LiteBIRD! Lite(Light) satellite for the studies for B-mode polarizaon and Inflaon from cosmic background Radiaon Detec6on Tomotake Matsumura (ISAS/JAXA) on behalf of LiteBIRD working group! 2014/12/1-5, PLANCK2014, Ferrara! Explora(on of early Universe using CMB satellite COBE (1989) WMAP (2001) Planck (2009) Band 32−90GHz 23−94GHz 30−857GHz (353GHz) Detectors 6 radiometers 20 radiometers 11 radiometers + 52 bolometers Operaon temperature 300/140 K 90 K 100 mK Angular Resolu6no ~7° ~0.22° ~0.1° Orbit Sun Synch L2 L2 December 3, 2014 Planck2014@Ferrara, Italy 2 Explora(on of early Universe using CMB satellite Next generation B-mode probe COBE (1989) WMAP (2001) Planck (2009) Band 32−90GHz 23−94GHz 30−857GHz (353GHz) EE Detectors 6 radiometers 20 radiometers 11 radiometers + 52 bolometers Operaon temperature 300/140 K 90 K 100 mK Angular Resolu6no ~7° ~0.22° BB ~0.1° Orbit Sun Synch L2 L2 December 3, 2014 Planck2014@Ferrara, Italy 3 LiteBIRD LiteBIRD is a next generaon CMB polarizaon satellite to probe the inflaonary Universe. The science goal of LiteBIRD is to measure the tensor-to-scalar rao with the sensi6vity of δr =0.001. The design philosophy is driven to focus on the primordial B-mode signal. Primordial B-mode r = 0.2 Lensing B-mode r = 0.025 Plot made by Y. Chinone December 3, 2014 Planck2014@Ferrara, Italy 4 LiteBIRD working group >70 members, internaonal and interdisciplinary. KEK JAXA UC Berkeley Kavli IPMU MPA NAOJ Y. Chinone H. Fuke W. Holzapfel N. Katayama E. Komatsu S. Kashima K. Haori I. Kawano A. Lee (US PI) H. Nishino K. Karatsu M. Hazumi (PI) H. Matsuhara P. Richards Tohoku Univ. T. Noguchi M. Hasegawa T. Matsumura A. Suzuki Yokohama Natl. K. Ishidoshiro Y. Sekimoto N. Kimura K. Mitsuda Y. Hori Univ. M. Haori H. Morii T. Nishibori T. Fujino T. Morishima NICT R. Nagata K. Nishijo McGill U. I. Irie Y. Uzawa Konan Univ. M. Dobbs K. Mizukami S. Oguri A. Noda I. Ohta N. Sato S. Sakai S. Nakamura RIKEN K. Natsume K. Koga T. Suzuki Y. Sato LBNL Saitama Univ. T. Yamashita S. Mima O. Tajima K. Shinozaki J. Borrill M. Naruse C. Otani T. Tomaru H. Sugita Osaka Pref. Univ. Univ. of Tsukuba Stanford U. H. Yamaguchi Y. Takei H. Ogawa M. Nagai T. Namikawa M. Yoshida S. Utsunomiya K. Kimura T. Wada X-ray M. Kozu Sokendai N. Yamasaki N. Okada CMB exp. (Berkeley, Y. Akiba T. Yoshida astrophysics M. Inoue KEK, McGill, Eiichiro) Y. Inoue K. Yotsumoto (JAXA) H. Ishitsuka NIFS Y. Segawa Okayama Univ. IR astronomy S. Takada H. Watanabe H. Ishino (JAXA) A. Kibayashi Superconductivity detector Osaka Univ. Y. Kibe (Berkeley, Okayama, KEK, S. Takakura Y. Yamada JAXA engineering NAOJ, Riken etc.) December 3, 2014 SE office, MDSG 5 Mission design parameters The mission sensi6vity relies on a few key parameters. Angular resolu6on Science goal 90° 10° 2° 1° 0.2° Power Law 101 Chaotic (p=1) SSB (Ne=47-62) Chaotic (p=0.1) 100 LiteBIRD Requirements ] -1 2 10 K µ ) [ 10-2 r=0.1 /(2 l BB Primordial B-mode -3 r=0.01 Tradeoffs 10 l(l+1)C 10-4 r=0.001 10-5 Summary 10-6 LiteBIRD sensi(vity 2 10 25 50 100 250 500 10001500 Array sensi6vity multipole, l Sky coverage M. Hazumi et al. 2012 • Foreground subtrac6on: Observing frequency and the sensi6vity at each band • Array sensi6vity: Op6cal system and detectors • Angular coverage: Op6cal system December 3, 2014 • Full sky observaon: Orbit and Scan strategy 6 Observing frequency range N. Katayama and E. Komatsu (ApJ 737, 78 (2011), arXiv:1101.5210) employed the “the pixel-based polarized foreground removal using template method” and survey the proper observing frequency range: à ≥ 5 bands in 50-270GHz Avoid CO lines! WMAP 23GHz • Place 6 bands at 60, 78, 100, 140, 195, 280 GHz. Δν/ν=0.23 per band • Avoid CO lines. Δν/ν=0.3 per band December 3, 2014 Planck2014@Ferrara, Italy 7 Foreground subtraC(on exerCise using a template method with 6 bands We apply the template method to the Planck sky model (Dust polarizaon frac6on is set to be ×3) using the 6 bands, and test the recovery of tensor-to- scalar rao, r. Use l <47 and fsky of 50%. Method II: Δ-template with uniform β distribu(on Method II’: Δ-template with a prior in β distribu(on Method III: itera(ve Δ-template recover recover r rin December 3, 2014 Planck2014@Ferrara, Italy Natsume et al. in prep. 8 Observing frequency range Auer the Planck CMB polarizaon data are released, we will revisit to this op6mizaon with Planck data. Avoid CO lines! WMAP 23GHz • In case of a need for more bands, we have an op6on to vary the band center Δν/ν=0.23 per band for each detector and increase the number of bands effec6vely while