Alberto Rubiño-MarN (IAC), on Behalf of the QUIJOTE CollaboraOn
    The QUIJOTE experiment and other CMB projects at the Teide Observatory José Alberto Rubiño-Mar3n (IAC), on behalf of the QUIJOTE Collaboraon 4th ASI/COSMOS workshop 4-5 MarCh 2019 Teide Observatory • Altitude: 2.400 m (Tenerife) • Longitude: 16º 30’ W • Latitude: 28º 17’ N • Typical PWV: 3 mm, and below 2mm during 20% of time. • High stability of the atmosphere. • Good weather: 90% • Long history of CMB experiments since mid 80s. Tenerife experiment 10, 15, 33 GHz The Very Small Array 30GHz COSMOSOMAS 11, 13, 15, 17 GHz Teide Observatory (Tenerife) (* = in operations) The QUIJOTE experiment QT-1 and QT-2: Cross-Dragone telescopes, 2.25m primary, 1.9m secondary. QT-1. Instrument: MFI. QT-2. Instruments: TGI & FGI 11, 13, 17, 19 GHz. 30 and 40 GHz. FWHM=0.92º-0.6º FWHM=0.37º-0.26º In operations since 2012. In operations since 2016. MFI Instrument (10-20 GHz) v In operations since Nov. 2012. v 4 horns, 32 channels. Covering 4 frequency bands: 11, 13, 17 and 19 GHz. v Sensitivities: ~400-600 µK s1/2 per channel. v MFI upgrade (MFI2). Funds secured. Aim: to inCrease the integraon speed by a factor of 3. LNA Polar Modulators 16-20 GHz 26-34 GHz OMT 10-14 GHz TGI (30 GHz) and FGI (40GHz) instruments v TGI: 31 pixels at 30GHz. Measured sensitivity: 50 µK s1/2 for the full array. First light May 12th 2016. v FGI: 31 pixels at 40GHz. Expected sensitivity: 60 µK s1/2 for the full array. In commisioning phase. v Joint comissioning started in 2018.
    [Show full text]