Genetic Diversity, Ochratoxin a and Fumonisin Profiles of Strains of Aspergillus Section Nigri Isolated from Dried Vine Fruits

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Diversity, Ochratoxin a and Fumonisin Profiles of Strains of Aspergillus Section Nigri Isolated from Dried Vine Fruits toxins Article Genetic Diversity, Ochratoxin A and Fumonisin Profiles of Strains of Aspergillus Section Nigri Isolated from Dried Vine Fruits Petra Mikušová 1,* , Miroslav Cabo ˇn 1, Andrea Melichárková 1 , Martin Urík 2, Alberto Ritieni 3 and Marek Slovák 1,4 1 Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia; [email protected] (M.C.); [email protected] (A.M.); [email protected] (M.S.) 2 Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkoviˇcova6, SK-842 15 Bratislava 4, Slovakia; [email protected] 3 Department of Pharmacy, School of Medicine, University of Naples Federico II, Staff of Unesco Chair for Health Education and Sustainable Development, 801 31 Napoli, Italy; [email protected] 4 Department of Botany, Charles University, Benátská 2, CZ-128 01 Praha 2, Czech Republic * Correspondence: [email protected] Received: 23 July 2020; Accepted: 9 September 2020; Published: 14 September 2020 Abstract: We investigated ochratoxin A (OTA) contamination in raisin samples purchased from Slovak markets and determined the diversity of black-spored aspergilli as potential OTA and fumonisin (FB1 and FB2) producers. The taxonomic identification was performed using sequences of the nuclear ITS1-5.8s-ITS2 region, the calmodulin and beta-tubulin genes. We obtained 239 isolates from eight fungal genera, of which 197 belonged to Aspergillus (82%) and 42 strains (18%) to other fungal genera. OTA contamination was evidenced in 75% of the samples and its level ranged from 0.8 to 10.6 µg/kg. The combination of all three markers used enabled unambiguous identification of A. carbonarius, A. luchuensis, A. niger, A. tubingensis and A. welwitschiae. The dominant coloniser, simultaneously having the highest within-species diversity isolated from our raisin samples, was A. tubingensis. Out of all analysed strains, only A. carbonarius was found to produce OTA, but in relatively high quantity (2477–4382 µg/kg). The production of FB1 and FB2 was evidenced in A. niger strains only. Keywords: food spoilage; mycotoxin; fungal diversity; calmodulin; beta-tubulin; HPLC Key Contribution: The incidence of five species from Aspergillus section Nigri (A. carbonarius; A. luchuensis; A. niger; A. welwitschiae; A. tubingensis) was detected on analysed raisin samples. The most prevalent species with the highest genetic diversity was A. tubingensis. The maximum tolerable value of OTA reaching a critical threshold of 10 µg/kg was exceeded only in two samples out of the 20 analysed. The ochratoxigenic ability was confirmed only in A. carbonarius strains, while FB1 and FB2 production was found in isolates of A. niger. 1. Introduction Dried vine fruits are some of the most favourite and frequently utilised ingredients in the food industry; however, they are often exposed to contamination by metabolites of various microorganisms, including filamentous fungi [1]. The fungal genus Aspergillus comprises numerous species which significantly impact overall food production and human health [2]. Out of them, members of the Aspergillus section Nigri [3] are considered to be some of the most influential food contaminants of dried vine fruit products worldwide. These microorganisms are well known as important producers Toxins 2020, 12, 592; doi:10.3390/toxins12090592 www.mdpi.com/journal/toxins Toxins 2020, 12, 592 2 of 15 of a large scale of mycotoxins, but especially ochratoxins and fumonisins [4]. Indeed, members of the Aspergillus section Nigri were proven to be the main OTA (ochratoxin A) producers in grapes and are responsible for the contamination of wine, grape juice and raisins [5–8]. OTA is one of the most harmful and most strictly monitored mycotoxins [9,10]. The