Inner Workings: Probing Cosmic Mysteries in a Remote Desert Amber Dance Science Writer Ever, Deciphering That Signal Is Not Always Straightforward

Total Page:16

File Type:pdf, Size:1020Kb

Inner Workings: Probing Cosmic Mysteries in a Remote Desert Amber Dance Science Writer Ever, Deciphering That Signal Is Not Always Straightforward INNER WORKINGS INNER WORKINGS Inner Workings: Probing cosmic mysteries in a remote desert Amber Dance Science Writer ever, deciphering that signal is not always straightforward. In 2014, the researchers on the Background Imaging of Cosmic Extra- Amidthevolcanicrangeofthewindy,oth- proof remains elusive. “All of a sudden, galactic Polarization (BICEP) experiment erworldly Atacama Desert, a telescope collects whoosh, inflation occurred, an exponen- thought they had evidence for inflation; ancient light from the cloudless sky. The tial expansion of space,” says Adrian Lee later physicists determined the signal likely international team of cosmologists manning of the University of California, Berkeley, prin- came from dust in the Milky Way (1, 2). ’ the instrument hopes it will illuminate the cipal investigator on the US portion of the Lee s project got the moniker POLAR- conditions of the universe just after its dawn project. “What we’re looking for is really a BEARaswordplayforwhatithopesto 13.8 billion years ago. signal from the beginning of time.” detect: “POLARization of the Background Most physicists believe that the universe The signal, if it exists, should show up in Radiation.” Swirling patterns in the direction inflated rapidly, just a fraction of a nanosecond the primordial light waves called cosmic mi- of polarization should not only offer up a after it came into being, although definitive crowave background radiation (CMB). How- clincher for inflation, if it occurred, but also The POLARBEAR telescope in Chile’s Atacama Desert aims to reveal the nature of neutrinos and the origins of the universe. Image courtesy of Adrian Lee. www.pnas.org/cgi/doi/10.1073/pnas.1509007112 PNAS | July 14, 2015 | vol. 112 | no. 28 | 8513–8514 Downloaded by guest on September 29, 2021 except the occasional galaxy or other matter that deflected the light, just slightly. That de- flection, called gravitational lensing, will make swirls on a smaller scale than inflation, and allow the cosmologists to map how the matter in the universe has settled into structures. Fast-moving neutrinos have been slower to settle down compared with other matter. Physicists know how much matter there should be, so any mass “missing” from their map must be mostly neutrinos. They also know how many neutrinos there are, so they will be able to work out the neutrino mass. The POLARBEAR researchers are not alone in the Atacama, nor in their collection of CMB. They are in good-natured competition with the astrophysicists next door at the Atacama Cosmology Telescope (ACT) and at the South Pole Telescope in Antarctica, another high site with little water vapor. In addition, the Cosmology Large-Angular Scale Aided by supplemental oxygen, researchers work on telescope instruments some 5,200 Surveyor, soon to join the Atacama set, and meters above sea level. Image courtesy of Adrian Lee. the BICEP experiment, located in Antarctica, should be able to detect the inflationary signature. But the latter two won’t be able to help physicists deduce the mass of elementary onto silicon. These bolometers, six millimeters determine the neutrino mass. particles called neutrinos thought to be key to across, are cooled to 0.25 Kelvin so the incom- “It’s a really terrific situation where you unlocking multiple astronomical mysteries (3). ing CMB will warm them up noticeably. Each have several experiments of comparable capa- Cosmic microwaves travel through space has antennae pointing in a different direction, ’ bilities,” says cosmologist David Spergel of nearly unimpeded. But when they hit Earth s to pick up different angles of polarization (4, 5). “ atmosphere, they get absorbed by water The researchers map the directions of Princeton, who works on ACT. It will be re- ally good to have independent experiments