August to December 2011 ALTERNATIVE COSMOLOGY GROUP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
George Harrison
COPYRIGHT 4th Estate An imprint of HarperCollinsPublishers 1 London Bridge Street London SE1 9GF www.4thEstate.co.uk This eBook first published in Great Britain by 4th Estate in 2020 Copyright © Craig Brown 2020 Cover design by Jack Smyth Cover image © Michael Ochs Archives/Handout/Getty Images Craig Brown asserts the moral right to be identified as the author of this work A catalogue record for this book is available from the British Library All rights reserved under International and Pan-American Copyright Conventions. By payment of the required fees, you have been granted the non-exclusive, non-transferable right to access and read the text of this e-book on-screen. No part of this text may be reproduced, transmitted, down-loaded, decompiled, reverse engineered, or stored in or introduced into any information storage and retrieval system, in any form or by any means, whether electronic or mechanical, now known or hereinafter invented, without the express written permission of HarperCollins. Source ISBN: 9780008340001 Ebook Edition © April 2020 ISBN: 9780008340025 Version: 2020-03-11 DEDICATION For Frances, Silas, Tallulah and Tom EPIGRAPHS In five-score summers! All new eyes, New minds, new modes, new fools, new wise; New woes to weep, new joys to prize; With nothing left of me and you In that live century’s vivid view Beyond a pinch of dust or two; A century which, if not sublime, Will show, I doubt not, at its prime, A scope above this blinkered time. From ‘1967’, by Thomas Hardy (written in 1867) ‘What a remarkable fifty years they -
The Iau Historic Radio Astronomy Working Group
THE IAU HISTORIC RADIO ASTRONOMY WORKING GROUP. 2: PROGRESS REPORT This Progress Report follows the inaugural report of the Working Group (WG), which appeared in the April 2004 ICHA Newsletter and was published in the June 2004 issue of the Journal of Astronomical History and Heritage (see Orchiston et al., 2004, below). Role of the WG This WG was formed at the 2003 General Assembly of the IAU as a joint initiative of Commissions 40 (Radio Astronomy) and 41 (History of Astronomy), in order to: • assemble a master list of surviving historically-significant radio telescopes and associated instrumentation found worldwide; • document the technical specifications and scientific achievements of these instruments; • maintain an on-going bibliography of publications on the history of radio astronomy; and • monitor other developments relating to the history of radio astronomy (including the deaths of pioneering radio astronomers). New Committee Members Since the last report was prepared we have added two further members to the Committee of the WG. As Chair of the WG, I am delighted to offer a warm welcome to Richard Wielebinski from the Max Planck Institute for Radioastronomy, representing Germany, and Jasper Wall (University of British Columbia), who represents Canada. Further Publications on the History of Radio Astronomy Balick, B., 2005. The discovery of Sagittarius A*. In Orchiston, 2005b, 183-190. Beekman, G., 1999. Een verjaardag zonder jarige. Zenit, 26(4), 154-157. Cohen, M., 2005. Dark matter and the Owens Valley Radio Observatory. In Orchiston, 2005b, 169-182. Davies, R.D., 2003. Fred Hoyle and Manchester. Astrophysics and Space Science, 285, 309- 319. -
MAP-Fis Essay Proposal, 2014-2015 (Please Write in English)
MAP-fis Essay Proposal, 2014-2015 (please write in English) Supervisor Name: Orfeu Bertolami Neto E-mail: [email protected] Co-supervisor Name: João Pedro Trancoso Gomes Rosa E-mail: [email protected] Title Interaction of dark energy and dark matter to Standard Model States Area (Materials, Optics, Condensed Theory, High Energy Theory,....); Cosmology, Particle Physics Summary of Proposal In this proposal it is intended to build and to examine the implications of the interaction between dark energy, dark matter and states of the Standard Model. We will be particularly interested in the study of the coupling to the Higgs and the neutrino sectors. This is a very interesting and relevant research topic that combines several research fields, Particle Physics, Astrophysics and