European Commission determined the maximum OTA limit for raisins at 10 µg/kg [11]. The accurate number of black aspergilli species producing OTA is still enigmatic because of uncertainty in their identification [2,12]. Likewise, fumonisins also belong to toxic secondary metabolites produced by members of black aspergilli species and can be considered a possible source of mycotoxin contamination. The classification of fumonisins is based on their structure, resulting in four classification groups—namely A, B, C and P. The most frequent and abundant in food commodities are, however, only FB1, FB2 and FB3 [13,14]. Importantly, FB1 and FB2 were found to be potentially carcinogenetic, and their presence in food was associated with a high incidence of human oesophageal cancer in China and South Africa [15,16]. The fumonisins were evidenced to be produced predominantly by specific members of the genus Fusarium (e.g., [4,13]). Nevertheless, their production has also been evidenced in some members of the Aspergillus species, specifically in A. niger, and rarely also in A. welwitschiae, to date [17–20]. Correct determination of the members of Aspergillus section Nigri has also been challenging for specialists in the taxonomy and evolution of the genus Aspergillus [21,22]. The taxonomy of this species group has been intensively studied by many taxonomists, and the most current taxonomic concept of black aspergilli recognises 27 well-delimited species [2,23–25]. The pivotal problem hampering unambiguous delimitation of black aspergilli is embodied in their cryptic speciation. Due to the lack of taxonomically diagnostic features, black aspergilli are hardly distinguishable by traditional micro- and macromorphological approaches [2,26,27]. Various DNA fingerprinting methods [28,29] and/or utilisation of low-copy protein-coding genes were shown to be the most efficient tools for reliable identification of species from the Aspergillus section Nigri [2,8,27]. In the present study, we investigated OTA contamination of dried vine fruit packages of various origins purchased in Slovak markets and analysed the taxonomic diversity and the ochratoxin and fumonisin (FB1 and FB2) production ability of the black aspergilli strains isolated. The following questions were addressed: (1) What is the level of OTA in the analysed dried vine fruit samples, and does the OTA content exceed the critical maximum limit of 10 µg/kg? (2) What is the overall diversity of microscopic fungi colonising the dried vine fruit samples? How many species from the Aspergillus section Nigri can be isolated and identified in the tested samples? (3) What are the individual ochratoxigenic abilities of selected isolated strains of members of Aspergillus section Nigri? Do some isolated black aspergilli strains produce fumonisins FB1 and FB2? 2. Results 2.1. Cultivations and Morphological Identifications The initial screening of the analysed dried vine fruit samples revealed that, except two samples, all were colonised by microfungi. The level of contamination ranged between 2.7 102 × and 3.6 103 CFU/g. The direct plating method onto malt extract agar (MEA) agar recovered × 239 isolates, representing 14 taxa and belonging to 8 genera of Alternaria, Cladosporium, Aspergillus, Paecilomyces, Penicillium, Rhizopus, Saccharomyces and Trichothecium (Table1). Based on the macro- and micromorphological identifications, only the strains of Alternaria alternata, Cladosporium cladosporioides, Penicillium chrysogenum and Trichothecium roseum were identified unambiguously at the species level. Toxins 2020, 12, 592 3 of 15 Table 1. Details on the origins of the analysed dried vine fruit samples, their taxonomic affiliation and codes of isolated fungal strains and OTA content detected. Abbreviations: RSA = Republic of South Africa; b.d.l. = below the detection limit. Level of Colony Occurrence of Sample Country of OTA Forming Units Aspergillus Strain Another Fungal ID Origin Aspergillus spp. Sect. Nigri