Beyondplanck VI. Noise Characterization and Modelling

Total Page:16

File Type:pdf, Size:1020Kb

Beyondplanck VI. Noise Characterization and Modelling Astronomy & Astrophysics manuscript no. noise_paper ©ESO 2020 November 16, 2020 BeyondPlanck VI. Noise characterization and modelling H. T. Ihle11?, M. Bersanelli4; 9; 10, C. Franceschet4; 10, E. Gjerløw11, K. J. Andersen11, R. Aurlien11, R. Banerji11, S. Bertocco8, M. Brilenkov11, M. Carbone14, L. P. L. Colombo4, H. K. Eriksen11, J. R. Eskilt11, M. K. Foss11, U. Fuskeland11, S. Galeotta8, M. Galloway11, S. Gerakakis14, B. Hensley2, D. Herman11, M. Iacobellis14, M. Ieronymaki14, H. T. Ihle11, J. B. Jewell12, A. Karakci11, E. Keihänen3; 7, R. Keskitalo1, G. Maggio8, D. Maino4; 9; 10, M. Maris8, A. Mennella4; 9; 10, S. Paradiso4; 9, B. Partridge6, M. Reinecke13, M. San11, A.-S. Suur-Uski3; 7, T. L. Svalheim11, D. Tavagnacco8; 5, H. Thommesen11, D. J. Watts11, I. K. Wehus11, and A. Zacchei8 1 Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A. 2 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, U.S.A. 3 Department of Physics, Gustaf Hällströmin katu 2, University of Helsinki, Helsinki, Finland 4 Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, Milano, Italy 5 Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, Trieste, Italy 6 Haverford College Astronomy Department, 370 Lancaster Avenue, Haverford, Pennsylvania, U.S.A. 7 Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University of Helsinki, Helsinki, Finland 8 INAF - Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, Trieste, Italy 9 INAF-IASF Milano, Via E. Bassini 15, Milano, Italy 10 INFN, Sezione di Milano, Via Celoria 16, Milano, Italy 11 Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway 12 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, U.S.A. 13 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany 14 Planetek Hellas, Leoforos Kifisias 44, Marousi 151 25, Greece November 16, 2020 ABSTRACT We present a Bayesian method for estimating instrumental noise parameters and propagating noise uncertainties within the global BeyondPlanck Gibbs sampling framework, and apply this to Planck LFI time-ordered data. Following previous literature, we adopt a simple 1= f model for the noise power spectral density (PSD), and implement an optimal Wiener-filter (or constrained realization) gap-filling procedure to account for masked data. We then use this procedure to both estimate the gapless correlated noise in the n time-domain, ncorr, and to sample the noise PSD spectral parameters, ξ = fσ0; fknee; αg. In contrast to previous Planck analyses, we only assume piecewise stationary noise within each pointing period (PID), not throughout the full mission, but we adopt the LFI DPC results as priors on α and fknee. On average, we find best-fit correlated noise parameters that are mostly consistent with previous results, with a few notable exceptions. However, a detailed inspection of the time-dependent results reveals many important findings. First and foremost, we find strong evidence for statistically significant temporal variations in all noise PSD parameters, many of which are directly correlated with satellite housekeeping data. Second, while the simple 1= f model appears to be an excellent fit for the LFI 70 GHz channel, there is evidence for additional correlated noise not described by a 1= f model in the 30 and 44 GHz channels, including within the primary science frequency range of 0.1–1 Hz. In general, most 30 and 44 GHz channels exhibit excess noise at the 2–3 σ level in each one hour pointing period. For some periods of time, we also find evidence of strong common mode noise fluctuations across the entire focal plane. Finally, we find a number of strong stripes when binning the 44 GHz correlated noise into a sky map, and we hypothesize that these may be associated with deficiencies in the gain model for this channel. Overall, we conclude that a simple 1= f profile is not adequate to fully characterize the Planck LFI noise, even when fitted hour-by-hour, and a more general model is required. These findings have important implications for large-scale CMB polarization reconstruction with the Planck LFI data, and understanding and mitigating these issues should be a high-priority task for future studies. Key words. ISM: general – Cosmology: observations, polarization, cosmic microwave background, diffuse radiation – Galaxy: general Contents 3.1.2 Handling masking through a conjugate arXiv:2011.06650v1 [astro-ph.CO] 12 Nov 2020 gradient solver . .5 1 Introduction2 3.1.3 Gap-filling by polynomial interpolation .5 3.2 Sampling noise PSD parameters, P(ξn j ncorr)..6 2 The BeyondPlanck data model and framework3 3.2.1 Sampling the white noise level, σ0 ....6 3.2.2 Sampling correlated noise parameters, f and α ................6 3 Methods4 knee 3.2.3 Priors on α and f ...........7 corr n knee 3.1 Sampling correlated noise, P(n j d; ξ ; stot; g).4 3.1.1 Ideal data . .4 4 Mitigation of modelling errors and degeneracies7 4.1 Signal modelling errors and processing masks . .7 ? Corresponding author: H. T. Ihle; [email protected] 4.2 Degeneracies with the gain . .8 Article number, page 1 of 26 A&A proofs: manuscript no. noise_paper 5 Results 10 minimized by introducing the 4 K reference loads and gain mod- 5.1 Posterior distributions and Gibbs chains . 