Maturity of Lumped Element Kinetic Inductance Detectors For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proceedings of Spie
PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Survey strategy optimization for the Atacama Cosmology Telescope De Bernardis, F., Stevens, J., Hasselfield, M., Alonso, D., Bond, J. R., et al. F. De Bernardis, J. R. Stevens, M. Hasselfield, D. Alonso, J. R. Bond, E. Calabrese, S. K. Choi, K. T. Crowley, M. Devlin, J. Dunkley, P. A. Gallardo, S. W. Henderson, M. Hilton, R. Hlozek, S. P. Ho, K. Huffenberger, B. J. Koopman, A. Kosowsky, T. Louis, M. S. Madhavacheril, J. McMahon, S. Næss, F. Nati, L. Newburgh, M. D. Niemack, L. A. Page, M. Salatino, A. Schillaci, B. L. Schmitt, N. Sehgal, J. L. Sievers, S. M. Simon, D. N. Spergel, S. T. Staggs, A. van Engelen, E. M. Vavagiakis, E. J. Wollack, "Survey strategy optimization for the Atacama Cosmology Telescope," Proc. SPIE 9910, Observatory Operations: Strategies, Processes, and Systems VI, 991014 (15 July 2016); doi: 10.1117/12.2232824 Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Oct 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Survey strategy optimization for the Atacama Cosmology Telescope F. De Bernardisa, J. R. Stevensa, M. Hasselfieldb,c, D. Alonsod, J. R. Bonde, E. Calabresed, S. K. Choif, K. T. Crowleyf, M. Devling, J. Dunkleyd, P. A. Gallardoa, S. W. Hendersona, M. Hiltonh, R. Hlozeki, S. P. Hof, K. Huffenbergerj, B. J. Koopmana, A. Kosowskyk, T. Louisl, M. S. Madhavacherilm, J. McMahonn, S. Naessd, F. Natig, L. Newburghi, M. D. Niemacka, L. A. Pagef, M. Salatinof, A. -
The Q/U Imaging Experiment (QUIET): the Q-Band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller
The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2010 c 2010 Laura Newburgh All Rights Reserved Abstract The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Phase I of the Q/U Imaging ExperimenT (QUIET) measures the Cosmic Microwave Background polarization anisotropy spectrum at angular scales 25 1000. QUIET has deployed two independent receiver arrays. The 40-GHz array took data between October 2008 and June 2009 in the Atacama Desert in northern Chile. The 90-GHz array was deployed in June 2009 and observations are ongoing. Both receivers observe four 15◦ 15◦ regions of the sky in the southern hemisphere that are expected × to have low or negligible levels of polarized foreground contamination. This thesis will describe the 40 GHz (Q-band) QUIET Phase I instrument, instrument testing, observations, analysis procedures, and preliminary power spectra. Contents 1 Cosmology with the Cosmic Microwave Background 1 1.1 The Cosmic Microwave Background . 1 1.2 Inflation . 2 1.2.1 Single Field Slow Roll Inflation . 3 1.2.2 Observables . 4 1.3 CMB Anisotropies . 6 1.3.1 Temperature . 6 1.3.2 Polarization . 7 1.3.3 Angular Power Spectrum Decomposition . 8 1.4 Foregrounds . 14 1.5 CMB Science with QUIET . 15 2 The Q/U Imaging ExperimenT Q-band Instrument 19 2.1 QUIET Q-band Instrument Overview . -
CMB Telescopes and Optical Systems to Appear In: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation
CMB Telescopes and Optical Systems To appear in: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation Shaul Hanany ([email protected]) University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, USA, Michael Niemack ([email protected]) National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA, and Lyman Page ([email protected]) Princeton University, Department of Physics, Princeton NJ, USA. March 26, 2012 Abstract The cosmic microwave background radiation (CMB) is now firmly established as a funda- mental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB ob- servations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by arXiv:1206.2402v1 [astro-ph.IM] 11 Jun 2012 the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We con- clude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years. -
Clover: Measuring Gravitational-Waves from Inflation
