The Planck Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

The Planck Newsletter The Planck Newsletter Issue 6 Information and news for the Planck community June 2004 Planck, the Virtual Busy times ahead Observatory and the Grid J. Tauber R.G. Mann, A.J. Banday and K.M. Gorski The year started very auspiciously with a well-attended and stimulating 2nd Planck Symposium which highlighted the Planck’s newest Working Group - WG8: Virtual Observa- undiminished expectations for Planck. tory - has been set up to coordinate the interface between the Planck consortia and the rapidly developing Virtual Obser- However, the most exciting aspect of the current year is the vatory and Grid computing communities. A number of areas production of the first sets of flight-like hardware. Both at of Planck activity might benefit significantly from advances spacecraft and at instrument level, qualification models have coming from those domains, but to do so will require active been built of almost all subsystems (see the reports else- engagement with them. It is the task of WG8 to lead that en- where in this issue). The sorption cooler pipework and cold gagement, but its success depends on input from across the end qualification model are the first instrument hardware full Planck community. delivered to ESA, and JPL is rightfully proud of that fact. It feels very good to start seeing and touching the fruits of so The VO and the Grid many years of work by so many people! The Virtual Observatory (VO) concept centres on the federa- tion of the world’s significant astronomical data sources, and The preparations for the instrument-level qualification cam- is likely to provide the environment within which much as- paigns are now in full swing, and the LFI and HFI teams are tronomical research is undertaken by the time that Planck expecting a very busy summer with this activity. By the flies. It would be useful, therefore, that some parts of Planck autumn both instrument qualification models (QMs) should infrastructure are made “VO-compliant” so that scientists – have been tested and calibrated. The HFI QM will then be including Planck consortium members within the proprietary delivered to ESA for integration into a satellite QM, which period – can access Planck data using the same tools and will be cooled down to operational temperatures (~ 40 K) in standards as they employ in the rest of their research. Con- a large vacuum facility at the Centre Spatial de Liège, and versely, the Planck consortia should ensure that their specific end-to-end testing will take place. All of this will happen science requirements help inform the definition of those VO before the end of the year. standards. >>> Busy Times Ahead continues on page 3 I NSIDE T HIS I SSUE 1,3 Planck, the Virtual Observatory and the Grid 1,3 Busy times ahead 2 News from the H/P project team 3 Planck reflector development status 3 Post-doc opportunity 3,4 News from the LFI 5 Planck activity at Jodrell Bank Observatory 6 Successful component separation on real satellite data The VO’s infrastructure builds, in part, on ideas from the 7 Pronaos/Archeops Balloon experiments: a world of “Grid Computing”, a term used to cover a range of preview of dust emission for Planck and Herschel technologies being developed within both the academic 8 ProC: a workflow engine for Planck computer science and commercial IT sectors to aid distribu- supercomputing ted computation: if the Web provides you with information 8 Calendar of some events nd distributed over the network, then the Grid will give you 9 The 2 Planck Symposium: Setting the scene access to computational resources located elsewhere. A 9 Call for papers number of Planck activities – notably pre-launch simula- 10 News from the HFI tions, but also, perhaps, some aspects of DPC operations – 10 About the authors 10 Call for Planck related publications >>> Planck, the VO, and the GRID continues on page 3 11 List of recent Planck related publications The Planck Newsletter is published by the PlanckThe Scie Plancknce Office,Newsletter Research 1 and Scientific Support Department of ESA, ESTEC, Noordwijk, The Netherlands. See also http://www.rssd.esa.int/Planck . from JPL driven by a hydrogen supply furnished by In- News from the H/P Project dustry. The delivery of the CQM PACE by JPL to ESA and industry in April marked the first instrument delivery for Team Planck, to be followed in September by the HFI CQM instrument. Deliveries of the two sorption cooler proto-flight Gerald Crone and Thomas Passvogel (PFM) units are anticipated for November this year and Industrial activities for both Herschel and Planck have pro- March next year. The next review cycle, the Instrument gressed sufficiently to plan to allow the start of the System Qualification review, will be initiated in the autumn and will level Critical Design Review (CDR) cycle in April. It was be in line with completion of the instrument level QM and decided to treat the CDR in two steps with a review of both sorption cooler level PFM