molecules. To circumvent this problem, polarization for each point in the sky, seeking ” the POLARBEAR researchers set up their the telltale sign of inflation. “That really with the same results. The POLARBEAR de- telescope in Chile’s very dry Atacama, at violent event leaves ripples in space−time tectors have the potential to be among the 5,200 meters above sea level, in 2011. itself, and those ripples affect the polariza- most sensitive of the bunch, he says, although The Atacama makes for an unusual work- tion of the light,” says Kam Arnold, the their smallish telescope means lower resolu- site. “It’s sort of like a Martian landscape, all POLARBEAR project manager at University tion. It is not able to resolve galaxy clusters ’ dust and no plants,” says Darcy Barron, a of California, San Diego. A swirling pattern but is sufficient for the team s goals of finding postdoc with Lee at University of California, would verify inflation; if it does not appear, the inflation signature and neutrino mass. Berkeley. Sulfur dust from an old mine perme- the POLARBEAR cosmologists can neither By 2016, the POLARBEAR researchers ates the scientists’ possessions. There’snotonly confirm nor disprove the theory. will have two new telescopes. Arnold expects minimal water vapor but little oxygen as well. They are confident they’ll get one result: to have the neutrino measurement within The researchers tote portable oxygen tanks. the mass of neutrinos. Researchers know 5 years. Beyond that and inflation, Barron Without supplemental oxygen, “you can from previous research that it should be says, they might detect other interesting get pretty stupid pretty quick,” says Zigmund tiny—between 58 millielectron volts and 150 features of the hot, high-energy newborn Kermish, who earned his PhD with Lee and millielectron volts, Lee says—but not the universe. Perhaps, she speculates, they’ll see continues to work on POLARBEAR as a post- precise number (6). (An electron has a evidence for a primordial magnetic field, doc at Princeton University in New Jersey. mass of 511 kilo electronvolts.) which might explain why galaxies today The scientists make their home base in the That answer should be embedded in have magnetic fields. town of San Pedro de Atacama, about an POLARBEAR’s polarization map (7, 8). This “We’re opening a window onto the early hour’s drive away and 2,400 meters above sea is because the CMB waves traveled through universe,” says Lee. “There could be new level. Moisture and life start to appear on the space with nearly nothing in their path— things that no one has predicted yet.” road down: grass, hot springs, and flamingo- filled lagoons. The nearest department store is a couple of hours away, and suppliers of 1 Ade PAR, et al.; (BICEP2 Collaboration) (2014) Detection of B-mode 5 Kermish ZD, et al. (2012) The POLARBEAR experiment. Proc SPIE scientific equipment still farther. When polarization at degree angular scales by BICEP2. Phys Rev Lett 8452:84521C. something breaks, the researchers have to 112(24):241101. 6 Planck Collaboration (2015) Planck 2015 results. XIII. “ ’ ” 2 Ade PAR, et al.; (BICEP2/Keck and Planck Collaborations) (2015) Cosmological parameters. arXiv:1502.01589. make do. There slotsofducttapeinvolved, Joint analysis of BICEP2/Keck Array and Planck data. Phys Rev Lett 114(10): 7 Ade PAR, et al.; POLARBEAR Collaboration (2014) Measurement of the Kermish jokes. 101301. cosmic microwave background polarization lensing power spectrum with To detect the CMB flowing into their tele- 3 McKee M (2014) News feature: Seeing the ghostly universe. Proc the POLARBEAR experiment. Phys Rev Lett 113(2):021301. Natl Acad Sci USA 111(24):8699–8701. 8 The Polarbear Collaboration (2014) A measurement of the cosmic scope, they use an array of 1,274 detectors, 4 Keating B, et al. (2011) Ultra high energy cosmology with microwave background B-mode polarization power spectrum at sub- called bolometers, made of metal layered POLARBEAR. arXiv:1110.2101. degree scales with POLARBEAR. ApJ 794(2):171. 8514 | www.pnas.org/cgi/doi/10.1073/pnas.1509007112 Dance Downloaded by guest on September 29, 2021.
