<<

WIN2017; Astroparticle physics and cosmology

An Improved Measurement of the Cosmic Background B-mode Polarization Power Spectrum at Sub-Degree Scales with the POLARBEAR Experiment

23 Jun 2017 from 9:50AM to 10:10AM 1 POLARBEAR is a “Stage 2” CMB experiment

CMB-S4 Science Book (arXiv:1610.02743) 2 , Atacama POLARBEAR to Simons Array Atacama Cosmology CLASS (ACTPol to AdvACT)

South Pole BICEP-2/Keck Array/ BICEP-3 (SPTpol to SPT3G)

3 102 DASI QUaD CBI QUIET-Q MAXIPOL QUIET-W BOOMERanG BICEP1-3yr 101 CAPMAP BICEP2-3yr

) WMAP-9yr POLARBEAR 2 K µ 100 )( π

/ (2 10-1 BB `

C BICEP2 POLARBEAR

10-2 + 1) r=0.20 ⇥ ( ⇥ 10-3 March, 2014

10-4 10 100 1000 Multipole Moment, ell 4 102 DASI QUIET-Q CBI QUIET-W MAXIPOL BICEP1-3yr BOOMERanG ACTPol 1 10 CAPMAP BK14 ACTPol ) WMAP-9yr SPTpol

2 QUaD POLARBEAR K µ 100 )( π

/ (2 -1  10 SPTpol BB `

C POLARBEAR BK14 10-2 + 1) ⇥ (

⇥ r=0.07 10-3 2016-2017

10-4 10 100 1000 Multipole Moment, ell 5 102 DASI QUIET-W CBI BICEP1-3yr MAXIPOL ACTPol BOOMERanG BK14 101 CAPMAP SPTpol

) WMAP-9yr POLARBEAR

2 QUaD Simons Array QUIET-Q K µ 100 )( ⇡

/ (2 10-1 BB ` Simons C Array 10-2 + 1) ` ( ` 10-3 ~2020 r=0.01 10-4 10 100 1000 Multipole Moment, ell 6 7 POLARBEAR Collabora�on UC Berkeley UC San Diego KEK McGill University SISSA Shawn Beckman Kam Arnold Yoshiki Akiba Matt Dobbs Carlo Baccigalupi Darcy Barron Kevin Crowley Takaho Hamada Adam Gilbert Nicoletta Yuji Chinone Tucker Elleflot Masaya Hasegawa Josh Montgomery Krachmalnicoff Ari Cukierman George Fuller Masashi Hazumi Davide Poletti Tijmen de Haan Logan Howe Haruki Nishino Dalhousie Giuseppe Puglisi Neil Goeckner-Wald Yuuko Segawa Scott Chapman U Manchester John Groh David Leon Osamu Tajima Colin Ross Gabriele Coppi Charles Hill Lindsay Lowry Satoru Takakura Kaja Rotermund Andrew May William Holzapfel Frederick Matsuda Sayuri Takatori Alexei Tikhomirov Oliver Jeong Martin Navaroli Daiki Tanabe Lucio Piccirillo Adrian Lee Gabriel Rebeiz Takayuki Tomaru Lawrence U of Sussex Dick Plambeck Max Silva-Feaver Berkeley NL Julien Peloton U. Melbourne Chris Raum Praween Siritanasak Julian Borrill Christian Reichardt Paul Richards Grant Teply Reijo Keskitalo UC Irvine Aritoki Suzuki Calvin Tsai Federico Bianchini Theodore Kisner Chang Feng Anh Pham Ben Westbrook Alex Zahn Akito Kusaka Nathan Whitehorn Eric Linder Cardiff University Laboratoire Imperial College Alex Madurowicz Peter Ade Astroparticule & Andrew Jaffe Blake Sherwin CU Boulder Cosmologie Daisy Mak Raymond Tat NASA Goddard Nils Halverson Dominic Beck Nathan Miller Greg Jaehnig Josquin Errard Institute Kavli IPMU Argonne NL Hayley Roberts Maude Le Jeune D’Astrophysique Yuto Minami Amy Bender Radek Stompor Spatiale Nobuhiko Katayama Católica (PUC) Giulio Fabbian David Boettger Rolando Dunner And many more in years past… POLARBEAR Collaboration