Cosmology, for which there is a rich literature [1-9]. (continue if necessary) MAP-fis Physics Doctoral Program – [email protected] – http://www.map.edu.pt/fis Departamento e Física e Astronomia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto Portugal - Tel: +351 220402393 References (to allow students first look at topic) [1] N. Bilic, G. B. Tupper, R. D. Viollier, “Unification of Dark Matter and Dark Energy: the Inhomogeneous Chaplygin Gas”, Phys. Lett. B535 (2002) 17-21. [2] M. C. Bento, O. Bertolami, A. A. Sen, "Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification", Phys.Rev. D66 (2002) 043507. [3] M.C. Bento, O. Bertolami, R. Rosenfeld, L. Teodoro, "Self-interacting Dark Matter and Invisibly Decaying Higgs", Phys. Rev. D62 (2000) 041302. [4] M.C. Bento, O. Bertolami, R. -
The Very Small Array: Latest Results and Future Plans
The Very Small Array: latest results and future plans Keith Grainge Astrophysics Group, Cavendish Laboratory, Cambridge Rencontres de Moriond, 31 March 2004 OVERVIEW The Very Small Array (VSA) • Current primordial observations • The S-Z effect • Planned upgrades to the instrument • Future science at high ` • Summary • 1 THE VSA CONSORTIUM Cavendish Astrophysics Group Roger Boysen Tony Brown Chris Clementson Mike Crofts Jerry Czeres Roger Dace Keith Grainge (PM) Mike Hobson (PI) Mike Jones Rüdiger Kneissl Katy Lancaster Anthony Lasenby Klaus Maisinger Ian Northrop Guy Pooley Vic Quy Nutan Rajguru Ben Rusholme Richard Saunders Richard Savage Anna Scaife Jack Schofield Paul Scott (Former PI) Clive Shaw Anze Slosar Angela Taylor David Titterington Elizabeth Waldram Brian Wood Jodrell Bank Observatory Colin Baines Richard Battye Eddie Blackhurst Pedro Carreira Kieran Cleary Rod Davies Richard Davis Clive Dickinson Yaser Hafez Mark Polkey Bob Watson Althea Wilkinson Instituto de Astrofísica de Canarias Jose Alberto Rubiño-Martin Carlos Guiterez Rafa Rebolo Lopez Pedro Sosa-Molina Ricardo Genova-Santos 2 THE VERY SMALL ARRAY (VSA) Sited on Observatorio del Teide, Tenerife • 14 antennas 91 baselines • ) Observing frequency ν = 26 36 GHz; bandwidth ∆ν = 1:5 GHz • − Compact configuration: 143 mm horns; ` = 150 800; ∆` 90 (without • − ≈ mosaicing); Sept 2000 – Sept 2001 Extended configuration: 322 mm horns; ` = 300 1800; ∆` 200 (without • − ≈ mosaicing); Sept 2001 – present 3 COMPARISON WITH OTHER CMB EXPERIMENTS Different systematics from “single-dish” experiments: • – negligible pointing error – negligible beam uncertainty Different from other CMB interferometers (DASI, CBI): • – RT survey and dedicated source subtraction 2-element interferometer remove effect of extragalactic point sources ) – tracking elements rather than comounted can apply fringe rate filter to remove unwanted signals. -
C-Band All Sky Survey (C-BASS)
C-Band All Sky Survey (C-BASS) J. P. Leahy (PI, Manchester), M. E. Jones (PI, Oxford) Clive Dickinson (JPL) AIMS: • Definitive survey of Galactic synchrotron radiation and its polarization • Anchor for synchrotron emission in future CMB polarimetry experiments up to CMBPOL. • Prototype for possible ground-based surveys at frequencies up to CMB band: 10, 15, 30… GHz • New window on Galactic magnetic field and cosmic rays BPOL workshop 27th October 2006 Galactic foregrounds WMAP polarized brightness: 23 GHz, 4° beam • Sky is full of polarized interstellar synchrotron emission – 91% of pixels detected at this resolution • All components have significant spectral variations We must have more measurements than parameters! BPOL workshop 27th October 2006 Foreground brightness • Smoothing removes emission that fluctuates on scales smaller than the beam – E.g. CMB ‘E-modes’ • Similar amplitudes at 2° and 4°: – Looking at signal, not noise! – Polarization has little small- scale structure. • (Foreground, high latitude) • At 4° resolution, polarization clearly detected in 91% of pixels • Median: 15 µK @ 22.5 GHz • Histogram of polarization values at 22.5 GHz, 4° beam, with various masks BPOL workshop 27th October 2006 4° Pol. Maps in other bands 33 GHz 41 GHz 61 GHz 94 GHz BPOL workshop 27th October 2006 C-BASS motivation • CMB polarization splits T into orthogonal modes: • E-modes fix optical depth to re-ionization – dramatic reduction in parameter degeneracy • B-modes define energy E scale of inflation • Obscured by Galactic B foreground emission – minimum at ~60 GHz – synchrotron below – dust above. BPOL workshop 27th October 2006 C-BASS motivation: 60 GHz • E-modes fix optical depth to re-ionization C-BASS – dramatic reduction in E parameter degeneracy 60 GHz • B-modes define energy scale of B inflation • Obscured by Galactic r = 0.1 foreground emission – minimum at ~60 GHz g in – synchrotron below s n e – dust above. -