Recommended publications
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Survey strategy optimization for the Atacama Cosmology Telescope De Bernardis, F., Stevens, J., Hasselfield, M., Alonso, D., Bond, J. R., et al. F. De Bernardis, J. R. Stevens, M. Hasselfield, D. Alonso, J. R. Bond, E. Calabrese, S. K. Choi, K. T. Crowley, M. Devlin, J. Dunkley, P. A. Gallardo, S. W. Henderson, M. Hilton, R. Hlozek, S. P. Ho, K. Huffenberger, B. J. Koopman, A. Kosowsky, T. Louis, M. S. Madhavacheril, J. McMahon, S. Næss, F. Nati, L. Newburgh, M. D. Niemack, L. A. Page, M. Salatino, A. Schillaci, B. L. Schmitt, N. Sehgal, J. L. Sievers, S. M. Simon, D. N. Spergel, S. T. Staggs, A. van Engelen, E. M. Vavagiakis, E. J. Wollack, "Survey strategy optimization for the Atacama Cosmology Telescope," Proc. SPIE 9910, Observatory Operations: Strategies, Processes, and Systems VI, 991014 (15 July 2016); doi: 10.1117/12.2232824 Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Oct 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Survey strategy optimization for the Atacama Cosmology Telescope F. De Bernardisa, J. R. Stevensa, M. Hasselfieldb,c, D. Alonsod, J. R. Bonde, E. Calabresed, S. K. Choif, K. T. Crowleyf, M. Devling, J. Dunkleyd, P. A. Gallardoa, S. W. Hendersona, M. Hiltonh, R. Hlozeki, S. P. Hof, K. Huffenbergerj, B. J. Koopmana, A. Kosowskyk, T. Louisl, M. S. Madhavacherilm, J. McMahonn, S. Naessd, F. Natig, L. Newburghi, M. D. Niemacka, L. A. Pagef, M. Salatinof, A.
    [Show full text]
  • Measurement of the Cosmic Microwave Background Polarization with the BICEP Telescope at the South Pole
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Measurement of the Cosmic Microwave Background Polarization with the BICEP Telescope at the South Pole Permalink https://escholarship.org/uc/item/6b98h32b Author Takahashi, Yuki David Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Measurement of the Cosmic Microwave Background Polarization with the Bicep Telescope at the South Pole by Yuki David Takahashi A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor William L. Holzapfel, Chair Professor Adrian T. Lee Professor Chung-Pei Ma Fall 2010 Measurement of the Cosmic Microwave Background Polarization with the Bicep Telescope at the South Pole Copyright 2010 by Yuki David Takahashi 1 Abstract Measurement of the Cosmic Microwave Background Polarization with the Bicep Telescope at the South Pole by Yuki David Takahashi Doctor of Philosophy in Physics University of California, Berkeley Professor William L. Holzapfel, Chair The question of how exactly the universe began is the motivation for this work. Based on the discoveries of the cosmic expansion and of the cosmic microwave background (CMB) ra- diation, humans have learned of the Big Bang origin of the universe. However, what exactly happened in the first moments of the Big Bang? A scenario of initial exponential expansion called “inflation” was proposed in the 1980s, explaining several important mysteries about the universe. Inflation would have generated gravitational waves that would have left a unique imprint in the polarization of the CMB.
    [Show full text]
  • Integrated Sachs Wolfe Effect and Rees Sciama Effect
    Prog. Theor. Exp. Phys. 2012, 00000 (24 pages) DOI: 10.1093/ptep/0000000000 Integrated Sachs Wolfe Effect and Rees Sciama Effect Atsushi J. Nishizawa1 1 Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, Chiba 277-8582, Japan ∗E-mail: [email protected] ............................................................................... It has been around fifty years since R. K. Sachs and A. M. Wolfe predicted the existence of anisotropy in the Cosmic Microwave Background (CMB) and ten years since the integrated Sachs Wolfe effect (ISW) was first detected observationally. The ISW effect provides us with a unique probe of the accelerating expansion of the Universe. The cross-correlation between the large-scale structure and CMB has been the most promising way to extract the ISW effect from the data. In this article, we review the physics of the ISW effect and summarize recent observational results and interpretations. ................................................................................................. Subject Index Cosmological perturbation theory, Cosmic background radiations, Dark energy and dark matter 1. Overview After the discovery of the isotropic radiation of the Cosmic Microwave Background (CMB) of the Universe by A. A. Penzias and R. W. Wilson in 1965 [100], R. K. Sachs and A. M Wolfe predict the existence of anisotropy in the CMB associated with the gravitational redshift in 1967 [116]. They fully integrate the geodesic equation in a perturbed Friedman-Robertson-Walker (FRW) metric in the fully general relativistic framework. The Sachs-Wolfe (SW) is the first paper that predicts the presence of the anisotropy in the CMB which now plays an important role for constraining cosmo- logical models, the nature of dark energy, modified gravity, and non-Gaussianity of the primordial fluctuation.