10 ulation factor to optimize the receiver balance; see, e.g., Planck 5.2 Time variability and goodness-of-fit . 11 Collaboration II(2014, 2016) and BeyondPlanck Collaboration (2020) for further details. 6 Systematic effects 18 Regarding stationarity, the two most common assumptions 6.1 Temperature changes in the 20 K stage . 18 are either that the statistical properties remain constant through- 6.2 Temperature fluctuations and 1= f parameters . 19 out the entire observation period (e.g., Planck Collaboration II 6.3 Seasonal effects and slow drifts . 20 2020), or that it may at least be modelled as piece-wise station- 6.4 Inter-radiometer correlations . 20 ary within for instance one hour of observations (e.g., QUIET 6.5 Correlation with housekeeping data . 22 Collaboration et al. 2011). Given such basic assumptions, the ef- 6.6 Issues with individual radiometers . 23 fect of the instrumental noise on higher-order data products has then traditionally been assessed, and propagated, either through 7 Conclusions 24 the use of detailed end-to-end simulations (e.g., Planck Collabo- ration XII 2016) or in the form of explicit noise covariance ma- trices (e.g., Tegmark et al. 1997; Page et al. 2007; Planck Col- 1. Introduction laboration V 2020). The importance of accurate noise modelling is intimately One of the main algorithmic achievements made within the field tied to the overall signal-to-noise ratio of the science target in of CMB analysis during the last few decades is accurate and question. For applications with very high signal-to-noise ratios, nearly lossless data compression. Starting from data sets that detailed noise modelling is essentially irrelevant, since other typically comprise O(108 − 1011) time-ordered measurements, sources of systematic errors dominate the total error budget. One we are now able to routinely produce sky maps that contain prominent example of this is the CMB temperature power spec- O(103 − 107) pixels (e.g., Tegmark 1997; Ashdown et al. 2007). trum as measured by Planck on large angular scales (Planck From these, we may constrain the angular CMB power spectrum, Collaboration IV 2020; Planck Collaboration V 2020). Its white which spans O(103) multipoles (e.g., Gorski 1994; Hivon et al. noise contribution can be misestimated by orders of magnitude 2002; Wandelt et al. 2004). Finally, from these we may derive without making any difference in terms of cosmological parame- tight constraints on a small set of cosmological parameters (e.g., ters, because the full error budget is vastly dominated by cosmic Bond et al. 2000; Lewis & Bridle 2002; Planck Collaboration variance. V 2020; Planck Collaboration VI 2020), which typically is the ultimate goal of any CMB experiment. The cases for which accurate noise modelling is critically Two fundamental assumptions underlying this radical com- important are those with signal-to-noise ratios of order unity. pression process are that the instrumental noise may be mod- For these, noise misestimation may be the difference between elled to a sufficient precision, and that the corresponding induced obtaining a tantalizing, but ultimately unsatisfying, 2 σ result, uncertainties may be propagated faithfully to higher-order data and claiming a ground-breaking and decisive 5 σ discovery; or, products. The starting point for this process is typically to as- the worst-case scenario, erroneously reporting a baseless posi- sume that the noise is Gaussian and random in time, and does tive detection. not correlate with the true sky signal at any given time. Under This regime is precisely where the CMB field is expected to the Gaussianp hypothesis, the net noise contribution therefore de- find itself in only a few years from now, as the next-generation creases as 1= Nobs, where Nobs is the number of observations of CMB experiments (e.g., CMB-S4, LiteBIRD, PICO, Simons Ob- the given pixel, while the signal contribution is independent of servatory, and many others; Abazajian et al. 2019; Suzuki et al. Nobs. 2018; Sugai et al. 2020; Hanany et al. 2019; Ade et al. 2019) are However, it is not sufficient to assume that the noise is sim- currently being planned, built and commissioned in the search ply Gaussian and random. One must also assume something for primordial gravitational waves imprinted in B-mode polar- about its statistical properties, both in terms of its correlation ization. The predicted magnitude of this signal is expected to be structure in time and its stationarity period.