ClOVER: Measuring gravitational-waves from Inflation Executive Summary The existence of primordial gravitational waves in the Universe is a fundamental prediction of the inflationary cosmological paradigm, and determination of the level of this tensor contribution to primordial fluctuations is a uniquely powerful test of inflationary models. We propose an experiment called ClOVER (ClObserVER) to measure this tensor contribution via its effect on the geometric properties (the so-called B-mode) of the polarization of the Cosmic Microwave Background (CMB) down to a sensitivity limited by the foreground contamination due to lensing. In order to achieve this sensitivity ClOVER is designed with an unprecedented degree of systematic control, and will be deployed in Antarctica. The experiment will consist of three independent telescopes, operating at 90, 150 or 220 GHz respectively, and each of which consists of four separate optical assemblies feeding feedhorn arrays arrays of superconducting detectors with phase as well as intensity modulation allowing the measurement of all three Stokes parameters I, Q and U in every pixel. This project is a combination of the extensive technical expertise and experience of CMB measurements in the Cardiff Instrumentation Group (Gear) and Cavendish Astrophysics Group (Lasenby) in UK, the Rome “La Sapienza” (de Bernardis and Masi) and Milan “Bicocca” (Sironi) CMB groups in Italy, and the Paris College de France Cosmology group (Giraud-Heraud) in France. This document is based on the proposal submitted to PPARC by the UK groups (and funded with 4.6ML), integrated with additional information on the Dome-C site selected for the operations. This document has been prepared to obtain an endorsement from the INAF (Istituto Nazionale di Astrofisica) on the scientific quality of the proposed experiment to be operated in the Italian-French base of Dome-C, and to be submitted to the Commissione Scientifica Nazionale Antartica and to the French INSU and IPEV. -
Arxiv:1412.0626V1 [Astro-Ph.CO] 1 Dec 2014 Versity, 3400 N
Draft: December 2, 2014 Preprint typeset using LATEX style emulateapj v. 05/12/14 THE ATACAMA COSMOLOGY TELESCOPE: LENSING OF CMB TEMPERATURE AND POLARIZATION DERIVED FROM COSMIC INFRARED BACKGROUND CROSS-CORRELATION Alexander van Engelen1,2, Blake D. Sherwin3, Neelima Sehgal2, Graeme E. Addison4, Rupert Allison5, Nick Battaglia6, Francesco de Bernardis7, J. Richard Bond1, Erminia Calabrese5, Kevin Coughlin8, Devin Crichton9, Rahul Datta8, Mark J. Devlin10, Joanna Dunkley5, Rolando Dunner¨ 11, Emily Grace12, Megan Gralla9, Amir Hajian1, Matthew Hasselfield13,4, Shawn Henderson7, J. Colin Hill14, Matt Hilton15, Adam D. Hincks4, Renee´ Hlozek13, Kevin M. Huffenberger16, John P. Hughes17, Brian Koopman7, Arthur Kosowsky18, Thibaut Louis5, Marius Lungu10, Mathew Madhavacheril2, Lo¨ıc Maurin11, Jeff McMahon8, Kavilan Moodley15, Charles Munson8, Sigurd Naess5, Federico Nati19, Laura Newburgh20, Michael D. Niemack7, Michael R. Nolta1, Lyman A. Page12, Christine Pappas12, Bruce Partridge21, Benjamin L. Schmitt10, Jonathan L. Sievers22,23,12, Sara Simon12, David N. Spergel13, Suzanne T. Staggs12, Eric R. Switzer24,1, Jonathan T. Ward10, Edward J. Wollack24 Draft: December 2, 2014 ABSTRACT We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by cross-correlating the reconstructed convergence signal from the first season of ACTPol data at 146 GHz with Cosmic Infrared Background (CIB) fluctu- ations measured using the Planck satellite. Using an overlap area of 206 square degrees, we detect gravitational lensing of the CMB polarization by large-scale structure at a statistical significance of 4:5σ. Combining both CMB temperature and polarization data gives a lensing detection at 9:1σ sig- nificance. A B-mode polarization lensing signal is present with a significance of 3:2σ. -
The Cosmic Microwave Background Anisotropy Power Spectrum Measured by Archeops
Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20021850 L22 A. Benoˆıt et al.: The cosmic microwave background anisotropy power spectrum measured by Archeops We construct maps by bandpassing the data between 0.3 Table 1. The Archeops CMB power spectrum for the best two pho- and 45 Hz, corresponding to about 30 deg and 15 arcmin scales, tometers (third column). Data points given in this table correspond to respectively. The high–pass filter removes remaining atmo- the red points in Fig. 2. The fourth column shows the power spec- spheric and galactic contamination, the low–pass filter sup- trum for the self difference (SD) of the two photometers as described presses non–stationary high frequency noise. The filtering is in Sect. 4. The fifth column shows the power spectrum for the differ- done in such a way that ringing effects of the signal on ence (D) between the two photometers. bright compact sources (mainly the Galactic plane) are smaller `(`+1)C` 2 2 2 `min `max (µK) SD (µK) D (µK) than 36 µK2 on the CMB power spectrum in the very first (2π) `–bin,∼ and negligible for larger multipoles. Filtered TOI of each 15 22 789 537 21 34 14 34 ± − ± − ± absolutely calibrated detector are co–added on the sky to form 22 35 936 230 6 25 34 21 35 45 1198 ± 262 −69 ± 45 75 ± 35 detector maps. The bias of the CMB power spectrum due to ± − ± − ± filtering is accounted for in the MASTER process through the 45 60 912 224 18 50 9 37 60 80 1596 ± 224 −33 ± 63 8 ± 44 transfer function. -
PLANCK (Retour D’Expérience Pour Le CS IN2P3)
PLANCK (retour d’expérience pour le CS IN2P3) July 2020 1. Résumé (une page) Planck was an ESA mission to observe the first light in the Universe. Planck was selected in 1995 as the third Medium-Sized Mission (M3) of ESA's Horizon 2000 Scientific Programme, and later became part of its Cosmic Vision Programme. It was designed to image the temperature and polarization anisotropies of the Cosmic Background Radiation Field over the whole sky, with an unprecedented combination of sensitivity and angular resolution. Planck was testing theories of the early universe and the origin of cosmic structure and providing a major source of information relevant to many cosmological and astrophysical issues. Planck was formerly called COBRAS/SAMBA. After the mission was selected and approved (in late 1996), it was renamed in honor of the German scientist Max Planck (1858-1947), Nobel Prize for Physics in 1918. Planck was launched on 14 May 2009, and the minimum requirement for success was for the spacecraft to complete two whole surveys of the sky. In the end, Planck worked perfectly for 30 months, about twice the span originally required, and completed five full-sky surveys with both instruments. Able to work at higher temperatures than the High Frequency Instrument (HFI), the Low Frequency Instrument (LFI) continued to survey the sky for a large part of 2013, providing even more data to improve the Planck final results. Planck was turned off on 23 October 2013. The high-quality data the mission has produced was released in three major sets of papers: ● 2013 data release (PR1) On 21 March 2013, the European-led research team behind the Planck cosmology probe released the mission's all-sky map of the cosmic microwave background together with a set of 32 scientific papers. -
The Cosmic Microwave Background Anisotropy Power Spectrum Measured by Archeops 3
Astronomy & Astrophysics manuscript no. Cl˙letter November 8, 20181 (DOI: will be inserted by hand later) The Cosmic Microwave Background Anisotropy Power Spectrum measured by Archeops A. Benoˆıt1, P. Ade2, A. Amblard3, 24, R. Ansari4, E.´ Aubourg5, 24, S. Bargot4, J. G. Bartlett3, 24, J.–Ph. Bernard7, 16, R. S. Bhatia8, A. Blanchard6, J. J. Bock8, 9, A. Boscaleri10, F. R. Bouchet11, A. Bourrachot4, P. Camus1, F. Couchot4, P. de Bernardis12, J. Delabrouille3, 24, F.–X. D´esert13, O. Dor´e11, M. Douspis6, 14, L. Dumoulin15, X. Dupac16, P. Filliatre17, P. Fosalba11, K. Ganga18, F. Gannaway2, B. Gautier1, M. Giard16, Y. Giraud–H´eraud3, 24, R. Gispert7†⋆, L. Guglielmi3, 24, J.