    [Show full text]
  • Maturity of Lumped Element Kinetic Inductance Detectors For
    Astronomy & Astrophysics manuscript no. Catalano˙f c ESO 2018 September 26, 2018 Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 GHz A. Catalano1,2, A. Benoit2, O. Bourrion1, M. Calvo2, G. Coiffard3, A. D’Addabbo4,2, J. Goupy2, H. Le Sueur5, J. Mac´ıas-P´erez1, and A. Monfardini2,1 1 LPSC, Universit Grenoble-Alpes, CNRS/IN2P3, 2 Institut N´eel, CNRS, Universit´eJoseph Fourier Grenoble I, 25 rue des Martyrs, Grenoble, 3 Institut de Radio Astronomie Millim´etrique (IRAM), Grenoble, 4 LNGS - Laboratori Nazionali del Gran Sasso - Assergi (AQ), 5 Centre de Sciences Nucl´eaires et de Sciences de la Mati`ere (CSNSM), CNRS/IN2P3, bat 104 - 108, 91405 Orsay Campus Preprint online version: September 26, 2018 ABSTRACT This work intends to give the state-of-the-art of our knowledge of the performance of lumped element kinetic inductance detectors (LEKIDs) at millimetre wavelengths (from 80 to 180 GHz). We evaluate their optical sensitivity under typical background conditions that are representative of a space environment and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100 and 150 GHz (∆ν/ν about 0.3). Their sensitivities were characterised in the laboratory using a dedicated closed-cycle 100 mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays was evaluated by exposing the LEKID arrays to alpha particles (241Am) and X sources (109Cd), with a read-out sampling frequency similar to those used for Planck HFI (about 200 Hz), and also with a high resolution sampling level (up to 2 MHz) to better characterise and interpret the observed glitches.
    [Show full text]
  • CMB Telescopes and Optical Systems to Appear In: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation
    CMB Telescopes and Optical Systems To appear in: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation Shaul Hanany ([email protected]) University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, USA, Michael Niemack ([email protected]) National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA, and Lyman Page ([email protected]) Princeton University, Department of Physics, Princeton NJ, USA. March 26, 2012 Abstract The cosmic microwave background radiation (CMB) is now firmly established as a funda- mental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB ob- servations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by arXiv:1206.2402v1 [astro-ph.IM] 11 Jun 2012 the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We con- clude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.
    [Show full text]
  • The Design of the Ali CMB Polarization Telescope Receiver
    The design of the Ali CMB Polarization Telescope receiver M. Salatinoa,b, J.E. Austermannc, K.L. Thompsona,b, P.A.R. Aded, X. Baia,b, J.A. Beallc, D.T. Beckerc, Y. Caie, Z. Changf, D. Cheng, P. Chenh, J. Connorsc,i, J. Delabrouillej,k,e, B. Doberc, S.M. Duffc, G. Gaof, S. Ghoshe, R.C. Givhana,b, G.C. Hiltonc, B. Hul, J. Hubmayrc, E.D. Karpela,b, C.-L. Kuoa,b, H. Lif, M. Lie, S.-Y. Lif, X. Lif, Y. Lif, M. Linkc, H. Liuf,m, L. Liug, Y. Liuf, F. Luf, X. Luf, T. Lukasc, J.A.B. Matesc, J. Mathewsonn, P. Mauskopfn, J. Meinken, J.A. Montana-Lopeza,b, J. Mooren, J. Shif, A.K. Sinclairn, R. Stephensonn, W. Sunh, Y.-H. Tsengh, C. Tuckerd, J.N. Ullomc, L.R. Valec, J. van Lanenc, M.R. Vissersc, S. Walkerc,i, B. Wange, G. Wangf, J. Wango, E. Weeksn, D. Wuf, Y.-H. Wua,b, J. Xial, H. Xuf, J. Yaoo, Y. Yaog, K.W. Yoona,b, B. Yueg, H. Zhaif, A. Zhangf, Laiyu Zhangf, Le Zhango,p, P. Zhango, T. Zhangf, Xinmin Zhangf, Yifei Zhangf, Yongjie Zhangf, G.