<<

LiteBIRD Lite(Light) satellite for the studies for B-mode polarizaon and Inflaon from cosmic background Radiaon Detecon

Tomotake Matsumura (ISAS/JAXA) on behalf of LiteBIRD working group 2014/12/1-5, PLANCK2014, Ferrara Exploraon of early Universe using CMB satellite

COBE (1989) WMAP (2001) (2009) Band 32−90GHz 23−94GHz 30−857GHz (353GHz)

Detectors 6 radiometers 20 radiometers 11 radiometers + 52 bolometers

Operaon temperature 300/140 K 90 K 100 mK

Angular Resoluno ~7° ~0.22° ~0.1°

Orbit Sun Synch L2 L2

December 3, 2014 Planck2014@Ferrara, Italy 2 Exploraon of early Universe using CMB satellite

Next generation B-mode probe

COBE (1989) WMAP (2001) Planck (2009) Band 32−90GHz 23−94GHz 30−857GHz (353GHz) EE Detectors 6 radiometers 20 radiometers 11 radiometers + 52 bolometers

Operaon temperature 300/140 K 90 K 100 mK

Angular Resoluno ~7° ~0.22° BB ~0.1°

Orbit Sun Synch L2 L2

December 3, 2014 Planck2014@Ferrara, Italy 3 LiteBIRD

LiteBIRD is a next generaon CMB polarizaon satellite to probe the inflaonary Universe. The science goal of LiteBIRD is to measure the tensor-to-scalar rao with the sensivity of δr =0.001.

The design philosophy is driven to focus on the primordial B-mode signal.

Primordial B-mode r = 0.2 Lensing B-mode

r = 0.025

Plot made by Y. Chinone December 3, 2014 Planck2014@Ferrara, Italy 4 LiteBIRD working group >70 members, internaonal and interdisciplinary. KEK JAXA UC Berkeley Kavli IPMU MPA NAOJ Y. Chinone H. Fuke W. Holzapfel N. Katayama E. Komatsu S. Kashima K. Haori I. Kawano A. Lee (US PI) H. Nishino K. Karatsu M. Hazumi (PI) H. Matsuhara P. Richards Tohoku Univ. T. Noguchi M. Hasegawa T. Matsumura A. Suzuki Yokohama Natl. K. Ishidoshiro Y. Sekimoto

N. Kimura K. Mitsuda Y. Hori Univ. M. Haori H. Morii T. Nishibori T. Fujino T. Morishima NICT R. Nagata K. Nishijo McGill U. I. Irie Y. Uzawa Konan Univ. M. Dobbs K. Mizukami S. Oguri A. Noda I. Ohta N. Sato S. Sakai S. Nakamura RIKEN K. Natsume K. Koga T. Suzuki Y. Sato LBNL Saitama Univ. T. Yamashita S. Mima O. Tajima K. Shinozaki J. Borrill M. Naruse C. Otani T. Tomaru H. Sugita Osaka Pref. Univ. Univ. of Tsukuba Stanford U. H. Yamaguchi Y. Takei H. Ogawa M. Nagai T. Namikawa M. Yoshida S. Utsunomiya K. Kimura T. Wada X-ray M. Kozu Sokendai N. Yamasaki N. Okada CMB exp. (Berkeley, Y. Akiba T. Yoshida astrophysics M. Inoue KEK, McGill, Eiichiro) Y. Inoue K. Yotsumoto (JAXA) H. Ishitsuka NIFS Y. Segawa Okayama Univ. IR S. Takada H. Watanabe H. Ishino (JAXA) A. Kibayashi Superconductivity detector Osaka Univ. Y. Kibe (Berkeley, Okayama, KEK, S. Takakura Y. Yamada JAXA engineering NAOJ, Riken etc.) December 3, 2014 SE office, MDSG 5 Mission design parameters The mission sensivity relies on a few key parameters. Angular resoluon Science goal 90° 10° 2° 1° 0.2° Power Law 101 Chaotic (p=1) SSB (Ne=47-62) Chaotic (p=0.1) 100 LiteBIRD Requirements