Homogeneous Spherically Symmetric Bodies with a Nonminimal Coupling
Gen. Rel. Grav. manuscript No. (will be inserted by the editor) Homogeneous spherically symmetric bodies with a non-minimal coupling between curvature and matter The choice of the Lagrangian density for matter Orfeu Bertolami · Jorge Páramos Received: September 20, 2021/ Accepted: Abstract In this work we study how a non-minimal coupling between matter and gravity can modify the structure of a homogeneous spherical body. The physical rele- vance of the adopted Lagrangian density is ascertained, with results obtained for two different choices of the latter. Keywords Nonminimal Coupling · Lagrangean Density · Interior Solution PACS 04.20.Fy · 04.80.Cc · 11.10.Ef 1 Introduction Despite its great experimental success (see e.g. Refs. [1,2]), General Relativity (GR) is not the most encompassing way to couple matter with curvature. Indeed, matter and curvature can be coupled, for instance, in a non-minimal way [3], extending the well-known class of f (R) theories [4–6]. This nonminimal coupling can have a bearing on the dark matter [3,7,8] and dark energy [9–12] problems, impact the well-known energy conditions [13], affect the Yukawa potential addition prompted by f (R) theories in Solar System tests of gravity [14, 15], modify the Layzer-Irvine equation of virial equilibrium [16] and can give rise to wormhole and time machines [17]. In Ref. [18], several phenomenological aspects of the dynamics of perfect fluids non-minimally coupled to curvature were addressed — in particular, the scenario of an axisymmetric dust distribution with constant -
Portuguese SKA White Book
Portuguese SKA White Book Title Portuguese SKA White Book Cover Image credit: Square Kilometre Array Organisation Editorial Board Domingos Barbosa (Instituto de Telecomunicações) Sonia Antón (Universidade of Aveiro, Instituto de Telecomunicações) João Paulo Barraca (Instituto de Telecomunicações, Universidade of Aveiro) Miguel Bergano (Instituto de Telecomunicações) Alexandre Correia (Universidade de Coimbra) Dalmiro Maia (Faculdade de Ciências da Universidade do Porto) Valério Ribeiro (Instituto de Telecomunicações, Universidade de Aveiro) Publisher UA Editora – Universidade de Aveiro ISBN 978-972-789-637-0 Agradecemos o apoio financeiro da Infraestrutura de Investigação E-Ciência Sustentável com o Square Kilometre Array (ENGAGE SKA), referência POCI-01-0145-FEDER-022217, financiada pelo Programa Operacional Competitividade e Internacionalização (COMPETE 2020) e pela Fundação para a Ciência e Tecnologia (FCT), Portugal, o apoio do Instituto de Telecomunicações, da Faculdade de Ciências da Universidade do Porto, da Universidade de Aveiro, da Universidade de Coimbra e do TICE.PT. Este trabalho foi tambem apoiado pela FCT e MCTES através de fundos nacionais e quando aplicável cofinanciado pelo FEDER, no âmbito do Acordo de Parceria PT2020 no âmbito do projeto UID/EEA/50008/2019 e projectos UIDB/50008/2020-UIDP/50008/2020. We acknowledge financial support from Enabling Green E-science for the Square Kilometre Array Research Infrastructure (ENGAGE SKA), grant POCI-01-0145-FEDER-022217, funded by Programa Operacional Competitividade e Internacionalização (COMPETE 2020) and FCT, Portugal, and support from Instituto de Telecomunicações, Faculty of Sciences of University of Porto, University of Coimbra, University of Aveiro and TICE.PT. This work was also funded by the Portuguese Science Foundation (FCT) and Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through national funds and when applicable co-funded EU funds under the project UIDB/50008/2020-UIDP/50008/2020 and UID/EEA/50008/2019. -
Forum Futuro 2016