test campaigns. Payload modules (PLMs) by the ESA project, together with The overall spacecraft deve- Alcatel preceding and leading into the second step, the full lopment is driven by availa- Space Segment CDR conducted at ESA level with the Direc- bility of the service module tor of Science and the ESA Inspector General chairing the and finalization of the service review board. The PLM CDR for Planck has already started module structure. Parallel ma- in April and will be completed in June, whilst the Herschel nufacturing is ongoing and the one will start one month later and be concluded in July. The SVM will be ready for its conclusions of each review will be fed into the ESA level re- review in August. Develop- view running from mid August until October. ment of the Planck Payload This review cycle marks the end of the industrial detailed Module is progressing well design phase and ensures that the design is complete, frozen, with the manufacture of the and compliant with the mission needs. The review will fur- QM hardware completed and ther verify that all internal and external interfaces between FM manufacturing already modules (i.e. PLM’s and Service Module - SVM), the tele- started last year. The qualifi- scope, the instruments, launcher segment, and ground seg- cation model testing of the two parts, telescope structure ment are now detailed and complete. The verification The baffle before coating. approach at system level including the testing of both the and cryostructure, is well ad- CQM and FM modules and spacecraft must be adequate and vanced. The telescope struc- commensurate with the launch date. For Planck, this marks ture has already been thermo-elastically tested using video- the go-ahead for the integration of the HFI CQM and the LFI grammetry at liquid nitrogen temperatures at Alcatel with structural thermal model with the CQM payload module, and vibration and acoustic testing nearing completion. the beginning of the cryogenic system level tests and asso- ciated instrument performance tests, to be followed by the The Planck reflectors are a joint ESA/DSRI undertaking. structural test campaign on the full spacecraft. The QM secondary mirror has completed its cryogenic pro- file measurement tests at CSL using an infrared interferome- ter. The campaign has taken longer than expected, both in The qualification model setting up the optics and the processing and interpretation of of the telescope structure assembled at the results. The limitation of the measurement technique to Alcatel resolve areas of high surface slope was already known and expected. Investigations are ongoing to determine if the detected high frequency surface errors are due to physical deformations of the reflector at cryogenic temperatures or produced by the set-up. This is currently being resolved to enable to proceed with the Primary reflector QM test and the release of flight model manufacture. Finally we must address the overall schedule of the Her- The instrument hardware design review (IHDR) cycle, schel/Planck Programme. The H/P Project Manager has re- which approves the instruments’ AVM and CQM program- cently defined a new set of delivery dates of instruments to me, the hardware for instrument level testing and the On- Industry, which are later Board software, is almost completed. The LFI follows a than those defined for the proto-flight development and not participating in the system PDR. These dates are the CQM programme. The instrument is currently in the middle baseline for the CDR exer- of its IHDR which nonetheless is reviewing the instrument’s cise and industry have plan- own internal QM programme. This review will be completed ned their assembly, integra- in June. The Sorption cooler is progressing well. Readers tion and test campaign (in- may recall that a sorption cooler simulator will be used for cluding double shift work- th the system CQM testing: the simulator comprises a full ing) to maintain the 15 Fe- bruary 2007 launch date.  flight quality pipe-work assembly and cold-end (PACE) V-grooves before coating The Planck Newsletter 2 Planck, the Virtual Observatory, and Planck Reflector the GRID – continued from page 1 Development Status would benefit from being undertaken on computational resources of a scope beyond that available at any one Planck H.U. Nørgaard Nielsen institution. The Grid may provide access to them, and Planck simulations represent an ideal application for Grid testbeds In order to verify the optical performance of the secondary to implement. reflector qualification model at cryogenic temperatures, tests have been conducted at the Centre Spatial de Liège (CSL) WG8 Initial Report and Future Plans using a 10 micron interferometer system. Starting in Sep- The membership of WG8 includes those Planck consortium tember 2003, four temperature cycles have been performed, members already active in the VO and/or Grid worlds, plus each cycle going from room temperature down to 40 K and additional individuals working on those Planck activities back.