–Ch. Hamilton3, 17, S. Hanany19, S. Henrot–Versill´e4, J. Kaplan3, 24, G. Lagache7, J.–M. Lamarre7,25, A. E. Lange8, J. F. Mac´ıas–P´erez17, K. Madet1, B.Maffei2, Ch. Magneville5, 24, D. P. Marrone19, S. Masi12, F. Mayet5, A. Murphy20, F. Naraghi17, F. Nati12, G. Patanchon3, 24, G. Perrin17, M. Piat7, N. Ponthieu17, S. Prunet11, J.–L. Puget7, C. Renault17, C. Rosset3, 24, D. Santos17, A. Starobinsky21, I. Strukov22, R. V. Sudiwala2, R. Teyssier11, 23, M. Tristram17, C. Tucker2, J.–C. Vanel3, 24, D. Vibert11, E. Wakui2, and D. Yvon5, 24 1 Centre de Recherche sur les Tr`es Basses Temp´eratures, BP166, 38042 Grenoble Cedex 9, France 2 Cardiff University, Physics Department, PO Box 913, 5, The Parade, Cardiff, CF24 3YB, UK 3 Physique Corpusculaire et Cosmologie, Coll`ege de France, 11 pl. M. Berthelot, F-75231 Paris Cedex 5, France 4 Laboratoire de l’Acc´el´erateur Lin´eaire, BP 34, Campus Orsay, 91898 Orsay Cedex, France 5 CEA-CE Saclay, DAPNIA, Service de Physique des Particules, Bat 141, F-91191 Gif sur Yvette Cedex, France 6 Laboratoire d’Astrophysique de l’Obs. -
Cosmologists Increase Our Understanding of the Birth of the Universe
Cosmologists Increase our Understanding of the Birth of the Universe A French-led international consortium of cosmologists has mapped the remnant radiation from the birth of the Universe over the largest area of the sky to date with the most sensitive detectors. The team, headed by Alain Benoît of the Center for Very Low Temperature Research (CRTBT) in Grenoble, France, is able for the first time to directly tie together earlier measurements by NASA’s COBE satellite to more recent observations. The results give some of the most precise measurement ever of the primeval fluctuations, demonstrating that space is flat. The ARCHEOPS experiment, a sensitive instrument designed to see microwave radiation rather than optical light, was launched from north of the Arctic Circle on a scientific balloon to an altitude of 33 km, high above the Earth’s atmosphere. The flight began February 7, 2002 from the balloon launch center in Kiruna, Sweden. It operated for almost a full day, piloted only by the winds, and traveled over Sweden, Finland and Russia, finally landing in Siberia after making the largest map ever that resolves the intricate patterns of structure in the relic radiation left over from the early Universe. The results confirm that the universe is spatially flat. They are also in perfect agreement with the theory of primordial element production, yielding one of the most precise measurements of the normal matter content of our universe ever, and together with other data confirm that we do not yet recognize a large fraction of the mass and energy of the Universe. -
Le Modèle Cosmologique Avec Et Après Planck Et Questions Ouvertes
Francis Bernardeau PNCG, 23 novembre 2016 IAP Paris and IPhT Saclay Le modèle cosmologique avec et après Planck et questions ouvertes Avec les contributions de J. Martin, S. Renaux-Petel, S. Clesse, C. Caprini 1 Temperature Polarization 1. Introduction Adeterminationoftheamplitudeofthefluctuationsofthe Archeops, 2002 cosmic microwave background (CMB) is one of the most promising techniques to overcome a long standing prob- lem in cosmology – setting constraints on the values of the cosmological parameters. Early detection of a peak in the region of the so-called first acoustic peak (ℓ ≈ 200) by the Saskatoon experiment (Netterfield et al. 1997), as well as the availability of fast codes to com- pute theoretical amplitudes (Seljak et al. 1996) has pro- vided a first constraint on the geometry of the Universe (Lineweaver et al. 1997, Hancock et al. 1998). The spectacular results of Boomerang and Maxima have firmly established the fact that the geometry of the Universe is very close to flat (de Bernardis et al. 2000, Hanany et al. 2000, Lange et al. 2000, Balbi et al. 2000). Tight constraints on most cosmological parameters are an- ticipated from the Map (Bennett, et