Fórum do Futuro 2016 2 November 2016 Clima e consumo (ou o preço a pagar pela energia) Climate and consumption (or the price to be paid for energy) Sir Chris Llewellyn Smith The recent ratification of the Paris Agreement by China and the United States implies that two of the most polluting countries will have to implement measures to reduce carbon dioxide emissions from 2020 onwards. This ratification will have to be met while, at the developing countries, energy consumption and the ensued rise in living standards are continuously growing. How can the world economy be de-carbonised within the prevailing economic and political conditions? How can sustainable growth for the whole planet be achieved? These and other interconnected issues will be the focal point of the talk of Professor Sir Chris Llewellyn Smith. Sir Chris Llewellyn Smith is the Director of Energy Research, at Oxford University, and President of the Council of SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East). He is interested in all aspects of energy supply and demand, on de-carbonising processes of energy transformation, and on adapting non-continuous sources of electricity to the existing patterns of demand. Chris completed his D. Phil. in theoretical physics at New College, Oxford 1967. Thereafter he worked at the Lebedev Physical Institute in Moscow, CERN (European Centre for Nuclear Research, the largest scientific laboratory in the world) and at the Stanford Linear Accelerator in US. He was elected Fellow of the Royal Society in 1984. He was regarded as a world-class expert on electroweak and strong interactions. -
Under the Radar Astrophysics and Space Science Library
Under the Radar Astrophysics and Space Science Library EDITORIAL BOARD Chairman W. B. BURTON, National Radio Astronomy Observatory, Charlottesville, Virginia, U.S.A. ([email protected]); University of Leiden, The Netherlands ([email protected]) F. BERTOLA, University of Padua, Italy J. P. CASSINELLI, University of Wisconsin, Madison, U.S.A. C. J. CESARSKY, European Southern Observatory, Garching bei Mu¨nchen, Germany P. EHRENFREUND, Leiden University, The Netherlands O. ENGVOLD, University of Oslo, Norway A. HECK, Strasbourg Astronomical Observatory, France E. P. J. VAN DEN HEUVEL, University of Amsterdam, The Netherlands V. M. KASPI, McGill University, Montreal, Canada J. M. E. KUIJPERS, University of Nijmegen, The Netherlands H. VAN DER LAAN, University of Utrecht, The Netherlands P. G. MURDIN, Institute of Astronomy, Cambridge, UK F. PACINI, Istituto Astronomia Arcetri, Firenze, Italy V. RADHAKRISHNAN, Raman Research Institute, Bangalore, India B. V. SOMOV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV, Space Research Institute, Moscow, Russia W.M. Goss l Richard X. McGee Under the Radar The First Woman in Radio Astronomy: Ruby Payne-Scott Prof. W. M. Goss Dr. Richard X. McGee National Radio Astronomy Commonwealth Scientific& Observatory Industrial 1003 Lopezville Road P.O.Box O Research Organisation Socorro NM 87801 (CSIRO) USA Radiophysics Laboratory [email protected] Epping NSW 1710 Australia ISSN 0067-0057 ISBN 978-3-642-03140-3 e-ISBN 978-3-642-03141-0 DOI 10.1007/978-3-642-03141-0 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009931715 # Springer-Verlag Berlin Heidelberg 2010, 2nd corrected printing This work is subject to copyright. -
The Iau Historic Radio Astronomy Working Group
Journal of Astronomical History and Heritage, 12(3), 249-253 (2009). THE IAU HISTORIC RADIO ASTRONOMY WORKING GROUP. 3: PROGRESS REPORT (2006-2009) This Progress Report follows the publication of two et al., 2009—see details, the listing in Section 6, earlier Progress Reports (Orchiston, et al., 2004; 2005) below). Two further papers, completing this series, and a Triennial Report of the Working Group for will be published in March 2010. 