Code Taxa Isolated (µg/kg) (CFU)/g within CFU A. niger G_209 Penicillium sp. G_45 Rhizopus sp. DVF_01/2016 Chile b.d.l. 2.2 103 84% × A. tubingensis G_178 G_211 G_180 - DVF_02/2016 Iran b.d.l. 5.4 102 100% A. tubingensis × G_182 A. niger G_33 Aspergillus flavus DVF_03/2016 Iran 1.7 2.2 103 88% × A. welwitschiae G_36 Rhizopus sp. G_202 A. luchuensis G_201 DVF_04/2016 Chile 1.6 9 102 80% Rhizopus sp. × G_204 A. tubingensis G_203 Cladosporium G_198 Czech A. luchuensis cladosporioides DVF_05/2016 1.6 1.4 103 88% Republic × G_199 Penicillium sp. A. welwitschiae G_196 Slovak A. luchuensis G_62 DVF_06/2016 b.d.l. 9.9 102 100% - Republic × A. niger G_50 Penicillium sp. DVF_07/2016 Turkey b.d.l. 1.1 103 77% A. tubingensis G_132 Rhizopus sp. × Saccharomyces sp. Aspergillus flavus Cladosporium DVF_08/2016 Turkey 1.6 2.7 102 0% - - × cladosporioides Trichothecium roseum Alternaria alternata Paecilomyces sp. DVF_09/2016 Chile 10.5 6.3 102 14% A. tubingensis G_160 × Penicillium chrysogenum Saccharomyces sp. Rhizopus sp. DVF_10/2016 Chile 1.8 1.2 103 42% A. welwitschiae G_166 × Saccharomyces sp. DVF_11/2016 unknown 0.8 0 0% - -- DVF_12/2016 Iran 1.8 3.6 103 10% A. tubingensis G_168 - × G_171 Penicillium sp. DVF_13/2016 Chile 10.6 4.5 102 40% A. tubingensis × G_172 Saccharomyces sp. G_183 DVF_14/2016 RSA 2.5 6.2 102 71% A. tubingensis Saccharomyces sp. × G_184 A. carbonarius G_187 DVF_15/2016 Iran 1.2 1.9 103 91% Rhizopus sp. × A. tubingensis G_188 A. carbonarius G_191 DVF_16/2016 Turkey 1.8 1.9 103 91% G_190 Rhizopus sp. × A. tubingensis G_192 Czech DVF_17/2016 b.d.l. 0 0% - -- Republic DVF_18/2016 Uzbekistan 2.1 1.1 103 100% A. tubingensis G_174 - × A. niger G_210 DVF_19/2016 Chile 3.9 9.9 102 100% - × A. tubingensis G_61 DVF_20/2016 unknown 1.3 4.5 12 100% A. tubingensis G_176 - × Strains in bold were selected for individual analyses for toxigenic ability using HPLC (see Methods). Toxins 2020, 12, 592 4 of 15 The predominating colonisers, found in 90% of the samples, belonged to the genus Aspergillus. Out of the 239 isolated strains, 197 represented the genus Aspergillus (82%), while only 42 strains (18%) were assigned to other fungal genera. The percentage of aspergilli in the CFUs (colony forming units) oscillated was between 0 and 100%.
Recommended publications
  • Food Microbiology Significance of Aspergillus Niger Aggregate
    Food Microbiology 82 (2019) 240–248 Contents lists available at ScienceDirect Food Microbiology journal homepage: www.elsevier.com/locate/fm Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce T mycotoxins ∗ Jéssica Gil-Serna , Marta García-Díaz, Covadonga Vázquez, María Teresa González-Jaén, Belén Patiño Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid. Jose Antonio Nováis 12, 28040, Madrid, Spain ARTICLE INFO ABSTRACT Keywords: The Aspergillus niger aggregate contains 15 morphologically indistinguishable species which presence is related Ochratoxin A to ochratoxin A (OTA) and fumonisin B2 (FB2) contamination of foodstuffs. The taxonomy of this group was Fumonisins recently reevaluated and there is a need of new studies regarding the risk that these species might pose to food Food safety security. 258 isolates of A. niger aggregate obtained from a variety of products from Spain were classified by Section Nigri molecular methods being A. tubingensis the most frequently occurring (67.5%) followed by A. welwitschiae (19.4%) and A. niger (11.7%). Their potential ability to produce mycotoxins was evaluated by PCR protocols which allow a rapid detection of OTA and FB2 biosynthetic genes in their genomes. OTA production is not widespread in A. niger aggregate since only 17% of A. niger and 6% of A. welwitschiae isolates presented the complete biosynthetic cluster whereas the lack of the cluster was confirmed in all A. tubingensis isolates. On the other hand, A. niger and A. welwitschiae seem to be important FB2 producers with 97% and 29% of the isolates, respectively, presenting the complete cluster.