Recommended publications
  • The Q/U Imaging Experiment (QUIET): the Q-Band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller
    The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2010 c 2010 Laura Newburgh All Rights Reserved Abstract The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Phase I of the Q/U Imaging ExperimenT (QUIET) measures the Cosmic Microwave Background polarization anisotropy spectrum at angular scales 25 1000. QUIET has deployed two independent receiver arrays. The 40-GHz array took data between October 2008 and June 2009 in the Atacama Desert in northern Chile. The 90-GHz array was deployed in June 2009 and observations are ongoing. Both receivers observe four 15◦ 15◦ regions of the sky in the southern hemisphere that are expected × to have low or negligible levels of polarized foreground contamination. This thesis will describe the 40 GHz (Q-band) QUIET Phase I instrument, instrument testing, observations, analysis procedures, and preliminary power spectra. Contents 1 Cosmology with the Cosmic Microwave Background 1 1.1 The Cosmic Microwave Background . 1 1.2 Inflation . 2 1.2.1 Single Field Slow Roll Inflation . 3 1.2.2 Observables . 4 1.3 CMB Anisotropies . 6 1.3.1 Temperature . 6 1.3.2 Polarization . 7 1.3.3 Angular Power Spectrum Decomposition . 8 1.4 Foregrounds . 14 1.5 CMB Science with QUIET . 15 2 The Q/U Imaging ExperimenT Q-band Instrument 19 2.1 QUIET Q-band Instrument Overview .
    [Show full text]
  • Muse: a Novel Experiment for CMB Polarization Measurement Using Highly Multimoded Bolometers
    The Atacama B-mode Search Status and Prospect CMB 2013 June 11th, 2013, Okinawa, Japan Akito Kusaka (Princeton University) for ABS Collaboration Before starting my talk… Atmosphere is unpolarized ABS (Atacama B-mode Search) Princeton, Johns Hopkins, NIST, UBC, U. Chile What is ABS? Ground based CMB polarization (with T sensitivity) Angular scale: l~100(~2), B-mode from GW TES bolometer at 150 GHz › 240 pixel / 480 bolometers › ~80% of channels are regularly functional › NEQ ~ 30 mKs (w/ dead channels, pol. efficiency included) Unique Systematic error mitigation › Cold optics › Continuously rotating half-wave plate Site Chile, Cerro Toco › ~5150 m. › Extremely low moisture › Year-round access › Observing throughout the year › And day and night ACT, ABS, PolarBear, CLASS Cerro Chajnantor 5612 m (5150 m) Cerro Toco 5600 m TAO, CCAT Google Earth / Google Map / Google Earth 1 km APEX QUIET, CBI ALMA (5050 m) ASTE & NANTEN2 (4800 m) Possible combined analysis among CMB experiments Many figures / pictures are from theses of ABS instrument T. Essinger-Hileman and J. W. Appel (+ K. Visnjic and L. P. Parker soon) Optics 4 K cooled side-fed Dragone dual reflector. ~60 cm diameter mirrors. 25 cm aperture diameter. Optics Aperture The optics maximize throughput for small aperture 12 radius field of view Good image quality across the wide field of view ABS focal plane Feedhorn coupled Focal plane ~300 mK Polarization sensitive TES Ex TES Inline filter OMT Ey TES 1.6 mm 5 mm ~30 cm Fabricated at NIST Focal Plane Elements Individually machined