9  Observing CMB polarization at the James Ax Observatory in in Northern Chile on at an altitude of 5,200m since

January 2012 Atacama

Chile Cerro Toco 5,200m

10 POLARBEAR since 2012 (deployed in 2011) 5,200m @ Atacama Desert, Chile 2yrs for small patches targeting lensing >3yrs for large patch targeting

11 Small patch Large patch for lensing B-mode w/ HWP Time nd rd (hours) 1st season 2 3 season 10000 season 8000 6000 4000

2000 Note: Included time for calibration 0 2012/07 2013/07 2014/07 2015/06 1st BB result st  Previous results just come from 1 season data set nd  60% more data by adding 2 season  Observing a larger patch for inflationary science 12 rd  23 Dec, 2013: Detection of lensing by POLARBEAR x CIB rd  23 Dec, 2013: Detection of lensing by POLARBEAR w/ 4pt th  10 Mar, 2014: Measurement of lensing B modes by POLARBEAR w/ 2pt th  9 Sep, 2015: Constraint on Cosmic birefringence & Primordial magnetic field by POLARBEAR

4.0σ

4.2σ

97.2% →4.7σ(comb.)

13 CMB 3.5 m Guard ring Primary mirror CMB

“pixel” (637)

Receiver 23 uK √s

(not seen)  1274 TES (Transition-edge sensor) bolometers Secondary mirror  Superconducting detector cooled (not seen) down to 250mK 14 Intensity Dec=90 Total area: ~25 deg2 (FDS Dust Map)

RA12 RA=0 RA=-180

RA23 RA4.5

select low dust region 15 Calibration/Data Selection

Filtering/Map-making

5000 ) 2 4000

3000 /(2  ) ( µ K l

2000 Power Spectrum Estimation l(l+1)C 1000

0 500 1000 1500 2000 2500 Multipole Moment, ell

Cosmological parameters

16 Calibration/Data Selection

Filtering/Map-making

Confirm analysis before unveiling the power spectra Data/Analysis Validation ➡ “Null test” & Systematic Error Estimation Power Spectrum Estimation

Cosmological parameters

17  Null test is a powerful tool to detect hidden bias  Divide data into 2 subsets, make maps, difference them map0 map1 null map

- =

(CMB+Noise1) - (CMB+Noise2) = Noise  Calculate “null” power spectrum  If no systematic, “null” spectrum is really null, but…  Calculating for several interesting splits of the data

18  1st_season_vs_2nd_season  1st_half_vs_2nd_half  high_gain_ces_vs_low_gain_ces 9 different  high_elevation_vs_low_elevation combinations  rising_vs_setting of CES’s  high_pwv_vs_low_pwv  far_from_sun_vs_close_to_sun  far_from_moon_vs_close_to_moon  sun_above_horizon_vs_sun_below_horizon 2 different  left_going_scan_vs_right_going_scan splits of FP  q_pixels_vs_u_pixels & L/R scans  left_side_pixels_vs_right_side_pixels 19 BB “null” spectrum

size of cosmological signal

20  Null test is a powerful tool to detect hidden bias  Divide data into 2 subsets, make maps, difference them map0 map1 null map

- =

(CMB+Noise1) - (CMB+Noise2) = Noise

 POLARBEAR successfully passed 12 null tests No evidence for systematic contamination & miscalibration in the POLARBEAR data set & analysis 21  Estimate all possible systematic bias by instrument & foreground which could affect B-mode measurement

B-mode we want to measure

Systematic biases from 9 sources e.g. pointing error, beam error, angle error, analysis technique, and foreground

Confirmed all systematics are much smaller than B-mode 22  Dust & synchrotron are estimated by 353 GHz & 30 GHz & WMAP K-band polarization maps

 extrapolation of angular scales from ell=80 to us

 extrapolation of frequency to us

 contamination consistent w/ zero, but dominated by noise in the Planck polarization data at POLARBEAR scales

 Dusty & radio galaxies  Set of simulated galaxies with distribution, intensity and polarization fraction modeled after observation (De Zotti et al, 2005; George et al, 2015; Bonavera et al, 2017) 23  Two independent pipelines performed TOD into maps & power spectrum estimate

Pipeline A

Pipeline B

24 6000 TT 0.6 Pipeline A Pipeline A 4000 Pipeline B Pipeline B 2000

) 0.4 0 2

40 EE K µ 30 )(

20 ⇡ 0.2

10 / (2 ) 2

K 0 BB µ 100 TE ` C )( 50 0 ⇡ 0 / (2 ` + 1)