    [Show full text]
  • Baccharis Malibuensis (Asteraceae): a New Species from the Santa Monica Mountains, California R
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 14 | Issue 3 Article 32 1995 Baccharis Malibuensis (Asteraceae): A New Species from the Santa Monica Mountains, California R. Mitchell Beauchamp Pacific Southwest Biological Services, Inc. James Henrickson California State University, Los Angeles Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Beauchamp, R. Mitchell and Henrickson, James (1995) "Baccharis Malibuensis (Asteraceae): A New Species from the Santa Monica Mountains, California," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 14: Iss. 3, Article 32. Available at: http://scholarship.claremont.edu/aliso/vol14/iss3/32 Aliso, 14(3), pp. 197-203 © 1996, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 BACCHARIS MALIBUENSIS (ASTERACEAE): A NEW SPECIES FROM THE SANTA MONICA MOUNTAINS, CALIFORNIA R. MITCHEL BEAUCHAMP Pacific Southwest Biological Services, Inc. P.O. Box 985 National City, California 91951 AND JAMES HENRICKSON Department of Biology California State University Los Angeles, California 90032 ABSTRACT Baccharis malibuensis is described from the Malibu Lake region of the Santa Monica Mountains, Los Angeles County, California. It is closely related to Baccharis plummerae subsp. plummerae but differs in having narrow, subentire, typically conduplicate, sparsely villous to mostly glabrous leaves with glands occurring in depressions on the adaxial surface, more cylindrical inflorescences, and a distribution in open chaparral vegetation. The new taxon shares some characteristics with B. plum­ merae subsp. glabrata of northwestern San Luis Obispo County, e.g., smaller leaves, reduced vestiture, and occurrence in scrub habitat, but the two taxa appear to have developed independently from B.
    [Show full text]
  • Studies in the Genus Pleospora. Vii
    March, 1952] WEHMEYER-PLEOSPORA 237 RCSSELL, R. S., AND R. P. MARTIN. 1949. Use of radio­ SHAHMAN, B. C. 1945. Leaf and bud initiation in the active phosphorus in plant nutritional studies. Nature Gramineae. Bot. Gaz. 106: 269-289. 163: 71-72. SMITH, G. F., AND H. KERSTEN. 1941. Root modifications SAX, K. 1940. An analysis of X-ray induced chromosome induced in Vieia [aba by irradiating dry seeds with aberrations in Tradescantia. Genetics 25: 4.1-68. soft X-rays. Plant Physiol. 16: 159-170. STUDIES IN THE GENUS PLEOSPORA. VII Lewis E. Wehmeyer IN A PREVIOUS PAPER (Wehmeyer, 1952b), it was definitely inequilateral or curved. In P. alismatis, pointed out that the two types of septation char­ with similar spores, the nine-septate condition is acteristic of the leptosphaeroid and vulgaris series fixed. In P. rubicunda the ends of the ascospores in the genus Pleospora tend to converge above the are still more broadly rounded and the spores may five-septate level, and that very often both types of become eleven-septate, by the formation of secon­ septation appear in the same spore. In that paper, dary vulgaris septa in four of the central cells. the species with spores showing an asymmetric sep­ In P. morauica and P. saponariae, this type of tation were arbitrarily taken as representing the septation is well illustrated, for there is great varia­ leptosphaeroid series and discussed as such. bility in the septation of spores of varying maturity The present paper is to deal with those species showing this progression. The secondary vulgaris which show a similar but symmetric septation in type of septation may occur in any of the four cen­ the ascospore, and which present a more or less tral cells of the spores of these species, but this is parallel group.