al. 1997) and Planck (Tauber, et al. 2000) satellite experiments. Although ex- periments have already provided accurate measurements over a wide range of ℓ,degeneraciespreventaprecisede- Une petite perspective historique : termination of some parameters using CMB data alone. Fig. 1. Measurements of the CMB angular power spec- For example, the matter content Ωm cannot be obtained trum by ArcheopsArcheops (in red dots) compared2002 with CBDMVC independently of the Hubble constant. Therefore, combi- datasets. A ΛCDM model (see text for parameters) is over- nations with other cosmological measurements (such as plotted and appears to be in good agreement with all the supernovæ, Hubble constant, and light element fractions) data. -
CMB Temperature and Polarization Anisotropy Fundamentals
CMB Temperature and Polarization Anisotropy Fundamentals Wayne Hu Center for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, Chicago IL 60637 Abstract. The tremendous experimental progress in cosmic microwave background (CMB) temperature and polarization anisotropy studies over the last few years has helped establish a standard paradigm for cosmology at intermediate epochs and has simultaneously raised questions regarding the physical processes at the two opposite ends of time.What is the physics behind the source of structure in the universe and the dark energy that is currently accelerating its expansion? We review the acoustic phenomenology that forms the cornerstone of the standard cosmological model and discuss internal consistency relations which lend credence to its interpretation. We discuss future milestones in the study of CMB anisotropy that have implications for inflationary and dark energy models.These include signatures of gravitational waves and gravitational lensing in the polarization fields and secondary temperature anisotropy from the transit of CMB photons across the large-scale structure of the universe. 1. INTRODUCTION The pace of discovery in the field of Cosmic Microwave Background (CMB) anisotropy has been accelerating over the last few years. With it,the basic elements of the cosmological model have been falling into place: the nature of the initial seed fluctuations that through gravitational instability generated all of the structure in the universe,and the mixture of matter-energy constituents that drives its expansion. Since even reviews written a scant year ago (e.g. [1,2,3]) seem out of date today,we will focus mainly on the fundamental physical elements that enter into cosmic microwave background observables. -
Cosmic Microwave Background 1 23
23. Cosmic microwave background 1 23. COSMIC MICROWAVE BACKGROUND Revised April 2006 by D. Scott (University of British Columbia) and G.F. Smoot (UCB/LBNL). 23.1. Introduction The energy content in radiation from beyond our Galaxy is dominated by the Cosmic Microwave Background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T =2.725 K. This spectral form is one of the main pillars of the hot Big Bang model for the early Universe. The lack of any observed deviations from a blackbody spectrum constrains physical processes over cosmic history 7 at redshifts z ∼< 10 (see previous versions of this mini-review). However, at the moment, all viable cosmological models predict a very nearly Planckian spectrum, and so are not stringently limited. Another observable quantity inherent in the CMB is the variation in temperature (or intensity) from one part of the microwave sky to another [2]. Since the first detection of these anisotropies by the COBE satellite [3], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) [4], which were improved upon by analysis of the 3 year WMAP data [5]. These observations have led to a stunning confirmation of the ‘Standard Model of Cosmology.’ In combination with other astrophysical data, the CMB anisotropy measurements place quite precise constraints on a number of cosmological parameters, and have launched us into an era of precision cosmology.