] -1 2 10 K µ ) [ 10-2 r=0.1 /(2 l

BB Primordial B-mode -3 r=0.01 Tradeoffs 10 l(l+1)C 10-4 r=0.001

10-5

Summary 10-6 LiteBIRD sensivity

2 10 25 50 100 250 500 10001500

Array sensivity multipole, l Sky coverage M. Hazumi et al. 2012 • Foreground subtracon: Observing frequency and the sensivity at each band • Array sensivity: Opcal system and detectors • Angular coverage: Opcal system December 3, 2014 • Full sky observaon: Orbit and Scan strategy 6 Observing frequency range

N. Katayama and E. Komatsu (ApJ 737, 78 (2011), arXiv:1101.5210) employed the “the pixel-based polarized foreground removal using template method” and survey the proper observing frequency range: à ≥ 5 bands in 50-270GHz

Avoid CO lines! WMAP 23GHz • Place 6 bands at 60, 78, 100, 140, 195, 280 GHz.

Δν/ν=0.23 per band • Avoid CO lines.

Δν/ν=0.3 per band

December 3, 2014 Planck2014@Ferrara, Italy 7 Foreground subtracon exercise using a template method with 6 bands We apply the template method to the Planck sky model (Dust polarizaon fracon is set to be ×3) using the 6 bands, and test the recovery of tensor-to-

scalar rao, r. Use l <47 and fsky of 50%.

Method II: Δ-template with uniform β distribuon Method II’: Δ-template with a prior in β distribuon Method III: iterave Δ-template recover recover r

rin December 3, 2014 Planck2014@Ferrara, Italy Natsume et al. in prep. 8 Observing frequency range

Aer the Planck CMB polarizaon data are released, we will revisit to this opmizaon with Planck data.

Avoid CO lines! WMAP 23GHz

• In case of a need for more bands, we have an opon to vary the band center Δν/ν=0.23 per band for each detector and increase the number of bands effecvely while keeping the detector count constant. Δν/ν=0.3 per band

• We have a room to place a band < 60 GHz and > 280 GHz.

December 3, 2014 Planck2014@Ferrara, Italy 9 Observing frequency range

Aer the Planck CMB polarizaon data are released, we will revisit to this opmizaon with Planck data.

Avoid CO lines! WMAP 23GHz

• In case of a need for more bands, we have an opon to vary the band center Δν/ν=0.23 per band for each detector and increase the number of bands effecvely while keeping the detector count constant. Δν/ν=0.3 per band

• We have a room to place a band < 60 GHz and > 280 GHz.

December 3, 2014 Planck2014@Ferrara, Italy 10 Opcal system

Modified cross-Dragone opcal system achieves - Beam size of <1 deg for > 70 GHz the compact and telecentric wide field of view. - Wide field of view ±15 degs The ground based CMB experiment, ABS, GroundBIRD, QUIET, - Size(<〜φ2m×t2m) employs this type of opcal system. - Telecentric focal plane - Low sidelobe performance - Beam calibraon capability

GRASP10 simulaons at 60GHz. A simple baffle at aperture can suppress most of the sidelobe.

December 3, 2014 Planck2014@Ferrara, Italy 11 Opcal system

Modified cross-Dragone opcal system achieves - Beam size of <1 deg for > 70 GHz the compact and telecentric wide field of view. - Wide field of view ±15 degs The ground based CMB experiment, ABS, GroundBIRD, QUIET, - Size(<〜φ2m×t2m) employs this type of opcal system. - Telecentric focal plane - Low sidelobe performance - Beam calibraon capability

GRASP10 simulaons at 60GHz. A simple baffle at aperture can suppress most of the sidelobe.

The primary and secondary mirrors and baffles are acvely cooled by the Srling and JT cooler at 4 K (warm launch). December 3, 2014 Planck2014@Ferrara, Italy 12 Detector and readout • Sensivity:Opcal NEP = 2 ×10-18 W/√Hz • Broad frequency coverage:~50 – 300 GHz • Mul-pixel array: ~2000 • High yield • Low power consumpon (< 100W total) • Controlled sidelobe at a feed • High TRL Transion edge sensor (TES) bolometer Microwave kinec inductance detector (MKID) Example from POLARBEAR focal plane Example of MKID from NAOJ. PB-1 NEP 〜 6×10-18 W/√Hz 1274 TESs with 80% yield. Single band at 200GHz NET per array: 23 μK√s MUX=600