keeping the detector count constant. Δν/ν=0.3 per band • We have a room to place a band < 60 GHz and > 280 GHz. December 3, 2014 Planck2014@Ferrara, Italy 9 Observing frequency range Auer the Planck CMB polarizaon data are released, we will revisit to this op6mizaon with Planck data. Avoid CO lines! WMAP 23GHz • In case of a need for more bands, we have an op6on to vary the band center Δν/ν=0.23 per band for each detector and increase the number of bands effec6vely while keeping the detector count constant. Δν/ν=0.3 per band • We have a room to place a band < 60 GHz and > 280 GHz. December 3, 2014 Planck2014@Ferrara, Italy 10 Opcal system Modified cross-Dragone op6cal system achieves - Beam size of <1 deg for > 70 GHz the compact and telecentric wide field of view. - Wide field of view ±15 degs The ground based CMB experiment, ABS, GroundBIRD, QUIET, - Size(<〜φ2m×t2m) employs this type of op6cal system. - Telecentric focal plane - Low sidelobe performance - Beam calibraon capability GRASP10 simulaons at 60GHz. A simple baffle at aperture can suppress most of the sidelobe. December 3, 2014 Planck2014@Ferrara, Italy 11 Opcal system Modified cross-Dragone op6cal system achieves - Beam size of <1 deg for > 70 GHz the compact and telecentric wide field of view. - Wide field of view ±15 degs The ground based CMB experiment, ABS, GroundBIRD, QUIET, - Size(<〜φ2m×t2m) employs this type of op6cal system. - Telecentric focal plane - Low sidelobe performance - Beam calibraon capability GRASP10 simulaons at 60GHz. A simple baffle at aperture can suppress most of the sidelobe. The primary and secondary mirrors and baffles are ac6vely cooled by the Srling and JT cooler at 4 K (warm launch). December 3, 2014 Planck2014@Ferrara, Italy 12 Detector and readout • Sensi6vity:Op6cal NEP = 2 ×10-18 W/√Hz • Broad frequency coverage:~50 – 300 GHz • Mul6-pixel array: ~2000 • High yield • Low power consump6on (< 100W total) • Controlled sidelobe at a feed • High TRL Transi6on edge sensor (TES) bolometer Microwave kine6c inductance detector (MKID) Example from POLARBEAR focal plane Example of MKID from NAOJ. PB-1 NEP 〜 6×10-18 W/√Hz 1274 TESs with 80% yield. Single band at 200GHz NET per array: 23 μK√s MUX=600 PB-2 More examples from 2 bands/pixel(95,150GHz) JPL, SRON and others. 7588 TESs (1897×2pol×2band) Z. Kermish Ph.D. thesis Readout is DfMUX with UC Berkeley MUX=40 by McGill Univ. K. Karatsu et al. 2013 High TRL by the use in various CMB experiments. Ajrac6ve features and rapid progress in the MKID Need space qualified low loading TES and low power development. Poten6al candidate for a future consump6on readout. mission in next a few years. Both TES and MKID are exposed to the proton beams (10 years eq. at L2). They are in the process of measuring the effect. Planck2014@Ferrara, Italy 13 FoCal plane design with TES op(ons tri-chroic(140/195/280GHz) The sensivity with this focal plane UC Berkeley TES op(on configuraon is opmized based on the mapping speed. tri-chroic(60/78/100GHz) Bath temperature of 100mK • The readout is based on the DfMUX (64 mux) that is employed by POLARBEAR (40 mux). • The power consump6on from the readout electronics is 62 W (2W per SQUID). The space qualified DfMUX system is under developing at Univ. of McGill. December 3, 2014 Planck2014@Ferrara, Italy 14 T. Matsumura et al. 2013 Scan strategy at L2 Sun • JAXA H2 rocket compable • 3 years of observaons Precession angle β Spin angle α An6-sun direcon December 3, 2014 Planck2014@Ferrara, Italy 15 SystemaC effeCts BB • Systemac effects (require each effect is below 1/100 of lensing Cl ) Type EffeCt ReQuirement in ReQuirement in Note bias Case random case Diff. gain 0.01% 0.3 % Instantaneous Diff. Beam width 0.7% 2 % FP average ease them by (up to) Diff. beam poin6ng 3.5 arcsec. 16 arcsec. an order of magnitude. Diff. beam ellip6city 7% @ ell=2 2.7 % Differen6al effect (False polarizaon) 0.04% @ ell=300 Poin6ng knowledge 6 arcmin. 25 arcmin. 20 degs.×30 degs FOV Abs. gain Parity preserved 3% Calibraon in every 10 min. Beam size stability Parity preserved O(10%) (Paern modulaon) Non. Differen6al effect Angle calibraon 1 arcmin. 12 degs. December 3, 2014 Planck2014@Ferrara, Italy Table from R. Nagata 16 Scan strategy LiteBIRD Robust to large angular scale Higher crosslink and robust to signal (low l) with given 1/f noise. the polarizaon systemacs. Scan path We choose (α、β)=(65,30)degs in order to op6mize the crosslink, i.e. minimize the required abs. poin6ng error.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages20 Page
-
File Size-