Recommended publications
  • George Harrison
    COPYRIGHT 4th Estate An imprint of HarperCollinsPublishers 1 London Bridge Street London SE1 9GF www.4thEstate.co.uk This eBook first published in Great Britain by 4th Estate in 2020 Copyright © Craig Brown 2020 Cover design by Jack Smyth Cover image © Michael Ochs Archives/Handout/Getty Images Craig Brown asserts the moral right to be identified as the author of this work A catalogue record for this book is available from the British Library All rights reserved under International and Pan-American Copyright Conventions. By payment of the required fees, you have been granted the non-exclusive, non-transferable right to access and read the text of this e-book on-screen. No part of this text may be reproduced, transmitted, down-loaded, decompiled, reverse engineered, or stored in or introduced into any information storage and retrieval system, in any form or by any means, whether electronic or mechanical, now known or hereinafter invented, without the express written permission of HarperCollins. Source ISBN: 9780008340001 Ebook Edition © April 2020 ISBN: 9780008340025 Version: 2020-03-11 DEDICATION For Frances, Silas, Tallulah and Tom EPIGRAPHS In five-score summers! All new eyes, New minds, new modes, new fools, new wise; New woes to weep, new joys to prize; With nothing left of me and you In that live century’s vivid view Beyond a pinch of dust or two; A century which, if not sublime, Will show, I doubt not, at its prime, A scope above this blinkered time. From ‘1967’, by Thomas Hardy (written in 1867) ‘What a remarkable fifty years they
    [Show full text]
  • The Q/U Imaging Experiment (QUIET): the Q-Band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller
    The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2010 c 2010 Laura Newburgh All Rights Reserved Abstract The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Phase I of the Q/U Imaging ExperimenT (QUIET) measures the Cosmic Microwave Background polarization anisotropy spectrum at angular scales 25 1000. QUIET has deployed two independent receiver arrays. The 40-GHz array took data between October 2008 and June 2009 in the Atacama Desert in northern Chile. The 90-GHz array was deployed in June 2009 and observations are ongoing. Both receivers observe four 15◦ 15◦ regions of the sky in the southern hemisphere that are expected × to have low or negligible levels of polarized foreground contamination. This thesis will describe the 40 GHz (Q-band) QUIET Phase I instrument, instrument testing, observations, analysis procedures, and preliminary power spectra. Contents 1 Cosmology with the Cosmic Microwave Background 1 1.1 The Cosmic Microwave Background . 1 1.2 Inflation . 2 1.2.1 Single Field Slow Roll Inflation . 3 1.2.2 Observables . 4 1.3 CMB Anisotropies . 6 1.3.1 Temperature . 6 1.3.2 Polarization . 7 1.3.3 Angular Power Spectrum Decomposition . 8 1.4 Foregrounds . 14 1.5 CMB Science with QUIET . 15 2 The Q/U Imaging ExperimenT Q-band Instrument 19 2.1 QUIET Q-band Instrument Overview .
    [Show full text]
  • 19 International Workshop on Low Temperature Detectors