PB-2 More examples from 2 bands/pixel(95,150GHz) JPL, SRON and others. 7588 TESs (1897×2pol×2band) Z. Kermish Ph.D. thesis Readout is DfMUX with UC Berkeley MUX=40 by McGill Univ. K. Karatsu et al. 2013 High TRL by the use in various CMB experiments. Aracve features and rapid progress in the MKID Need space qualified low loading TES and low power development. Potenal candidate for a future consumpon readout. mission in next a few years. Both TES and MKID are exposed to the proton beams (10 years eq. at L2). They are in the process of measuring the effect. Planck2014@Ferrara, Italy 13 Focal plane design with TES opons tri-chroic(140/195/280GHz) The sensivity with this focal plane

UC Berkeley TES opon configuraon is opmized based on the mapping speed.

tri-chroic(60/78/100GHz) Bath temperature of 100mK

• The readout is based on the DfMUX (64 mux) that is employed by POLARBEAR (40 mux). • The power consumpon from the readout electronics is 62 W (2W per SQUID). The space qualified DfMUX system is under developing at Univ. of McGill.

December 3, 2014 Planck2014@Ferrara, Italy 14 T. Matsumura et al. 2013 Scan strategy at L2 Sun • JAXA H2 rocket compable • 3 years of observaons Precession angle β

Spin angle α

An-sun direcon

December 3, 2014 Planck2014@Ferrara, Italy 15 Systemac effects BB • Systemac effects (require each effect is below 1/100 of lensing Cl )

Type Effect Requirement in Requirement in Note bias case random case Diff. gain 0.01% 0.3 % Instantaneous

Diff. Beam width 0.7% 2 % FP average ease them by (up to) Diff. beam poinng 3.5 arcsec. 16 arcsec. an order of magnitude. Diff. beam ellipcity 7% @ ell=2 2.7 % Differenal effect (False polarizaon) 0.04% @ ell=300

Poinng knowledge 6 arcmin. 25 arcmin. 20 degs.×30 degs FOV Abs. gain Parity preserved 3% Calibraon in every 10 min. Beam size stability Parity preserved O(10%) (Paern modulaon)

Non. Differenal effect Angle calibraon 1 arcmin. 12 degs.

December 3, 2014 Planck2014@Ferrara, Italy Table from R. Nagata 16 Scan strategy

LiteBIRD

Robust to large angular scale Higher crosslink and robust to signal (low l) with given 1/f noise. the polarizaon systemacs.

Scan path

We choose (α、β)=(65,30)degs in order to opmize the crosslink, i.e. minimize the required abs. poinng error. December 3, 2014 17 Scan and modulaon Galacc coordinate Boresight Solar radiaon

0.1RPM 30° 〜90min 65°

1year long Nhits map (10Hz sampling) using 370 detectors (i.e. single band detectors).

Rotate Incident light Extra protecon to the differenal systemacs can be migated by introducing the half-wave plate (HWP). Polarized detectors

The connuously rotang half-wave plate has been used Achromac HWP in the CMB polarizaon experiments, MAXIPOL, EBEX, T Q、U = Amp., phase ABS, POLARBEAR (stepped: , LSPE/SWIPE). out

The connuous rotaon of the HWP can modulate the polarized signal. This strengthen to the detector 1/f. θ(t) December 3, 2014 Planck2014@Ferrara, Italy 18 Schedule and project status

2014 2015 2016 2017 2018

Working group phase Pre-project Project Engineering model MDR SRR SDR

2019 2020 2021 2022 2023

Flight model Launch Observaons

• LiteBIRD is • currently in the feasibility study phase and preparing for a mission definition review. • selected as one of the prioritized projects in the master plan 2014 by Science Council of Japan. • chosen as one of ten new projects in MEXT Roadmap for Large-scale Research Projects. • Targeting the launch in early 2020s.

December 3, 2014 Planck2014@Ferrara, Italy 19 Summary

• LiteBIRD is a next generaon CMB polarizaon satellite to probe the inflaonary universe with a sensivity of δr<0.001.

• LiteBIRD WG is currently going through the feasibility study to prepare for the mission definion review.

December 3, 2014 Planck2014@Ferrara, Italy 20