-B. Zhaog, and W. Zhaoe aStanford University, Stanford, CA 94305, USA bKavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA cNational Institute of Standards and Technology, Boulder, CO 80305, USA dCardiff University, Cardiff CF24 3AA, United Kingdom eUniversity of Science and Technology of China, Hefei 230026 fInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 gNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 hNational Taiwan University, Taipei 10617 iUniversity of Colorado Boulder, Boulder, CO 80309, USA jIN2P3, CNRS, Laboratoire APC, Universit´ede Paris, 75013 Paris, France kIRFU, CEA, Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France lBeijing Normal University, Beijing 100875 mAnhui University, Hefei 230039 nArizona State University, Tempe, AZ 85004, USA oShanghai Jiao Tong University, Shanghai 200240 pSun Yat-Sen University, Zhuhai 519082 ABSTRACT Ali CMB Polarization Telescope (AliCPT-1) is the first CMB degree-scale polarimeter to be deployed on the Tibetan plateau at 5,250 m above sea level.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title The South Pole Telescope bolometer array and the measurement of secondary Cosmic Microwave Background anisotropy at small angular scales Permalink https://escholarship.org/uc/item/2z74c4rc Author Shirokoff, Erik D. Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California The South Pole Telescope bolometer array and the measurement of secondary Cosmic Microwave Background anisotropy at small angular scales by Erik D. Shirokoff A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor William Holzapfel, Chair Professor Bernard Sadoulet Professor Chung-Pei Ma Fall 2011 The South Pole Telescope bolometer array and the measurement of secondary Cosmic Microwave Background anisotropy at small angular scales Copyright 2011 by Erik D. Shirokoff 1 Abstract The South Pole Telescope bolometer array and the measurement of secondary Cosmic Microwave Background anisotropy at small angular scales by Erik D. Shirokoff Doctor of Philosophy in Physics University of California, Berkeley Professor William Holzapfel, Chair The South Pole Telescope (SPT) is a dedicated 10-meter diameter telescope optimized for mm-wavelength surveys of the Cosmic Microwave Background (CMB) with arcminute reso- lution. The first instrument deployed at SPT features a 960 element
    [Show full text]
  • Clover: Measuring Gravitational-Waves from Inflation
    ClOVER: Measuring gravitational-waves from Inflation Executive Summary The existence of primordial gravitational waves in the Universe is a fundamental prediction of the inflationary cosmological paradigm, and determination of the level of this tensor contribution to primordial fluctuations is a uniquely powerful test of inflationary models. We propose an experiment called ClOVER (ClObserVER) to measure this tensor contribution via its effect on the geometric properties (the so-called B-mode) of the polarization of the Cosmic Microwave Background (CMB) down to a sensitivity limited by the foreground contamination due to lensing. In order to achieve this sensitivity ClOVER is designed with an unprecedented degree of systematic control, and will be deployed in Antarctica. The experiment will consist of three independent telescopes, operating at 90, 150 or 220 GHz respectively, and each of which consists of four separate optical assemblies feeding feedhorn arrays arrays of superconducting detectors with phase as well as intensity modulation allowing the measurement of all three Stokes parameters I, Q and U in every pixel. This project is a combination of the extensive technical expertise and experience of CMB measurements in the Cardiff Instrumentation Group (Gear) and Cavendish Astrophysics Group (Lasenby) in UK, the Rome “La Sapienza” (de Bernardis and Masi) and Milan “Bicocca” (Sironi) CMB groups in Italy, and the Paris College de France Cosmology group (Giraud-Heraud) in France. This document is based on the proposal submitted to PPARC by the UK groups (and funded with 4.6ML), integrated with additional information on the Dome-C site selected for the operations. This document has been prepared to obtain an endorsement from the INAF (Istituto Nazionale di Astrofisica) on the scientific quality of the proposed experiment to be operated in the Italian-French base of Dome-C, and to be submitted to the Commissione Scientifica Nazionale Antartica and to the French INSU and IPEV.