C -50 `

-100 ( ` + 1) -0.2 `

( 4 TB ` 2

0 -2 -0.4 -4 0 500 1000 1500 2000 2500 0.6 EB Multipole Moment, 0.4 ` 0.2 We reject the null hypothesis ofno B-mode polarization 0 at a confidence of 3.1σ -0.2 -0.4 including both statistical and systematic uncertainties. -0.6 +0.26 +0.00 0 500 1000 1500 2000 2500 AL =0.60 0.24(stat) 0.04(inst) 0.14(fg) 0.04(multi) Multipole Moment, ` − − ± ± 25 102 DASI QUIET-W CBI BICEP1-3yr MAXIPOL ACTPol BOOMERanG BK14 101 CAPMAP SPTpol

) WMAP-9yr POLARBEAR

2 QUaD Simons Array QUIET-Q K µ 100 )( ⇡

/ (2 10-1 BB ` C

10-2 + 1) ` ( ` 10-3

r=0.01 10-4 10 100 1000 Multipole Moment, ell  POLARBEAR successfully measured B modes @ high ell (small angular scales)  How about low ell (large angular scales) for inflationary B modes?  Actually satellite or only small telescope have measured large angular scales  Must demonstrate a large telescope can also measure large angular

scales ⇨ demonstration of “1/f noise” mitigation by POLARBEAR! 26 improvement from a few 100 mHz to ~32 mHz

 With Continuously rotation half-wave plate (HWP), -6 10 successfully removed atmospheric correlated signal No Correlation  w/ atmosphere Validated modulation by HWP would be able to mitigate 1/f noise & the residual would be level of r<0.01

knee=32 mHz (l~39) arXiv:1702.07111 S. Takakura et. al. (PB Collab.) 27 What’s Next? Simons Array! A “Stage 3” CMB experiment upgraded from POLARBEAR

Simons Array

POLARBEAR-1 or…

x10 sensitivity CMB-S4 Science Book (arXiv:1610.02743) 28 190mm POLARBEAR Simons Array

x6 more detectors (3 ) x (6 x more detectors) 365mm =18 x sensitive than now

dual freq.

 7,588 bolometers per receiver, factor of 6 increase from current receiver  Three telescopes (two new telescopes + one current one)  → (3 telescopes) x (6 x more detectors) = 18 x sensitive than now

29 POLARBEAR Simons Array @KEK POLARBEAR-2A

95/150 GHz (3 telescopes) x (6 x more detectors) =18 x sensitive than now POLARBEAR-2B 95/150 GHz @UCB & UCSD

POLARBEAR-2C 220/270 GHz POLARBEAR-2 Receiver Frequency Plan

 7,588 bolometers per receiver, factor of 6 increase from current receiver  Three telescopes (two new telescopes + one current one)  → (3 telescopes) x (6 x more detectors) = 18 x sensitive than now  Expand frequency coverage for foreground removal (95/150/220/270 GHz)  Deploy first receiver (PB2A) in 2017 (this summer!!!)  Deploy two more receivers (PB2B, PB2C) in 2018 30 POLARBEAR 102 DASI QUIET-W CBI BICEP1-3yr Simons Array MAXIPOL ACTPol BOOMERanG BK14 101 CAPMAP SPTpol

) WMAP-9yr POLARBEAR

2 QUaD Simons Array QUIET-Q K (3 telescopes) µ 100 x (6 x more detectors) )( ⇡ =18 x sensitive than now

/ (2 10-1 BB ` C

10-2 + 1) ` ~2020 ( ` 10-3

r=0.01 10-4 10 100 1000 Multipole Moment, ell -3 -3  Inflation: σ(r=0.1) = 6×10 (4×10 stat.)  Neutrino mass: σ(Σmν) = 40 meV (19 meV stat.) w/ BAO from DESI

 Light relic: σ(Neff) = 0.04

31  POLARBEAR is a “stage 2” CMB experiment, which successfully measured B-mode lensing; Updated the result w/ 2-years data

 validated 1/f noise mitigation for inflationary B-mode measurement  Simons Array is a “stage 3” CMB experiment upgraded from POLARBEAR experiment; Deploy in 2017 & 2018. Stay tuned!

Now 2017~ 2020~ POLARBEAR-1 Simons Array (Stage II) (Stage III) & CMB Stage IV

σ(r)<0.1 σ(r)<0.01; σ(Σmν)~40 meV σ(r)<0.001; σ(Σmν)~15 meV 32