    19th International Workshop on Low Temperature Detectors Program version 1.24 - British Summer Time 1 Date Time Session Monday 19 July 14:00 - 14:15 Introduction and Welcome 14:15 - 15:15 Oral O1: Devices 1 15:15 - 15:25 Break 15:25 - 16:55 Oral O1: Devices 1 (continued) 16:55 - 17:05 Break 17:05 - 18:00 Poster P1: MKIDs and TESs 1 Tuesday 20 July 14:00 - 15:15 Oral O2: Cold Readout 15:15 - 15:25 Break 15:25 - 16:55 Oral O2: Cold Readout (continued) 16:55 - 17:05 Break 17:05 - 18:30 Poster P2: Readout, Other Devices, Supporting Science 1 20:00 - 21:00 Virtual Tour of NIST Quantum Sensor Group Labs Wednesday 21 July 14:00 - 15:15 Oral O3: Instruments 15:15 - 15:25 Break 15:25 - 16:55 Oral O3: Instruments (continued) 16:55 - 17:05 Break 17:05 - 18:30 Poster P3: Instruments, Astrophysics and Cosmology 1 18:00 - 19:00 Vendor Exhibitor Hour Thursday 22 July 14:00 - 15:15 Oral O4A: Rare Events 1 Oral O4B: Material Analysis, Metrology, Other 15:15 - 15:25 Break 15:25 - 16:55 Oral O4A: Rare Events 1 (continued) Oral O4B: Material Analysis, Metrology, Other (continued) 16:55 - 17:05 Break 17:05 - 18:30 Poster P4: Rare Events, Materials Analysis, Metrology, Other Applications 20:00 - 21:00 Virtual Tour of NIST Cleanoom Monday 26 July 23:00 - 00:15 Oral O5: Devices 2 00:15 - 00:25 Break 00:25 - 01:55 Oral O5: Devices 2 (continued) 01:55 - 02:05 Break 02:05 - 03:30 Poster P5: MMCs, SNSPDs, more TESs Tuesday 27 July 23:00 - 00:15 Oral O6: Warm Readout and Supporting Science 00:15 - 00:25 Break 00:25 - 01:55 Oral O6: Warm Readout and Supporting Science
    [Show full text]
  • Maturity of Lumped Element Kinetic Inductance Detectors For
    Astronomy & Astrophysics manuscript no. Catalano˙f c ESO 2018 September 26, 2018 Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 GHz A. Catalano1,2, A. Benoit2, O. Bourrion1, M. Calvo2, G. Coiffard3, A. D’Addabbo4,2, J. Goupy2, H. Le Sueur5, J. Mac´ıas-P´erez1, and A. Monfardini2,1 1 LPSC, Universit Grenoble-Alpes, CNRS/IN2P3, 2 Institut N´eel, CNRS, Universit´eJoseph Fourier Grenoble I, 25 rue des Martyrs, Grenoble, 3 Institut de Radio Astronomie Millim´etrique (IRAM), Grenoble, 4 LNGS - Laboratori Nazionali del Gran Sasso - Assergi (AQ), 5 Centre de Sciences Nucl´eaires et de Sciences de la Mati`ere (CSNSM), CNRS/IN2P3, bat 104 - 108, 91405 Orsay Campus Preprint online version: September 26, 2018 ABSTRACT This work intends to give the state-of-the-art of our knowledge of the performance of lumped element kinetic inductance detectors (LEKIDs) at millimetre wavelengths (from 80 to 180 GHz). We evaluate their optical sensitivity under typical background conditions that are representative of a space environment and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100 and 150 GHz (∆ν/ν about 0.3). Their sensitivities were characterised in the laboratory using a dedicated closed-cycle 100 mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays was evaluated by exposing the LEKID arrays to alpha particles (241Am) and X sources (109Cd), with a read-out sampling frequency similar to those used for Planck HFI (about 200 Hz), and also with a high resolution sampling level (up to 2 MHz) to better characterise and interpret the observed glitches.
    [Show full text]
  • CMB Telescopes and Optical Systems to Appear In: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation
    CMB Telescopes and Optical Systems To appear in: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation Shaul Hanany ([email protected]) University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, USA, Michael Niemack ([email protected]) National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA, and Lyman Page ([email protected]) Princeton University, Department of Physics, Princeton NJ, USA. March 26, 2012 Abstract The cosmic microwave background radiation (CMB) is now firmly established as a funda- mental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB ob- servations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by arXiv:1206.2402v1 [astro-ph.IM] 11 Jun 2012 the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We con- clude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.