    [Show full text]
  • Albuca Spiralis
    Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J.
    [Show full text]
  • New Records of <I>Loculoascomycetes</I> From
    MYCOTAXON Volume 111, pp. 19–30 January–March 2010 New records of Loculoascomycetes from natural protected areas in Sonora, Mexico Fátima Méndez-Mayboca1, Julia Checa2*, Martín Esqueda1 & Santiago Chacón3 * [email protected] 1Centro de Investigación en Alimentación y Desarrollo, A.C. Apartado Postal 1735, Hermosillo, Sonora 83304, México 2Dpto. de Biología Vegetal, Facultad de Biología, Universidad de Alcalá Alcalá de Henares, Madrid 28871, Spain 3Instituto de Ecología, A.C. Apartado Postal 63, Xalapa, Veracruz 91000, México Abstract — Thirty collections of Loculoascomycetes from the Ajos-Bavispe National Forest Reserve and Wildlife Refuge, the Pinacate and Great Altar Desert Biosphere Reserve, and the Sierra of Alamos-Rio Cuchujaqui Biosphere Reserve, in Sonora, Mexico were studied. Ten new records for the Mexican mycobiota are presented: Capronia montana, Chaetoplea crossata, Didymosphaeria futilis, Glonium abbreviatum, Hysterographium mori, Montagnula infernalis, Patellaria atrata, Rhytidhysteron rufulum, Thyridaria macrostomoides, and Valsaria rubricosa. Photographs of macro- and microscopic characters are given for some species. Key words: Chaetothyriales, Hysteriales, Melanommatales, Patellariales, Pleosporales Introduction The term Loculoascomycetes is used for ascomycetes with bitunicate asci and septate ascospores (Kirk et al. 2008). There is some controversy over the taxonomy of the genera in this group, e.g., Valsaria, because authors such as Dennis (1978) have placed them in the Loculoascomycetes owing to their bitunicate asci while others, such as Barr (1990a), have included them in Pyrenomycetes arguing the presence of unitunicate asci. Boehm et al. (2009) studied four nuclear genes in different species of Loculoascomycetes and have proposed changes to the current taxonomy, e.g., Rhytidhysteron rufulum which was previously included in order Patellariales has been tentatively moved to the Hysteriales.
    [Show full text]
  • Harvard Papers in Botany Volume 22, Number 1 June 2017
    Harvard Papers in Botany Volume 22, Number 1 June 2017 A Publication of the Harvard University Herbaria Including The Journal of the Arnold Arboretum Arnold Arboretum Botanical Museum Farlow Herbarium Gray Herbarium Oakes Ames Orchid Herbarium ISSN: 1938-2944 Harvard Papers in Botany Initiated in 1989 Harvard Papers in Botany is a refereed journal that welcomes longer monographic and floristic accounts of plants and fungi, as well as papers concerning economic botany, systematic botany, molecular phylogenetics, the history of botany, and relevant and significant bibliographies, as well as book reviews. Harvard Papers in Botany is open to all who wish to contribute. Instructions for Authors http://huh.harvard.edu/pages/manuscript-preparation Manuscript Submission Manuscripts, including tables and figures, should be submitted via email to [email protected]. The text should be in a major word-processing program in either Microsoft Windows, Apple Macintosh, or a compatible format. Authors should include a submission checklist available at http://huh.harvard.edu/files/herbaria/files/submission-checklist.pdf Availability of Current and Back Issues Harvard Papers in Botany publishes two numbers per year, in June and December. The two numbers of volume 18, 2013 comprised the last issue distributed in printed form. Starting with volume 19, 2014, Harvard Papers in Botany became an electronic serial. It is available by subscription from volume 10, 2005 to the present via BioOne (http://www.bioone. org/). The content of the current issue is freely available at the Harvard University Herbaria & Libraries website (http://huh. harvard.edu/pdf-downloads). The content of back issues is also available from JSTOR (http://www.jstor.org/) volume 1, 1989 through volume 12, 2007 with a five-year moving wall.