    [Show full text]
  • Delft University of Technology Groundbird Observation of CMB
    Delft University of Technology GroundBIRD Observation of CMB Polarization with a Rapid Scanning and MKIDs Nagasaki, T.; Choi, J.; Génova-Santos, R. T.; Karatsu, K.; Lee, K.; Naruse, M.; Suzuki, J.; Taino, T.; Tomita, N.; More Authors DOI 10.1007/s10909-018-2077-y Publication date 2018 Document Version Accepted author manuscript Published in Journal of Low Temperature Physics Citation (APA) Nagasaki, T., Choi, J., Génova-Santos, R. T., Karatsu, K., Lee, K., Naruse, M., Suzuki, J., Taino, T., Tomita, N., & More Authors (2018). GroundBIRD: Observation of CMB Polarization with a Rapid Scanning and MKIDs. Journal of Low Temperature Physics, 193(5-6), 1066-1074. https://doi.org/10.1007/s10909-018- 2077-y Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) GroundBIRD - Observation of CMB polarization with a rapid scanning and MKIDs T.
    [Show full text]
  • Litebird Lite(Light) Satellite for the Studies for B-Mode PolarizaOn and InflaOn from Cosmic Background RadiaOn DetecOn
    LiteBIRD! Lite(Light) satellite for the studies for B-mode polarizaon and Inflaon from cosmic background Radiaon Detec6on Tomotake Matsumura (ISAS/JAXA) on behalf of LiteBIRD working group! 2014/12/1-5, PLANCK2014, Ferrara! Explora(on of early Universe using CMB satellite COBE (1989) WMAP (2001) Planck (2009) Band 32−90GHz 23−94GHz 30−857GHz (353GHz) Detectors 6 radiometers 20 radiometers 11 radiometers + 52 bolometers Operaon temperature 300/140 K 90 K 100 mK Angular Resolu6no ~7° ~0.22° ~0.1° Orbit Sun Synch L2 L2 December 3, 2014 Planck2014@Ferrara, Italy 2 Explora(on of early Universe using CMB satellite Next generation B-mode probe COBE (1989) WMAP (2001) Planck (2009) Band 32−90GHz 23−94GHz 30−857GHz (353GHz) EE Detectors 6 radiometers 20 radiometers 11 radiometers + 52 bolometers Operaon temperature 300/140 K 90 K 100 mK Angular Resolu6no ~7° ~0.22° BB ~0.1° Orbit Sun Synch L2 L2 December 3, 2014 Planck2014@Ferrara, Italy 3 LiteBIRD LiteBIRD is a next generaon CMB polarizaon satellite to probe the inflaonary Universe. The science goal of LiteBIRD is to measure the tensor-to-scalar rao with the sensi6vity of δr =0.001. The design philosophy is driven to focus on the primordial B-mode signal. Primordial B-mode r = 0.2 Lensing B-mode r = 0.025 Plot made by Y. Chinone December 3, 2014 Planck2014@Ferrara, Italy 4 LiteBIRD working group >70 members, internaonal and interdisciplinary. KEK JAXA UC Berkeley Kavli IPMU MPA NAOJ Y. Chinone H. Fuke W. Holzapfel N. Katayama E. Komatsu S. Kashima K. Haori I.