    [Show full text]
  • The Design of the Ali CMB Polarization Telescope Receiver
    The design of the Ali CMB Polarization Telescope receiver M. Salatinoa,b, J.E. Austermannc, K.L. Thompsona,b, P.A.R. Aded, X. Baia,b, J.A. Beallc, D.T. Beckerc, Y. Caie, Z. Changf, D. Cheng, P. Chenh, J. Connorsc,i, J. Delabrouillej,k,e, B. Doberc, S.M. Duffc, G. Gaof, S. Ghoshe, R.C. Givhana,b, G.C. Hiltonc, B. Hul, J. Hubmayrc, E.D. Karpela,b, C.-L. Kuoa,b, H. Lif, M. Lie, S.-Y. Lif, X. Lif, Y. Lif, M. Linkc, H. Liuf,m, L. Liug, Y. Liuf, F. Luf, X. Luf, T. Lukasc, J.A.B. Matesc, J. Mathewsonn, P. Mauskopfn, J. Meinken, J.A. Montana-Lopeza,b, J. Mooren, J. Shif, A.K. Sinclairn, R. Stephensonn, W. Sunh, Y.-H. Tsengh, C. Tuckerd, J.N. Ullomc, L.R. Valec, J. van Lanenc, M.R. Vissersc, S. Walkerc,i, B. Wange, G. Wangf, J. Wango, E. Weeksn, D. Wuf, Y.-H. Wua,b, J. Xial, H. Xuf, J. Yaoo, Y. Yaog, K.W. Yoona,b, B. Yueg, H. Zhaif, A. Zhangf, Laiyu Zhangf, Le Zhango,p, P. Zhango, T. Zhangf, Xinmin Zhangf, Yifei Zhangf, Yongjie Zhangf, G.-B. Zhaog, and W. Zhaoe aStanford University, Stanford, CA 94305, USA bKavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA cNational Institute of Standards and Technology, Boulder, CO 80305, USA dCardiff University, Cardiff CF24 3AA, United Kingdom eUniversity of Science and Technology of China, Hefei 230026 fInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 gNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 hNational Taiwan University, Taipei 10617 iUniversity of Colorado Boulder, Boulder, CO 80309, USA jIN2P3, CNRS, Laboratoire APC, Universit´ede Paris, 75013 Paris, France kIRFU, CEA, Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France lBeijing Normal University, Beijing 100875 mAnhui University, Hefei 230039 nArizona State University, Tempe, AZ 85004, USA oShanghai Jiao Tong University, Shanghai 200240 pSun Yat-Sen University, Zhuhai 519082 ABSTRACT Ali CMB Polarization Telescope (AliCPT-1) is the first CMB degree-scale polarimeter to be deployed on the Tibetan plateau at 5,250 m above sea level.
    [Show full text]
  • Clover: Measuring Gravitational-Waves from Inflation
    ClOVER: Measuring gravitational-waves from Inflation Executive Summary The existence of primordial gravitational waves in the Universe is a fundamental prediction of the inflationary cosmological paradigm, and determination of the level of this tensor contribution to primordial fluctuations is a uniquely powerful test of inflationary models. We propose an experiment called ClOVER (ClObserVER) to measure this tensor contribution via its effect on the geometric properties (the so-called B-mode) of the polarization of the Cosmic Microwave Background (CMB) down to a sensitivity limited by the foreground contamination due to lensing. In order to achieve this sensitivity ClOVER is designed with an unprecedented degree of systematic control, and will be deployed in Antarctica. The experiment will consist of three independent telescopes, operating at 90, 150 or 220 GHz respectively, and each of which consists of four separate optical assemblies feeding feedhorn arrays arrays of superconducting detectors with phase as well as intensity modulation allowing the measurement of all three Stokes parameters I, Q and U in every pixel. This project is a combination of the extensive technical expertise and experience of CMB measurements in the Cardiff Instrumentation Group (Gear) and Cavendish Astrophysics Group (Lasenby) in UK, the Rome “La Sapienza” (de Bernardis and Masi) and Milan “Bicocca” (Sironi) CMB groups in Italy, and the Paris College de France Cosmology group (Giraud-Heraud) in France. This document is based on the proposal submitted to PPARC by the UK groups (and funded with 4.6ML), integrated with additional information on the Dome-C site selected for the operations. This document has been prepared to obtain an endorsement from the INAF (Istituto Nazionale di Astrofisica) on the scientific quality of the proposed experiment to be operated in the Italian-French base of Dome-C, and to be submitted to the Commissione Scientifica Nazionale Antartica and to the French INSU and IPEV.
