Glandular Hairs of the Ovary: a Helpful Character for Asteroideae (Asteraceae) Taxonomy?

Total Page:16

File Type:pdf, Size:1020Kb

Glandular Hairs of the Ovary: a Helpful Character for Asteroideae (Asteraceae) Taxonomy? Ann. Bot. Fennici 44: 1–7 ISSN 0003-3847 Helsinki 16 March 2007 © Finnish Zoological and Botanical Publishing Board 2007 Glandular hairs of the ovary: a helpful character for Asteroideae (Asteraceae) taxonomy? Daniela Ciccarelli*, Fabio Garbari & Anna M. Pagni Department of Biology, University of Pisa, via Luca Ghini 5, I-56126, Italy (*corresponding author’s e-mail: [email protected]) Received 19 Dec. 2005, revised version received 9 June 2006, accepted 14 June 2006 Ciccarelli, D., Garbari, F. & Pagni, A. M. 2007: Glandular hairs of the ovary: a helpful character for Asteroideae (Asteraceae) taxonomy? — Ann. Bot. Fennici 44: 1–7. Surface microcharacters of the ovary of the Asteraceae were studied, especially biseriate glandular hairs. Of 34 species belonging to the Asteroideae, only Dittrichia viscosa, Pulicaria dysenterica, Bellis perennis, Tanacetum parthenium, Achillea mar- itima, Matricaria chamomilla, and Eupatorium cannabinum possess glandular hairs on the ovary. Additional characters considered are hair morphology and distribution, cell number, and presence of subcuticular chambers and chloroplasts. The usefulness of glandular hairs of the ovary for taxonomic purposes is discussed. Key words: Asteraceae, Asteroideae, glandular hairs, light microscopy, ovary, SEM, taxonomy Introduction (Ascensão et al. 2001).Investigations referring to a supraspecific taxon are scarce. Carlquist (1958) In the Asteraceae both non-glandular and glandu- analysed the structure and ontogenesis of glandu- lar hairs are present (Metcalfe & Chalk 1950). The lar hairs of Madinae, demonstrating their taxo- non-glandular hairs are represented by numerous nomic and evolutionary significance. Napp-Zinn morphological types, whereas the glandular hairs and Eble (1980) took into consideration the glan- are more homogeneous. The latter are usually dular and non-glandular hairs of twenty genera of formed of a peduncle and a head of one or many the Anthemideae. In the genus Artemisia, features cells. The most common type, found in numerous of the glandular hairs are considered useful for species, is a biseriate hair formed of five pairs of the separation of A. nova from A. arbuscula and cells. Detailed studies of this type of hair, its mor- A. tridentata (Kelsey 1984). phology and ultrastructure have been carried out Glandular hairs, in the Asteraceae, may be on plants of economic interest, such as Dittrichia present both on the vegetative and floral parts. viscosa (Werker & Fahn 1981), Artemisia annua In the capitula they are found on the receptacle, (Duke & Paul 1993), Artemisia nitida (Corsi & bracts, corolla and also on the ovary. On the Nencioni 1995), Artemisia campestris (Ascensão ovary surface, other types of hairs may also be & Pais 1987), Achillea millefolium (Figueiredo & present: twin hairs, of a characteristic double Pais 1994), Helichrysum aureonitens (Afolayan structure, and slime hairs, usually multicellu- & Meyer 1995), and Helichrysum stoechas lar, involved in the production of mucilaginous 2 Ciccarelli et al. • ANN. BOT. FENNICI Vol. 44 material (Roth 1977). The characters of the sur- for the phylogeny and classification of the family face of the ovary and fruit have repeatedly been is underlined in several recent works (Ander- used for the delimitation of taxa at various levels berg 1991, Karis 1993, Zhang & Bremer 1993, in several families (Karcz 1996, Lane 1985). Bremer 1994). The present paper is a contribu- However, in the Asteraceae they are seldom used tion to the study of the surface microcharacters as key characters in floras, and when they are, of the ovary, focusing on biseriate glandular the different types of hairs are only occasionally hairs. Its particular aim is to verify, through considered. The importance of cypsela features examples, the potential usefulness of glandular hairs for taxonomical and phylogenetic studies. Table 1. Species of subfamily Asteroideae collected from Migliarino-San Rossore-Massacciuccoli Natural Park. Species marked with an asterisk (*) possess Material and methods glandular hairs on the