    [Show full text]
  • The Genus Podospora (Lasiosphaeriaceae, Sordariales) in Brazil
    Mycosphere 6 (2): 201–215(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/2/10 The genus Podospora (Lasiosphaeriaceae, Sordariales) in Brazil Melo RFR1, Miller AN2 and Maia LC1 1Universidade Federal de Pernambuco, Departamento de Micologia, Centro de Ciências Biológicas, Avenida da Engenharia, s/n, 50740–600, Recife, Pernambuco, Brazil. [email protected] 2 Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL 61820 Melo RFR, Miller AN, MAIA LC 2015 – The genus Podospora (Lasiosphaeriaceae, Sordariales) in Brazil. Mycosphere 6(2), 201–215, Doi 10.5943/mycosphere/6/2/10 Abstract Coprophilous species of Podospora reported from Brazil are discussed. Thirteen species are recorded for the first time in Northeastern Brazil (Pernambuco) on herbivore dung. Podospora appendiculata, P. australis, P. decipiens, P. globosa and P. pleiospora are reported for the first time in Brazil, while P. ostlingospora and P. prethopodalis are reported for the first time from South America. Descriptions, figures and a comparative table are provided, along with an identification key to all known species of the genus in Brazil. Key words – Ascomycota – coprophilous fungi – taxonomy Introduction Podospora Ces. is one of the most common coprophilous ascomycetes genera worldwide, rarely absent in any survey of fungi on herbivore dung (Doveri, 2008). It is characterized by dark coloured, non-stromatic perithecia, with coriaceous or pseudobombardioid peridium, vestiture varying from glabrous to tomentose, unitunicate, non-amyloid, 4- to multispored asci usually lacking an apical ring and transversely uniseptate two-celled ascospores, delimitating a head cell and a hyaline pedicel, frequently equipped with distinctly shaped gelatinous caudae (Lundqvist, 1972).
    [Show full text]
  • Una Nueva Especie De Tanqua Karoo (Sudáfrica), Africa), with Notes on E
    2311_Ethesia_Mnez.Azo.af_Anales 69(2).qxd 14/12/2012 12:38 Página 201 Anales del Jardín Botánico de Madrid 69(2): 201-208, julio-diciembre 2012. ISSN: 0211-1322. doi: 10.3989/ajbm. 2311 Ethesia tanquana (Ornithogaloideae, Hyacinthaceae), a new species from the Tanqua Karoo (South Africa), with notes on E. haalenbergensis Mario Martínez-Azorín* & Manuel B. Crespo CIBIO (Instituto de la Biodiversidad), Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain; [email protected] Abstract Resumen Martínez-Azorín, M. & Crespo, M.B. 2012. Ethesia tanquana (Ornithoga- Martínez-Azorín, M. & Crespo, M.B. 2012. Ethesia tanquana (Ornithoga- loideae, Hyacinthaceae), a new species from the Tanqua Karoo (South loideae, Hyacinthaceae), una nueva especie de Tanqua Karoo (Sudáfrica), Africa), with notes on E. haalenbergensis. Anales Jard. Bot. Madrid 69(2): con notas sobre E. haalenbergensis. Anales Jard. Bot. Madrid 69(2): 201- 201-208. 208 (en inglés). As a part of a taxonomic revision of Ethesia Raf., a new species, E. tanqua- En el marco de la revisión taxonómica de Ethesia Raf., se describe una nue- na Mart.-Azorín & M.B.Crespo, is described from the Tanqua Karoo in va especie, E. tanquana Mart.-Azorín & M.B.Crespo, del Tanqua Karoo en South Africa. This new species is at first sight similar to E. haalenbergensis Sudáfrica. Esta nueva especie se asemeja a primera vista a E. haalenber- (U.Müll.-Doblies & D.Müll.-Doblies) Mart.-Azorín, M.B.Crespo & Juan and gensis (U.Müll.-Doblies & D.Müll.-Doblies) Mart.-Azorín, M.B.Crespo & also E. xanthochlora (Baker) Mart.-Azorín, M.B.Crespo & Juan, but it dif- Juan y E.