    [Show full text]
  • Measuring the Polarization of the Cosmic Microwave Background
    Measuring the Polarization of the Cosmic Microwave Background CAPMAP and QUIET Dorothea Samtleben, Kavli Institute for Cosmological Physics, University of Chicago Outline Theory point of view Ø What can we learn from the Cosmic Microwave Background (CMB)? Ø How to characterize and describe the CMB Ø Why is the CMB polarized? Experiment point of view Ø CMB polarization experiments Ø CAPMAP experiment, first results Ø Future of CMB measurements Ø QUIET experiment, status and plans Where does the CMB come from? Ø Temperature cool enough that electrons and protons form first atoms => The universe became transparent Ø Photons from that ‘last scattering surface’ give direct snapshot of the infant universe Ø Still around today but cooled down (shifted to microwaves) due to expansion of the universe CMB observations Interstellar CN absorption lines 1941! Accidental discovery 1965 Blackbody Radiation, homogenous, isotropic DT £ (1- 3)x10-3 (Partridge & Wilkinson, 1967) WHY? T Rescue by Inflationary models Inflation increases volume of universe by 1063 in 10-30 seconds Consequences (observables) for CMB: Ø Homogenous, isotropic blackbody radiation Ø Scale-invariant temperature fluctuations Ø On small scales (within horizon) temperature fluctuations from ‘accoustic oscillations’ (radiation pressure vs gravitational attraction) Ø Polarization anisotropies, correlated with temperature anisotropies Ø Gravitational waves, produced by inflation, cause distinct pattern in CMB polarization anisotropy Ø Reionization period will impact the fluctuation pattern
    [Show full text]
  • THE ATACAMA Cosi'vl0logy TELESCOPE: the RECEIVER and INSTRUMENTATION L2 D
    https://ntrs.nasa.gov/search.jsp?R=20120002550 2019-08-30T19:06:35+00:00Z CORE Metadata, citation and similar papers at core.ac.uk Provided by NASA Technical Reports Server THE ATACAMA COSi'vl0LOGY TELESCOPE: THE RECEIVER AND INSTRUMENTATION L2 D. S. SWETZ , P. A. R. ADE\ j'vI. A !\fIRrl, J. \V'. ApPEL" E. S. BATTISTELLlfi,j, B. BURGERI, J. CHERVENAK', 2 lVI. J. DEVLIN], S. R. DICKER]. \V. B. DORIESE , R. DUNNER', T. ESSINGER-HILEMAN'. R. P. FISHER:', J. \V. FOWLER'. 4 2 1 lVI. HALPERN ,!.VI. HASSELFIELD4, G. C. HILTON , A. D. HINCKS\ K. D. IRWIN2. N. JAROSIK', M. KAlIL', J. KLEIN , . ull 11 I2 l l u 1 J. J\1. LAd "" M. LIMON , T. A. l'vIARRIAGE . D. MARSDEN , K. J\IARTOCCI : , P. J\IAUSKOPF: , H. MOSELEY', I4 2 C. B. NETTERFIELD , J\1. D. NIEMACK " l'vI. R. NOLTA ,L. A. PAGE". L. PARKER'. S. T. STAGGS", O. STRYZAK', 1 U jHi E. R. SWlTZER : , R. THORNTON • C. TUCKER'], E. \VOLLACK', Y. ZHAO" Draft version July 5, 2010 ABSTRACT The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instru­ ment is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz.
    [Show full text]
  • Searching for CMB B-Mode Polarization from the Ground
    Searching for CMB B-mode Polarization from the Ground Clem Pryke – University of Minnesota Pre-Plankian Inflation Workshop Oct 3, 2011 Outline • Review of CMB polarization and history of detection from the ground • Current best results • On-going experiments and their prospects CMB Power Spectra Temperature E-mode Pol. Lensing B-mode Inflation B-mode Hu et al astro-ph/0210096 Log Scale! Enormous experimental challenge! Existing Limit on Inflation from CMB Temp+ Keisler et al 1105.3182 sets limit r<0.17 from SPT+WMAP+H0+BAO Sample variance limited Need B-modes to go further! DASI First Detection of CMB Pol. In 2002 Kovac et al Nature 12/19/02 DASI showed CMB has E-mode pol. - B-mode was consistent with zero Previous Experiments with CMB Pol Detections CAPMAP CBI QUaD QUIET BICEP1 WMAP BOOMERANG Current Status of CMB Pol. Measurements Chiang et al 0906.1181 fig 13 updated with QUIET results BICEP1 sets best B-mode limit to date – r<0.72 Current/Future Experimental Efforts • Orbital: Planck • Sub-orbital: SPIDER, EBEX, PIPER – Assume already covered… • This talk: Ground based experiments – Chile: POLARBEAR, ABS, ACTpol – Other: QUBIC, (QUIJOTE) – South Pole: SPTpol, BICEP/Keck-Array, POLAR1 • Many of these experiments are making claims of r limits around 0.02 – but which ones will really deliver? ACTpol • ACT is Existing 6m telescope • Polarimeter being fabricated • Deploy with 1 (of 3) arrays in first half 2012 • Not emphasizing gravity wave detection (Niemack et al., SPIE 2010) Atacama B-mode Search Smaller experiment 240 feeds at 150GHz 4 K all reflective optics 0.3 K detectors Mini telescope – 0.3m 1 cubic meter cryostat r~0.03 depending on foregrounds etc.