    [Show full text]
  • The Iau Historic Radio Astronomy Working Group
    THE IAU HISTORIC RADIO ASTRONOMY WORKING GROUP. 2: PROGRESS REPORT This Progress Report follows the inaugural report of the Working Group (WG), which appeared in the April 2004 ICHA Newsletter and was published in the June 2004 issue of the Journal of Astronomical History and Heritage (see Orchiston et al., 2004, below). Role of the WG This WG was formed at the 2003 General Assembly of the IAU as a joint initiative of Commissions 40 (Radio Astronomy) and 41 (History of Astronomy), in order to: • assemble a master list of surviving historically-significant radio telescopes and associated instrumentation found worldwide; • document the technical specifications and scientific achievements of these instruments; • maintain an on-going bibliography of publications on the history of radio astronomy; and • monitor other developments relating to the history of radio astronomy (including the deaths of pioneering radio astronomers). New Committee Members Since the last report was prepared we have added two further members to the Committee of the WG. As Chair of the WG, I am delighted to offer a warm welcome to Richard Wielebinski from the Max Planck Institute for Radioastronomy, representing Germany, and Jasper Wall (University of British Columbia), who represents Canada. Further Publications on the History of Radio Astronomy Balick, B., 2005. The discovery of Sagittarius A*. In Orchiston, 2005b, 183-190. Beekman, G., 1999. Een verjaardag zonder jarige. Zenit, 26(4), 154-157. Cohen, M., 2005. Dark matter and the Owens Valley Radio Observatory. In Orchiston, 2005b, 169-182. Davies, R.D., 2003. Fred Hoyle and Manchester. Astrophysics and Space Science, 285, 309- 319.
    [Show full text]
  • August to December 2011 ALTERNATIVE COSMOLOGY GROUP
    1 ALTERNATIVE COSMOLOGY GROUP www.cosmology.info Monthly Notes of the Alternative Cosmology Group – 2011 Part Two: August to December 2011 The ACG Webmaster who distributes this newsletter to subscribers would prefer not to receive related correspondence. Please address all correspondence to MNACG Editor, Hilton Ratcliffe: [email protected]. The ACG newsletter is distributed gratis to subscribers. Get onto our mailing list without obligation at www.cosmology.info/newsletter. The current newsletter is a review of more than 12,000 papers published on arXiv under astro-ph, together with 6500 under gen-phys, for the months of April to December, 2011. We now include papers archived elsewhere, provided access is full and open. The Alternative Cosmology Group draws its mandate from the open letter published in New Scientist, 2004 (www.cosmologystatement.org), and these monthly notes seek to publicise recently published empirical results that are aligned with that ethos. In other words, what observations seem anomalous in terms of the Standard Model of Cosmology? We prefer observational results and tend to avoid complete cosmologies and purely theoretical work. Discussion of method is welcome. If you would like to suggest recently published or archived papers for inclusion, please send the arXiv, viXra or other direct reference and a brief exposition to Hilton Ratcliffe ([email protected]). Note that our spam filter rejects slash and colon in the text, so please write web addresses commencing “www”. I. Editorial comment I apologise most profusely again for the delay in getting the MNACG out to you. This newsletter and one that preceded it cover several months each, so please pardon their lengthiness.
    [Show full text]
  • The Cosmic Microwave Background Anisotropy Power Spectrum Measured by Archeops
    Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20021850 L22 A. Benoˆıt et al.: The cosmic microwave background anisotropy power spectrum measured by Archeops We construct maps by bandpassing the data between 0.3 Table 1. The Archeops CMB power spectrum for the best two pho- and 45 Hz, corresponding to about 30 deg and 15 arcmin scales, tometers (third column). Data points given in this table correspond to respectively. The high–pass filter removes remaining atmo- the red points in Fig. 2. The fourth column shows the power spec- spheric and galactic contamination, the low–pass filter sup- trum for the self difference (SD) of the two photometers as described presses non–stationary high frequency noise. The filtering is in Sect. 4. The fifth column shows the power spectrum for the differ- done in such a way that ringing effects of the signal on ence (D) between the two photometers. bright compact sources (mainly the Galactic plane) are smaller `(`+1)C` 2 2 2 `min `max (µK) SD (µK) D (µK) than 36 µK2 on the CMB power spectrum in the very first (2π) `–bin,∼ and negligible for larger multipoles. Filtered TOI of each 15 22 789 537 21 34 14 34 ± − ± − ± absolutely calibrated detector are co–added on the sky to form 22 35 936 230 6 25 34 21 35 45 1198 ± 262 −69 ± 45 75 ± 35 detector maps. The bias of the CMB power spectrum due to ± − ± − ± filtering is accounted for in the MASTER process through the 45 60 912 224 18 50 9 37 60 80 1596 ± 224 −33 ± 63 8 ± 44 transfer function.