2003-2006 (Orchiston, et al., 2006), all of which appeared in the Journal of Astronomical History and 5 Research on the History of Radio Astronomy Heritage. Colleagues who actively researched aspects of radio astronomical history during 2005-2009 included: the 1 Role of the Working Group late Émile-Jacques Blum (France), André Boischot This WG was formed at the 2003 General Assembly of (France), the late Ron Bracewell (USA), Wim Brouw the IAU as a joint initiative of Commissions 40 (Radio (The Netherlands), Geoffrey Burbidge (USA), Bernard Astronomy) and 41 (History of Astronomy), in order Burke (USA), Ron Burman (Australia), Jessica Chap- to: man (Australia), Marshall Cohen (USA), Nan Dieter • assemble a master list of surviving historically- Conklin (USA), R.D. Dagkesamanskii (Russia), Rod significant radio telescopes and associated instru- Davies (United Kingdom), Suzanne Débarbat mentation found worldwide; (France), Jean Delannoy (France), John Dickel (USA), • document the technical specifications and scien- Martin George (Australia), Miller Goss (USA), Dave tific achievements of these instruments; Green (United Kingdom), Alastair Gunn (United • maintain an on-going bibliography of public- Kingdom), Dave Jauncey (Australia), Ken Kellermann cations on the history of radio astronomy; and (USA), A.A. -
Application of Novel Analysis Techniques to Cosmic Microwave
Application of novel analysis techniques to Cosmic Microwave Background astronomy Aled Wynne Jones Mullard Radio Astronomy Observatory and King’s College, Cambridge. A dissertation submitted for the degree of Doctor of Philosophy in the University of Cambridge. arXiv:astro-ph/9903173v1 11 Mar 1999 i Preface This dissertation is the result of work undertaken at the Mullard Radio Astronomy Observatory, Cambridge between October 1994 and September 1997. The work described here is my own, unless specifically stated otherwise. To the best of my knowledge it has not, nor has any similar dissertation, been submitted for a degree, diploma or other qualification at this, or any other university. This dissertation does not exceed 60 000 words in length. Aled Wynne Jones To Isabel and Ffion ii I am not sure how the universe was formed. But it knew how to do it, and that is the important thing. Anon. (child) It is enough just to hold a stone in your hand. The universe would have been equally incomprehensible if it had only consisted of that one stone the size of an orange. The question would be just as impenetrable: where did this stone come from? Jostein Gaarder (in ‘Sophie’s World’) Acknowledgements Firstly I would like to thank the two people who have introduced me to the immense field of microwave background anisotropies, Anthony Lasenby and Stephen Hancock. Without them I would not have begun to uncover the beauty at the beginning of time. I would also like to thank Joss Bland-Hawthorn whose supervision and enthusiasm during my time in Australia has made me more inquisitive in my field. -
Reflections of a Physicist on the Cultural Ocean of His
ORFEU BERTOLAMI, UNIVERSIDADE DO PORTO - FACULDADE DE CIÊNCIAS CENTRO DE FÍSICA DO PORTO [email protected] REFLECTIONS OF A PHYSICIST ON THE CULTURAL OCEAN OF HIS TIME RESUMO O objetivo do conhecimento é compreender o mundo em que vivemos 31 no contexto de um conjunto de ideias em constante evolução e, mais | fundamentalmente, num Universo físico em contínua transformação. Assim, a ciência, enquanto forma privilegiada de investigação e interrogação, deve constituir-se como um campo homogéneo e interligado que vai da física e da Orfeu Bertolami química à bioquímica e à biologia, da biologia às ciências sociais e humanas. Através de uma visão impressionista e pessoal, esta comunicação visa abordar as semelhanças e as diferenças no desenvolvimento dos vários ramos do saber e articular consistentemente como esta visão transversal pode ajudar na busca das respostas aos grandes desafios do nosso tempo. ABSTRACT The purpose of knowledge is to understand our world in the context of an evolving body of ideas, actually in a physical Universe in continuous transformation. Thus, science, a privileged form of enquiry, should be a homogeneous and interconnected endeavour spanning from physics and chemistry to biochemistry and biology, from biology to human and social sciences. In this talk we shall approach, through an impressionistic personal view, the similarities and the differences of development of the various branches of science. We shall briefly discuss how this cross-sectional view might map the way on how to overcome the great challenges and crossroads of our time. REFLECTIONS OF A PHYSICIST ON THE CULTURAL OCEAN OF HIS TIME REFLECTIONS OF A PHYSICIST ON THE CULTURAL Words.