    [Show full text]
  • Droseraceae Gland and Germination Patterns Revisited: Support for Recent Molecular Phylogenetic Studies
    DROSERACEAE GLAND AND GERMINATION PATTERNS REVISITED: SUPPORT FOR RECENT MOLECULAR PHYLOGENETIC STUDIES JOHN G. CONRAN • Centre for Evolutionary Biology and Biodiversity • Environmental Biology • School of Earth and Environmental Sciences • Darling Building DP418 • The University of Adelaide • SA 5005 • Australia • [email protected] GUNTA JAUDZEMS • Department of Ecology and Evolutionary Biology • Monash University • Clayton • Vic. 3168 • Australia NEIL D. HALLAM • Department of Ecology and Evolutionary Biology • Monash University • Clayton • Vic. 3168 • Australia Keywords: Physiology: Aldrovanda, Dionaea, Drosera. Abstract Droseraceae germination and leaf gland and microgland character state patterns were re-exam- ined in the light of new molecular phylogenetic relationships. Phanerocotylar germination is basal in the family, with cryptocotylar germination having evolved at least twice; once in Aldrovanda, and again in Drosera within the Bryastrum/Ergaleium clade. Gland patterns also support major clades; with the Bryastrum clade taxa having marginal and Rorella-type glands whereas the terminal branch of the Drosera clade had marginal glands and most of the clade possessed biseriate type 3 glands. The gland and germination patterns are supported by growth habit features, suggesting that the family and the main clades within Drosera in particular have undergone major adaptive radiations for these charac- ters. Introduction Relationships between the genera and species of Droseraceae have been the subject of numerous studies, with a range of morphology-based systems produced, mainly using traditional characters such as habit, leaf-associated features and specialised propagation techniques (e.g. Planchon 1848; Diels 1906). Character evolution of traps has also been considered important in carnivorous plants (Juniper et al. 1989; Jobson & Albert 2002) and glandular patterns (Seine & Barthlott 1992, 1993; Länger et al.
    [Show full text]
  • Cacti, Biology and Uses
    CACTI CACTI BIOLOGY AND USES Edited by Park S. Nobel UNIVERSITY OF CALIFORNIA PRESS Berkeley Los Angeles London University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England © 2002 by the Regents of the University of California Library of Congress Cataloging-in-Publication Data Cacti: biology and uses / Park S. Nobel, editor. p. cm. Includes bibliographical references (p. ). ISBN 0-520-23157-0 (cloth : alk. paper) 1. Cactus. 2. Cactus—Utilization. I. Nobel, Park S. qk495.c11 c185 2002 583'.56—dc21 2001005014 Manufactured in the United States of America 10 09 08 07 06 05 04 03 02 01 10 987654 321 The paper used in this publication meets the minimum requirements of ANSI/NISO Z39.48–1992 (R 1997) (Permanence of Paper). CONTENTS List of Contributors . vii Preface . ix 1. Evolution and Systematics Robert S. Wallace and Arthur C. Gibson . 1 2. Shoot Anatomy and Morphology Teresa Terrazas Salgado and James D. Mauseth . 23 3. Root Structure and Function Joseph G. Dubrovsky and Gretchen B. North . 41 4. Environmental Biology Park S. Nobel and Edward G. Bobich . 57 5. Reproductive Biology Eulogio Pimienta-Barrios and Rafael F. del Castillo . 75 6. Population and Community Ecology Alfonso Valiente-Banuet and Héctor Godínez-Alvarez . 91 7. Consumption of Platyopuntias by Wild Vertebrates Eric Mellink and Mónica E. Riojas-López . 109 8. Biodiversity and Conservation Thomas H. Boyle and Edward F. Anderson . 125 9. Mesoamerican Domestication and Diffusion Alejandro Casas and Giuseppe Barbera . 143 10. Cactus Pear Fruit Production Paolo Inglese, Filadelfio Basile, and Mario Schirra .