    [Show full text]
  • Report of the Scientific Assessment Group for Experiments in Non-Accelerator Physics (SAGENAP)
    Report of the Scientific Assessment Group for Experiments in Non-Accelerator Physics (SAGENAP) Final Version December 13, 2004 Contents of Report 1. Introduction 2. Dark Energy and Cosmic Microwave Background 2.1. Dark Energy Overview 2.2. Cosmic Microwave Background Overview 2.3. Projects in Dark Energy and Cosmic Microwave Background 2.3.1. Dark Energy Survey (DES) 2.3.2. Destiny 2.3.3. Large-aperture Synoptic Survey Telescope (LSST) 2.3.4. Polarbear 2.3.5. QUIET 2.3.6. SuperNova Acceleration Probe (SNAP) R&D 3. Dark Matter 3.1. Dark Matter Overview 3.2. Projects in Dark Matter 3.2.1. Cryogenic Dark Matter Search (CDMS II) 3.2.2. DRIFT R&D 3.2.3. XENON R&D 3.2.4. ZEPLIN 4. Very High-Energy (VHE) Particle Astrophysics 4.1. VHE Particle Astrophysics Overview 4.2. Projects in VHE Particle Astrophysics 4.2.1. ASHRA 4.2.2. Auger Project South 4.2.3. Auger Project North 4.2.4. HAWC 4.2.5. HiRes 4.2.6. Milagro 4.2.7. STACEE 4.2.8. Telescope Array / Telescope Array Low-energy Extension 4.2.9. VERITAS 5. Neutrinos 5.1. Neutrino Overview 5.2. Projects in Neutrino Physics 5.2.1. EXO R&D 5.2.2. ICARUS 5.2.3. KamLAND 5.2.4. LANNDD 5.2.5. Super-Kamiokande 5.2.6. θ13 Experiments 6. Other Experiments 6.1. Electric Dipole Moment (EDM) Experiment Appendix A: Charge to SAGENAP Appendix B: SAGENAP 2004 Membership Appendix C: SAGENAP Agenda Appendix D: Project and Experiment Acronyms Report of the Scientific Assessment Group for Experiments in Non-Accelerator Physics (SAGENAP) 1.