ovary. Tribe Species The plant material examined originated from a protected area (Migliarino-San Rossore-Mas- Inuleae sacciuccoli Natural Regional Park, Pisa, Italy) * Dittrichia viscosa (L.) Greuter characterised by a high biological diversity. Inula conyzae Griesselich Limbarda crithmoides (L.) Dumort. Restricted by the Park regulations, we randomly * Pulicaria dysenterica (L.) Bernh. collected capitula from at least five individual Pulicaria odora (L.) Rchb. plants of each species during the flowering and Pulicaria sicula (L.) Moris fruiting phases (years 2001–2003). The spe- Gnaphalieae cies studied are listed in Table 1. The 34 spe- Filago pyramidata L. Filago germanica L. cies examined belong to seven tribes: Inuleae, Gnaphalium uliginosum L. Gnaphalieae, Astereae, Anthemideae, Senecio- Helichrysum italicum (Roth.) Don. neae, Heliantheae, Eupatorieae (classification Helichrysum stoechas (L.) Moench and nomenclature in accordance with Bremer Astereae 1994 as modified by Greuter 2003a, 2003b, Tripolium pannonicum (Jacq.) Dobrocz. * Bellis perennis L. 2003c, Greuter et al. 2003). Erigeron canadensis L. Erigeron acris L. Erigeron karwinskianus DC. Light microscopy (LM) Anthemideae * Tanacetum parthenium (L.) Sch.-Bip. Artemisia coerulescens L. Sections (25 µm) of fresh capitula were cut using Achillea millefolium L. a Leitz 1720 cryostat at –14°/–16°C. Other sec- * Achillea maritima (L.) Ehrend. tions (3 µm) were cut using a Leica 2055 micro- Anthemis arvensis L. tome, after fixing the material in FAA (Sass Anthemis cotula L. 1958) and embedding it in LR White acrylic Coleostephus myconis (L.) Cass. Leucanthemum pallens (Gay) DC. resin (SIGMA). All the material was stained Leucanthemum vulgare Lam. with Toluidine Blue (TBO) (O’Brien & McCully * Matricaria chamomilla L. 1981), a generic dye for DNA, cytoplasm and Senecioneae some cell wall components. Jacobaea erratica (Bertol.) Fourr. Fresh material was also observed under a light Senecio lividus L. Senecio vulgaris L. microscope without any staining procedure. Heliantheae Bidens frondosa L. Bidens tripartita L. Scanning electron microscopy (SEM) Xanthium italicum Moretti Xanthium strumarium L. Eupatorieae All the material was fixed in glutaraldehyde (2% * Eupatorium cannabinum L. with buffer solution at pH 7.4), dehydrated in a gradient of an alcohol and acetone mixture, criti- ANN. BOT. FENNICI Vol. 44 • Glandular hairs of the ovary: a helpful character for Asteroideae taxonomy? 3 cal point dried and sputter-coated with gold. The samples were examined at 15 KV using a Cam- bridge Stereoscan 90 SEM. Results Biseriate glandular hairs were found on the ovary of Dittrichia viscosa, Pulicaria dysenterica, Bellis perennis, Tanacetum parthenium, Achillea maritima, Matricaria chamomilla, and Eupato- rium cannabinum. The typical base model (made up of ten cells: two basal cells, two of the pedun- cle and six of the secretory head) is present on the ovary of B. perennis, T. parthenium, A. maritima, M. chamomilla and E. cannabinum. In B. perennis and in E. cannabinum the number of head cells varies from six to eight, in D. viscosa and in P. dysenterica each series of the head hair is formed of six to nine cells; the apical cells are very large (Fig. 1). The hair morphology does not show any within-species variation. The hairs can be distributed on the whole Fig. 1. Biseriate glandular hairs. — A: Dittrichia vis- surface of the ovary as in D. viscosa, in B. peren- cosa (scale bar = 18.3 µm). — B: Pulicaria dysenterica nis and in E. cannabinum (Fig. 2A–C); between (scale bar = 8.3 µm). — C: Bellis perennis (scale bar = the ribs as in T. parthenium, A. maritima (Fig. 3.4 µm). — D: Eupatorium cannabinum (scale bar = 4.6 µm). — E: Tanacetum parthenium (scale bar = 4.1 µm). 