    [Show full text]
  • PLANCK (Retour D’Expérience Pour Le CS IN2P3)
    PLANCK (retour d’expérience pour le CS IN2P3) July 2020 1. Résumé (une page) Planck was an ESA mission to observe the first light in the Universe. Planck was selected in 1995 as the third Medium-Sized Mission (M3) of ESA's Horizon 2000 Scientific Programme, and later became part of its Cosmic Vision Programme. It was designed to image the temperature and polarization anisotropies of the Cosmic Background Radiation Field over the whole sky, with an unprecedented combination of sensitivity and angular resolution. Planck was testing theories of the early universe and the origin of cosmic structure and providing a major source of information relevant to many cosmological and astrophysical issues. Planck was formerly called COBRAS/SAMBA. After the mission was selected and approved (in late 1996), it was renamed in honor of the German scientist Max Planck (1858-1947), Nobel Prize for Physics in 1918. Planck was launched on 14 May 2009, and the minimum requirement for success was for the spacecraft to complete two whole surveys of the sky. In the end, Planck worked perfectly for 30 months, about twice the span originally required, and completed five full-sky surveys with both instruments. Able to work at higher temperatures than the High Frequency Instrument (HFI), the Low Frequency Instrument (LFI) continued to survey the sky for a large part of 2013, providing even more data to improve the Planck final results. Planck was turned off on 23 October 2013. The high-quality data the mission has produced was released in three major sets of papers: ● 2013 data release (PR1) On 21 March 2013, the European-led research team behind the Planck cosmology probe released the mission's all-sky map of the cosmic microwave background together with a set of 32 scientific papers.
    [Show full text]
  • The Cosmic Microwave Background Anisotropy Power Spectrum Measured by Archeops 3
    Astronomy & Astrophysics manuscript no. Cl˙letter November 8, 20181 (DOI: will be inserted by hand later) The Cosmic Microwave Background Anisotropy Power Spectrum measured by Archeops A. Benoˆıt1, P. Ade2, A. Amblard3, 24, R. Ansari4, E.´ Aubourg5, 24, S. Bargot4, J. G. Bartlett3, 24, J.–Ph. Bernard7, 16, R. S. Bhatia8, A. Blanchard6, J. J. Bock8, 9, A. Boscaleri10, F. R. Bouchet11, A. Bourrachot4, P. Camus1, F. Couchot4, P. de Bernardis12, J. Delabrouille3, 24, F.–X. D´esert13, O. Dor´e11, M. Douspis6, 14, L. Dumoulin15, X. Dupac16, P. Filliatre17, P. Fosalba11, K. Ganga18, F. Gannaway2, B. Gautier1, M. Giard16, Y. Giraud–H´eraud3, 24, R. Gispert7†⋆, L. Guglielmi3, 24, J.–Ch. Hamilton3, 17, S. Hanany19, S. Henrot–Versill´e4, J. Kaplan3, 24, G. Lagache7, J.–M. Lamarre7,25, A. E. Lange8, J. F. Mac´ıas–P´erez17, K. Madet1, B.Maffei2, Ch. Magneville5, 24, D. P. Marrone19, S. Masi12, F. Mayet5, A. Murphy20, F. Naraghi17, F. Nati12, G. Patanchon3, 24, G. Perrin17, M. Piat7, N. Ponthieu17, S. Prunet11, J.–L. Puget7, C. Renault17, C. Rosset3, 24, D. Santos17, A. Starobinsky21, I. Strukov22, R. V. Sudiwala2, R. Teyssier11, 23, M. Tristram17, C. Tucker2, J.–C. Vanel3, 24, D. Vibert11, E. Wakui2, and D. Yvon5, 24 1 Centre de Recherche sur les Tr`es Basses Temp´eratures, BP166, 38042 Grenoble Cedex 9, France 2 Cardiff University, Physics Department, PO Box 913, 5, The Parade, Cardiff, CF24 3YB, UK 3 Physique Corpusculaire et Cosmologie, Coll`ege de France, 11 pl. M. Berthelot, F-75231 Paris Cedex 5, France 4 Laboratoire de l’Acc´el´erateur Lin´eaire, BP 34, Campus Orsay, 91898 Orsay Cedex, France 5 CEA-CE Saclay, DAPNIA, Service de Physique des Particules, Bat 141, F-91191 Gif sur Yvette Cedex, France 6 Laboratoire d’Astrophysique de l’Obs.
    [Show full text]