    [Show full text]
  • The Next Generation CMB Space Mission
    The Next Generation CMB Space Mission Paolo de Bernardis Dipartimento di Fisica Università di Roma “La Sapienza” On behalf of the COrE collaboration (see astro‐ph/1102.2181) 47th ESLAB Symposium: The Universe as seen by Planck ESTEC, 05/04/2013 The COrE collaboration •A space mission to measure the polarization of the mm/sub‐mm sky , with –High purity (instrumental polarization < 0.1% of polarized signal) – Wide spectral coverage (15 bands centered at 45‐795 GHz) – Unprecedented angular resolution (23’ – 1.3’ fwhm) – Unprecedented sensitivity (< 5 μKarcminin each CMB band) • Science Targets of the mission: –Inflation(CMB B‐modes) –Neutrino masses (CMB, E‐modes + lensing) –CMB non‐Gaussianity –Originof magnetic fields (Faraday rotation …) –Originof stars (ISM polarimetry …) ……. … • Proposal submitted to ESA Cosmic Vision (2015‐2025) • White paper : astro‐ph/1102.2181 •Web page: www.core‐mission.org B‐modes Polarized νs+ ISM (r > 0.001) foregrounds N.G. 3) Wide 2) Sensitivity ! Frequency Large Array Coverage ! Many bands 1) Polarimetric 4) High purity ! angular Polarization Resolution ! Modulator first; Large telescope + Single‐mode high frequency beams mm Soyuz Bay 1) 2n +1 c ν = n 4cosϕ d d • Rotating Reflecting‐Half‐Wave‐Plate (RWHP) + Modulator = first optical element – polarization purity of following elements not critical + Must be rotated for modulation – simple mechanical system + Many bands (many orders) – wide frequency coverage + Can be made large diameter (embedded wire‐grid technology) + Can be deposited on a support structure
    [Show full text]
  • Colin Bischoff
    Harvard-Smithsonian Center for Astrophysics cbischoff@cfa.harvard.edu 60 Garden St. 617-495-7059 (office) MS 42 415-419-6750 (mobile) Cambridge, MA 02138 http://www.cfa.harvard.edu/∼cbischoff/ Colin Bischoff Education and Employment 2013–present Research associate, Harvard-Smithsonian Center for Astrophysics, Supervisor: John Kovac 2010–2013 Postdoctoral fellow, Harvard-Smithsonian Center for Astrophysics, Supervisor: John Kovac 2002–2010 University of Chicago, Ph.D. in physics. Thesis title: Observing the Cosmic Microwave Background Polarization Anisotropy at 40 GHz with QUIET, Advisor: Bruce Winstein 1998–2002 Stanford University, B.S. in physics with honors. Thesis title: Synchrotron X-Ray Scat- tering Study of Structural Distortions in the Double-Layer Manganite La1:2Sr1:8Mn2O7, Thesis advisor: Martin Greven Fellowships and Awards 2008–2009 Grainger Foundation Fellowship, University of Chicago. 2003 Sachs Fellowship, University of Chicago. 2002–2003 McCormick Fellowship, University of Chicago. 2002 Jeff Willick Memorial Award, Stanford University. Publications 24. Keck Array and BICEP2 Collaborations 2016, BICEP2/Keck Array VII: Matrix Based E/B Separation Applied to BICEP2 and the Keck Array, submitted to ApJ (arXiv:1603.05976) 23. Keck Array and BICEP2 Collaborations 2016, BICEP2/Keck Array VI: Improved Constraints On Cos- mology and Foregrounds When Adding 95 GHz Data From Keck Array, Phys. Rev. Lett. 116, 031302 22. BICEP2 Collaboration 2015, BICEP2 III: Instrumental Systematics, ApJ 814, 2, 110 21. BICEP2/Keck and Planck Collaborations 2015, A Joint Analysis of BICEP2/Keck Array and Planck Data, Phys. Rev. Lett. 114, 101301 20. BICEP2, Keck Array, and SPIDER Collaborations 2015, Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER, ApJ 812, 2, 176 19.