2D, E) and M. chamomilla (A. Andreucci pers. — F: Achillea maritima (scale bar = 2.6 µm). — G: Mat- comm.); and in the apical part of the ovary as ricaria chamomilla (scale bar = 3.0 µm). Chloroplasts in P. dysenterica (Fig. 2F). The hair distribution are present in all the cells of the head with the excep- pattern seems to remain constant within a spe- tion of the apical cells, in B. perennis also the apical cies. cells have chloroplasts. The shape of the hair tip can vary from glob- ular in T. parthenium (Fig. 3A) to fungiform in E. cannabinum (Fig. 3B), more or less clavate in In the species studied, chloroplasts are B. perennis (Fig. 1) or cylindrical in D. viscosa present in all cells that form the head of the hair, (Fig. 3C) and in P. dysenterica (Fig. 3D). except in the apical cells; in B. perennis also the All glandular hairs have, at full growth, a apical cells are green. subcuticular chamber, a space coming out when When the fruit matures the glandular hairs the two layers of the cuticle become detached remain, but their structure often degenerates. from the pecto-cellulosic wall (Fahn 2000). Its size can be very different among species while being usually uniform within a species. Among Discussion the plants analysed, B. perennis has the smallest subcuticular chamber (Fig. 1C) with regard to The classification of Asteraceae remains in a only the apical cells; E. cannabinum has a bigger state of flux. In a revision of the family, Bremer chamber that gives the hair a fungiform appear- (1994) pointed out that, to provide a complete ance (Fig. 3B); a large spherical chamber is also classification, new research and taxonomic revi- present in D. viscosa, P. dysenterica and A. mar- sions were necessary especially at the lower itima. In the last species the chamber regards not taxonomical levels. Even if molecular research only the apical but also the lower cells (Fig. 1F). has provided an important contribution to under- 4 Ciccarelli et al. • ANN. BOT. FENNICI Vol. 44 Fig. 2. — A: Dittrichia vis- cosa: few glandular hairs (arrows) are distributed on the ovary among non-glan- dular hairs (scale bar = 100 µm). — B: Bellis perennis: biseriate glandular hairs (arrows) are distributed on the whole surface of the ovary (scale bar = 80 µm). — C: Eupatorium cannabi- num: glandular hairs are distributed on the whole surface of the ovary (scale bar = 130 µm).
Recommended publications
  • Food Microbiology Significance of Aspergillus Niger Aggregate
    Food Microbiology 82 (2019) 240–248 Contents lists available at ScienceDirect Food Microbiology journal homepage: www.elsevier.com/locate/fm Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce T mycotoxins ∗ Jéssica Gil-Serna , Marta García-Díaz, Covadonga Vázquez, María Teresa González-Jaén, Belén Patiño Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid. Jose Antonio Nováis 12, 28040, Madrid, Spain ARTICLE INFO ABSTRACT Keywords: The Aspergillus niger aggregate contains 15 morphologically indistinguishable species which presence is related Ochratoxin A to ochratoxin A (OTA) and fumonisin B2 (FB2) contamination of foodstuffs. The taxonomy of this group was Fumonisins recently reevaluated and there is a need of new studies regarding the risk that these species might pose to food Food safety security. 258 isolates of A. niger aggregate obtained from a variety of products from Spain were classified by Section Nigri molecular methods being A. tubingensis the most frequently occurring (67.5%) followed by A. welwitschiae (19.4%) and A. niger (11.7%). Their potential ability to produce mycotoxins was evaluated by PCR protocols which allow a rapid detection of OTA and FB2 biosynthetic genes in their genomes. OTA production is not widespread in A. niger aggregate since only 17% of A. niger and 6% of A. welwitschiae isolates presented the complete biosynthetic cluster whereas the lack of the cluster was confirmed in all A. tubingensis isolates. On the other hand, A. niger and A. welwitschiae seem to be important FB2 producers with 97% and 29% of the isolates, respectively, presenting the complete cluster.
    [Show full text]
  • Sarah K. Gess and Friedrich W. Gess
    Pollen wasps and flowers in southern Africa Sarah K. Gess and Friedrich W. Gess SANBI Biodiversity Series 18 Pollen wasps and flowers in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2010 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Emsie du Plessis Design & layout: Bob Greyvenstein Cover design: Bob Greyvenstein How to cite this publication GESS, S.K. & GESS, F.W. 2010. Pollen wasps and flowers in southern Africa. SANBI Biodiversity Series 18. South African National Biodiversity Institute, Pretoria. ISBN 978-1-919976-60-0 © Published by: South African National Biodiversity Institute. Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa. Tel.: +27 12 843-5000.