    [Show full text]
  • Systematic Anatomy of the Woods of the Tiliaceae
    Technical Bulletin 158 June 1943 Systematic Anatomy of the Woods of the Tiliaceae B. Francis Kukachka and L. W. Rees Division of Forestry University of Minnesota Agricultural Experiment Station Systematic Anatomy of the Woods of the Tiliaceae B. Francis Kukachka and L. W. Rees Division of Forestry University of Minnesota Agricultural Experiment Station Accepted for publication January 29, 1943 CONTENTS Page Introduction 3 Anatomical indicators of phylogeny 4 Taxonomic history 7 Materials and methods 12 Measurements 14 Vessel members 14 Pore diameter 15 Numerical distributionS of pores 15 Pore grouping 15 Pore wall thickness 15 Fiber length 16 Fiber diameter 16 Parenchyma width and length 16 Description of the woods of the Tiliaceae 16 Description of the woods of the Elaeocarpaceae 49 Discussion 54 Elaeocarpaceae 54 Tiliaceae 56 General conclusions 63 Summary 64 Acknowledgments 65 Literature cited 65 2M-6-43 Systematic Anatomy of the Woods of the Tiliaceae B. Francis Kukachka and L. W. Rees INTRODUCTION ITHIN the last 20 years there has been developed a method Wof studying evolutionary trends in the secondary xylem of the dicotyledons, the fundamentals of which were laid principally by the researches of Bailey and Tupper( 13), Frost (50, 51, 52), and Kribs (64, 65). The technique depends on the previous establishment of an undoubtedly primitive anatomical feature and this is then asso- ciated with the feature to be investigated in order to determine the extent and direction of the correlation between the occur- rence of both features in the various species. A high positive correlation would indicate that the feature studied is relatively primitive.
    [Show full text]
  • Aspergillus Species of the Nigri Section Being Regarded As Troublesome, a Number of Methods Have Been Proposed to Aid in the Classification of This Section
    Brazilian Journal of Microbiology (2011) 42: 761-773 ISSN 1517-8382 IDENTIFICATION OF FUNGI OF THE GENUS ASPERGILLUS SECTION NIGRI USING POLYPHASIC TAXONOMY Daiani M. Silva1; Luís R. Batista*2; Elisângela F. Rezende 2; Maria Helena P. Fungaro 3; Daniele Sartori 3; Eduardo Alves4 1Universidade Federal de Lavras, Departamento de Biologia, Lavras, MG, Brasil; 2Universidade Federal de Lavras, Departamento de Ciências dos Alimentos, Lavras, MG, Brasil; 3Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brasil; 4Universidade Federal de Lavras, Departamento de Fitopatologia, Lavras, MG, Brasil. Submitted: December 22, 2009; Returned to authors for corrections: July 20, 2010; Approved: January 13, 2011. ABSTRACT In spite of the taxonomy of the Aspergillus species of the Nigri Section being regarded as troublesome, a number of methods have been proposed to aid in the classification of this Section. This work aimed to distinguish Aspergillus species of the Nigri Section from foods, grains and caves on the basis in Polyphasic Taxonomy by utilizing morphologic and physiologic characters, and sequencing of ß-tubulin and calmodulin genes. The morphologic identification proved useful for some species, such as A. carbonarius and Aspergillus sp UFLA DCA 01, despite not having been totally effective in elucidating species related to A. niger. The isolation of the species of the Nigri Section on Creatine Sucrose Agar (CREA) enabled to distinguish the Aspergillus sp species, which was characterized by the lack of sporulation and by the production of sclerotia. Scanning Electron microscopy (SEM) allowed distinguishing the species into two distinct groups. The production of Ochratoxin A (OTA) was only found in the A.
    [Show full text]