    [Show full text]
  • Arxiv:1412.0626V1 [Astro-Ph.CO] 1 Dec 2014 Versity, 3400 N
    Draft: December 2, 2014 Preprint typeset using LATEX style emulateapj v. 05/12/14 THE ATACAMA COSMOLOGY TELESCOPE: LENSING OF CMB TEMPERATURE AND POLARIZATION DERIVED FROM COSMIC INFRARED BACKGROUND CROSS-CORRELATION Alexander van Engelen1,2, Blake D. Sherwin3, Neelima Sehgal2, Graeme E. Addison4, Rupert Allison5, Nick Battaglia6, Francesco de Bernardis7, J. Richard Bond1, Erminia Calabrese5, Kevin Coughlin8, Devin Crichton9, Rahul Datta8, Mark J. Devlin10, Joanna Dunkley5, Rolando Dunner¨ 11, Emily Grace12, Megan Gralla9, Amir Hajian1, Matthew Hasselfield13,4, Shawn Henderson7, J. Colin Hill14, Matt Hilton15, Adam D. Hincks4, Renee´ Hlozek13, Kevin M. Huffenberger16, John P. Hughes17, Brian Koopman7, Arthur Kosowsky18, Thibaut Louis5, Marius Lungu10, Mathew Madhavacheril2, Lo¨ıc Maurin11, Jeff McMahon8, Kavilan Moodley15, Charles Munson8, Sigurd Naess5, Federico Nati19, Laura Newburgh20, Michael D. Niemack7, Michael R. Nolta1, Lyman A. Page12, Christine Pappas12, Bruce Partridge21, Benjamin L. Schmitt10, Jonathan L. Sievers22,23,12, Sara Simon12, David N. Spergel13, Suzanne T. Staggs12, Eric R. Switzer24,1, Jonathan T. Ward10, Edward J. Wollack24 Draft: December 2, 2014 ABSTRACT We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by cross-correlating the reconstructed convergence signal from the first season of ACTPol data at 146 GHz with Cosmic Infrared Background (CIB) fluctu- ations measured using the Planck satellite. Using an overlap area of 206 square degrees, we detect gravitational lensing of the CMB polarization by large-scale structure at a statistical significance of 4:5σ. Combining both CMB temperature and polarization data gives a lensing detection at 9:1σ sig- nificance. A B-mode polarization lensing signal is present with a significance of 3:2σ.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • Physics of the Cosmic Microwave Background Anisotropy∗
    Physics of the cosmic microwave background anisotropy∗ Martin Bucher Laboratoire APC, Universit´eParis 7/CNRS B^atiment Condorcet, Case 7020 75205 Paris Cedex 13, France [email protected] and Astrophysics and Cosmology Research Unit School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Durban 4041, South Africa January 20, 2015 Abstract Observations of the cosmic microwave background (CMB), especially of its frequency spectrum and its anisotropies, both in temperature and in polarization, have played a key role in the development of modern cosmology and our understanding of the very early universe. We review the underlying physics of the CMB and how the primordial temperature and polarization anisotropies were imprinted. Possibilities for distinguish- ing competing cosmological models are emphasized. The current status of CMB ex- periments and experimental techniques with an emphasis toward future observations, particularly in polarization, is reviewed. The physics of foreground emissions, especially of polarized dust, is discussed in detail, since this area is likely to become crucial for measurements of the B modes of the CMB polarization at ever greater sensitivity. arXiv:1501.04288v1 [astro-ph.CO] 18 Jan 2015 1This article is to be published also in the book \One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity," edited by Wei-Tou Ni (World Scientific, Singapore, 2015) as well as in Int. J. Mod. Phys. D (in press).
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Ming-Tang Chen, Ph.D., Physics Research Fellow Deputy Director of ASIAA Hawaii Operations Academia Sinica, Institute of Astronomy and Astrophysics (Taiwan) PO Box 23-141, Taipei, Taiwan, ROC (USA) 645 N. A’ohoku Place, Hilo, HI 96720, USA Telephone (TW): +886-2-2366-5348 Telephone (US): +1-808-938-4708 Email: [email protected] CURRICULUM VITAE ................................................................................................... 1 Brief Biography: .............................................................................................................. 2 Person Data: ..................................................................................................................... 2 Education: ........................................................................................................................ 2 Knowledge & Skills: ....................................................................................................... 2 Professional TitleS: .......................................................................................................... 2 Committee Service: ......................................................................................................... 3 Grant Executed: ............................................................................................................... 4 International Invited Talks: ............................................................................................. 5 Current and Past Research Topics: .................................................................................
    [Show full text]