    [Show full text]
  • Safety Assessment of Helianthus Annuus (Sunflower)-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Helianthus annuus (Sunflower)-Derived Ingredients as Used in Cosmetics Status: Draft Tentative Report for Panel Review Release Date: March 7, 2016 Panel Meeting: March 31-April 1, 2016 The 2016 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Lillian C. Becker, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 Washington, DC 20036-4702 ph 202.331.0651 fax 202.331.0088 [email protected] 1 Distributed for comment only -- do not cite or quote Commitment & Credibility since 1976 MEMORANDUM To: CIR Expert Panel and Liaisons From: Lillian C. Becker, M.S. Scientific Analyst and Writer Ivan J. Boyer, PhD, DABT Senior Toxicologist Date: March 7, 2016 Subject: Helianthus annuus (Sunflower)-Derived Ingredients as Used in Cosmetics Attached is the tentative report of 13 Helianthus annuus (sunflower)-derived ingredients as used in cosmetics. [Helian122015Rep] All of these ingredients are derived from parts of the Helianathus annuus (sunflower) plant. The sunflower seed oils (with the exception of Ozonized Sunflower Seed Oil) were reviewed in the vegetable- derived oils report and are not included here. In December, 2015, the Panel issued an Insufficient Data Announcement with these data needs: • HRIPT of Hydrogenated Sunflower Seed Extract at 1% or greater • Method of manufacture, including clarification of the source material (whole plant vs “bark”), of Helianthus Annuus (Sunflower) Extract • Composition of these ingredients, especially protein content (including 2S albumin) Impurities The Council submitted summaries of HRIPTs and use studies of products containing Helianthus annuus (sunflower)-derived ingredients.
    [Show full text]
  • Evaluation of Essential Oil Composition Genus Dittrichia L
    Türk Tarım ve Doğa Bilimleri Dergisi 4(4): 456–460, 2017 TÜRK TURKISH TARIM ve DOĞA BİLİMLERİ JOURNAL of AGRICULTURAL DERGİSİ and NATURAL SCIENCES www.dergipark.gov.tr/turkjans Evaluation of Essential Oil Composition Genus Dittrichia L. (Asteraceae) Plants in Aydın/Turkey 1Emre SEVİNDİK*, 2Mehmet Yavuz PAKSOY 1Faculty of Agriculture, Department of Agricultural Biotechnology, Adnan Menderes University, South Campus, Cakmar, Aydin, Turkey 2Munzur University, Faculty of Engineering, Department of Enviromental Engineering, Tunceli 62100, Turkey *Corresponding author: [email protected] Received: 20.06.2017 Received in Revised: 21.08.2017 Accepted: 08.09.2017 Abstract The genus Dittrichia (Asteraceae), described by Greuter as a small genus, was previously known as a part of Inula and has a widespread Mediterranean distribution, marginally penetrating in the Atlantic European territories and in Middle East. The essential oil chemical compositions were derived from the genus Dittrichia L. plants were examined in the present study. The study material, Dittrichia viscosa (L). Greuter and Dittrichia graveolens (L.) Greuter were collected West Anatolian (Aydın/Turkey) ecological conditions in September- October 2015. Essential oils of the leaves were extracted by Clevenger apparatus. Essential oil compositions were determined with Gas Chromatography-Mass Spectrometry (GC-MS) device. The results from the gas chromatography-mass spectrometry analysis showed that the obtained levo-bornyl acetate from D. graveolens was with the highest percentage (25.23%). The 2,4-dioxo-3-methyl-6-isopropyl pyrido[2,3-b]-[1,4]pyrazine in D. viscosa was with the highest percentage (29.02%). Keywords: Essential oil, GC-MS, Dittrichia, Aydın/Turkey Aydın/Türkiye’de Yayılış Gösteren Dittrichia L.