    [Show full text]
  • An Improved Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with the POLARBEAR Experiment
    WIN2017; Astroparticle physics and cosmology An Improved Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Sub-Degree Scales with the POLARBEAR Experiment 23 Jun 2017 from 9:50AM to 10:10AM 1 POLARBEAR is a “Stage 2” CMB experiment CMB-S4 Science Book (arXiv:1610.02743) 2 Chile, Atacama POLARBEAR to Simons Array Atacama Cosmology Telescope CLASS (ACTPol to AdvACT) South Pole BICEP-2/Keck Array/ BICEP-3 South Pole Telescope (SPTpol to SPT3G) 3 102 DASI QUaD CBI QUIET-Q MAXIPOL QUIET-W BOOMERanG BICEP1-3yr 101 CAPMAP BICEP2-3yr ) WMAP-9yr POLARBEAR 2 K µ 100 )( π (2 / 10-1 BB ` C BICEP2 POLARBEAR 10-2 + 1) r=0.20 ⇥ ( ⇥ 10-3 March, 2014 10-4 10 100 1000 Multipole Moment, ell 4 102 DASI QUIET-Q CBI QUIET-W MAXIPOL BICEP1-3yr BOOMERanG ACTPol 1 10 CAPMAP BK14 ACTPol ) WMAP-9yr SPTpol 2 QUaD POLARBEAR K µ 100 )( π (2 / -1 10 SPTpol BB ` C POLARBEAR BK14 10-2 + 1) ⇥ ( ⇥ r=0.07 10-3 2016-2017 10-4 10 100 1000 Multipole Moment, ell 5 102 DASI QUIET-W CBI BICEP1-3yr MAXIPOL ACTPol BOOMERanG BK14 101 CAPMAP SPTpol ) WMAP-9yr POLARBEAR 2 QUaD Simons Array QUIET-Q K µ 100 )( ⇡ (2 / 10-1 BB ` Simons C Array 10-2 + 1) ` ( ` 10-3 ~2020 r=0.01 10-4 10 100 1000 Multipole Moment, ell 6 7 POLARBEAR Collabora�on UC Berkeley UC San Diego KEK McGill University SISSA Shawn Beckman Kam Arnold Yoshiki Akiba Matt Dobbs Carlo Baccigalupi Darcy Barron Kevin Crowley Takaho Hamada Adam Gilbert Nicoletta Yuji Chinone Tucker Elleflot Masaya Hasegawa Josh Montgomery Krachmalnicoff Ari Cukierman George Fuller Masashi Hazumi Davide Poletti Giuseppe Puglisi Tijmen de Haan Logan Howe Haruki Nishino Dalhousie Neil Goeckner-Wald Brian Keating Yuuko Segawa Scott Chapman U Manchester John Groh David Leon Osamu Tajima Colin Ross Gabriele Coppi Charles Hill Lindsay Lowry Satoru Takakura Kaja Rotermund Andrew May William Holzapfel Frederick Matsuda Sayuri Takatori Alexei Tikhomirov Oliver Jeong Martin Navaroli Daiki Tanabe Lucio Piccirillo Adrian Lee Gabriel Rebeiz Takayuki Tomaru Lawrence U of Sussex Dick Plambeck Max Silva-Feaver Berkeley NL Julien Peloton Chris Raum U.
    [Show full text]
  • Arxiv:2012.14347V2 [Astro-Ph.SR] 27 Jul 2021 with a G Star
    Draft version July 28, 2021 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE ATACAMA COSMOLOGY TELESCOPE: DETECTION OF MM-WAVE TRANSIENT SOURCES Sigurd Naess,1 Nick Battaglia,2 J.Richard Bond,3 Erminia Calabrese,4 Steve K. Choi,5, 2 Nicholas F. Cothard,5, 6 Mark Devlin,7 Cody J. Duell,5 Adriaan J. Duivenvoorden,8 Jo Dunkley,9 Rolando Dunner,¨ 10 Patricio A. Gallardo,5 Megan Gralla,11 Yilun Guan,12 Mark Halpern,13 J. Colin Hill,14, 1 Matt Hilton,15 Kevin M. Huffenberger,16 Brian J. Koopman,17 Arthur B. Kosowsky,12 Mathew S. Madhavacheril,18 Jeff McMahon,19, 20, 21, 22 Federico Nati,23 Michael D. Niemack,5, 2 Lyman Page,8 Bruce Partridge,24 Maria Salatino,25 Neelima Sehgal,26 David Spergel,1, 9 Suzanne Staggs,8 Edward J. Wollack,27 and Zhilei Xu7, 28 1 Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA 10010 2 Department of Astronomy, Cornell University, Ithaca, NY 14853, USA 3 Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON, M5S 3H8, Canada 4 School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales, UK CF24 3AA 5 Department of Physics, Cornell University, Ithaca, NY 14853, USA 6 Department of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA 7 Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, USA 19104 8 Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ, USA 08544 9 Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ, USA 08544 10 Instituto de Astrof´ısicaand Centro de Astro-Ingenier´ıa,Facultad de F´ısica,Pontificia Universidad Cat´olicade Chile, Av.
    [Show full text]