    [Show full text]
  • FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
    ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Oxeye Daisy(Chrysanthemum Leucanthemum Syn.Leucanthemum
    Oxeye Daisy (Chrysanthemum leucanthemum syn. Leucanthemum vulgare) Provincial Designation: Noxious Overview: Identification: Introduced from Europe in the early 1800’s Stems: Multiple, un-branched stems grow up primarily as a grass seed contaminant, and to 1 m tall and are smooth, frequently grooved subsequently spread as an ornamental, and generally hairless. Oxeye daisy has become a serious invader Leaves: Basal and lower leaves are lance- of pastures and natural areas throughout shaped with “toothed” margins and petioles North America. It is a perennial herb that that may be as long as the leaves. The upper reproduces both by seed and shallow leaves are alternately arranged, narrow, and rhizomes. Single plants quickly become stalkless with wavy margins. Leaves progres- patches that continually increase in size. sively decrease in size upward on the stem. Control: Plants flower June-August and its seed Flowers: Flowers are borne singly at the end germinates throughout the growing season. of stems and can be up to 5 cm in diameter, Grazing: Not grazed. Livestock may physically Oxeye Daisy and the very similarly flowered with yellow centers, and 20 to 30 white petals damage oxeye plants by trampling under high Scentless Chamomile can be considered radiating from the center. The petals are slightly stocking rates, but the subsequent overgrazing conspicuous, as there are no native white notched at the tip. of desirable vegetation and soil disturbance will flowered daisies in Alberta. worsen the infestation. Plants consumed by Seed: Individual plants can produce over 500 dairy cattle can give the milk an off-flavour. flat, black seeds that are viable in the soil for Habitat: 2-3 years or more.
    [Show full text]
  • Functional Ecology Published by John Wiley & Sons Ltd on Behalf of British Ecological Society
    Received: 22 June 2017 | Accepted: 14 February 2018 DOI: 10.1111/1365-2435.13085 RESEARCH ARTICLE Insular woody daisies (Argyranthemum, Asteraceae) are more resistant to drought- induced hydraulic failure than their herbaceous relatives Larissa C. Dória1 | Diego S. Podadera2 | Marcelino del Arco3 | Thibaud Chauvin4,5 | Erik Smets1 | Sylvain Delzon6 | Frederic Lens1 1Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands; 2Programa de Pós-Graduação em Ecologia, UNICAMP, Campinas, São Paulo, Brazil; 3Department of Plant Biology (Botany), La Laguna University, La Laguna, Tenerife, Spain; 4PIAF, INRA, University of Clermont Auvergne, Clermont-Ferrand, France; 5AGPF, INRA Orléans, Olivet Cedex, France and 6BIOGECO INRA, University of Bordeaux, Cestas, France Correspondence Frederic Lens Abstract Email: [email protected] 1. Insular woodiness refers to the evolutionary transition from herbaceousness to- Funding information wards derived woodiness on (sub)tropical islands and leads to island floras that have Conselho Nacional de Desenvolvimento a higher proportion of woody species compared to floras of nearby continents. Científico e Tecnológico, Grant/Award Number: 206433/2014-0; French National 2. Several hypotheses have tried to explain insular woodiness since Darwin’s original Agency for Research, Grant/Award Number: observations, but experimental evidence why plants became woody on islands is ANR-10-EQPX-16 and ANR-10-LABX-45; Alberta Mennega Stichting scarce at best. 3. Here, we combine experimental measurements of hydraulic failure in stems (as a Handling Editor: Rafael Oliveira proxy for drought stress resistance) with stem anatomical observations in the daisy lineage (Asteraceae), including insular woody Argyranthemum species from the Canary Islands and their herbaceous continental relatives. 4. Our results show that stems of insular woody daisies are more resistant to drought- induced hydraulic failure than the stems of their herbaceous counterparts.
    [Show full text]
  • Baccharis Malibuensis (Asteraceae): a New Species from the Santa Monica Mountains, California R
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 14 | Issue 3 Article 32 1995 Baccharis Malibuensis (Asteraceae): A New Species from the Santa Monica Mountains, California R. Mitchell Beauchamp Pacific Southwest Biological Services, Inc. James Henrickson California State University, Los Angeles Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Beauchamp, R. Mitchell and Henrickson, James (1995) "Baccharis Malibuensis (Asteraceae): A New Species from the Santa Monica Mountains, California," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 14: Iss. 3, Article 32. Available at: http://scholarship.claremont.edu/aliso/vol14/iss3/32 Aliso, 14(3), pp. 197-203 © 1996, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 BACCHARIS MALIBUENSIS (ASTERACEAE): A NEW SPECIES FROM THE SANTA MONICA MOUNTAINS, CALIFORNIA R. MITCHEL BEAUCHAMP Pacific Southwest Biological Services, Inc. P.O. Box 985 National City, California 91951 AND JAMES HENRICKSON Department of Biology California State University Los Angeles, California 90032 ABSTRACT Baccharis malibuensis is described from the Malibu Lake region of the Santa Monica Mountains, Los Angeles County, California. It is closely related to Baccharis plummerae subsp. plummerae but differs in having narrow, subentire, typically conduplicate, sparsely villous to mostly glabrous leaves with glands occurring in depressions on the adaxial surface, more cylindrical inflorescences, and a distribution in open chaparral vegetation. The new taxon shares some characteristics with B. plum­ merae subsp. glabrata of northwestern San Luis Obispo County, e.g., smaller leaves, reduced vestiture, and occurrence in scrub habitat, but the two taxa appear to have developed independently from B.
    [Show full text]
  • Ndhf Sequence Evolution and the Major Clades in the Sunflower Family KI-JOONG KIM* and ROBERT K
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 10379-10383, October 1995 Evolution ndhF sequence evolution and the major clades in the sunflower family KI-JOONG KIM* AND ROBERT K. JANSENt Department of Botany, University of Texas, Austin, TX 78713-7640 Communicated by Peter H. Raven, Missouri Botanical Garden, St. Louis, MO, June 21, 1995 ABSTRACT An extensive sequence comparison of the either too short or too conserved to provide adequate numbers chloroplast ndhF gene from all major clades of the largest of characters in recently evolved families. A number of alter- flowering plant family (Asteraceae) shows that this gene native genes have been suggested as potential candidates for provides -3 times more phylogenetic information than rbcL. phylogenetic comparisons at lower taxonomic levels (9). The This is because it is substantially longer and evolves twice as phylogenetic utility of one of these, matK, has been recently fast. The 5' region (1380 bp) ofndhF is very different from the demonstrated (10). Comparison of sequences of two chloro- 3' region (855 bp) and is similar to rbcL in both the rate and plast genomes (rice and tobacco), however, revealed only two the pattern of sequence change. The 3' region is more A+T- genes, rpoCl and ndhF, that are considerably longer and evolve rich, has higher levels of nonsynonymous base substitution, faster than rbcL (9, 11). We selected ndhF because it is longer and shows greater transversion bias at all codon positions. and evolves slightly faster than rpoCl (11), because rpoCl has These differences probably reflect different functional con- an intron that may require additional effort in DNA amplifi- straints on the 5' and 3' regions of nduhF.
    [Show full text]
  • Este Trabalho Não Teria Sido Possível Sem O Contributo De Algumas Pessoas Para As Quais Uma Palavra De Agradecimento É Insufi
    AGRADECIMENTOS Este trabalho não teria sido possível sem o contributo de algumas pessoas para as quais uma palavra de agradecimento é insuficiente para aquilo que representaram nesta tão importante etapa. O meu mais sincero obrigado, Ao Nuno e à minha filha Constança, pelo apoio, compreensão e estímulo que sempre me deram. Aos meus pais, Gaspar e Fátima, por toda a força e apoio. Aos meus orientadores da Dissertação de Mestrado, Professor Doutor António Xavier Pereira Coutinho e Doutora Catarina Schreck Reis, a quem eu agradeço todo o empenho, paciência, disponibilidade, compreensão e dedicação que por mim revelaram ao longo destes meses. À Doutora Palmira Carvalho, do Museu Nacional de História Natural/Jardim Botânico da Universidade de Lisboa por todo o apoio prestado na identificação e reconhecimento dos líquenes recolhidos na mata. Ao Senhor Arménio de Matos, funcionário do Jardim Botânico da Universidade de Coimbra, por todas as vezes que me ajudou na identificação de alguns espécimes vegetais. Aos meus colegas e amigos, pela troca de ideias, pelas explicações, pela força, apoio logístico, etc. I ÍNDICE RESUMO V ABSTRACT VI I. INTRODUÇÃO 1.1. Enquadramento 1 1.2. O clima mediterrânico e a vegetação 1 1.3. Origens da vegetação portuguesa 3 1.4. Objetivos da tese 6 1.5. Estrutura da tese 7 II. A SANTA CASA DA MISERICÓRDIA DE ARGANIL E A MATA DO HOSPITAL 2.1. Breve perspetiva histórica 8 2.2. A Mata do Hospital 8 2.2.1. Localização, limites e vias de acesso 8 2.2.2. Fatores Edafo-Climáticos-Hidrológicos 9 2.2.3.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]