1 Probing the Ionotropic Activity of the Orphan Glutamate Delta 2 Receptor With

Total Page:16

File Type:pdf, Size:1020Kb

1 Probing the Ionotropic Activity of the Orphan Glutamate Delta 2 Receptor With bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.093419; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Probing the ionotropic activity of the orphan glutamate delta 2 receptor with 2 genetically-engineered photopharmacology. 3 4 5 6 Damien Lemoine1, Sarah Mondoloni1, Jérôme Tange1, Bertrand Lambolez1, Philippe 7 Faure1, Antoine Taly2,3*, Ludovic Tricoire1* and Alexandre Mourot1*. 8 9 10 1 Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), CNRS, 11 INSERM, Sorbonne Université, Paris, France 12 2 CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, UPR 13 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France 14 3 Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL 15 Research University, Paris, France 16 * Equal contribution 17 18 19 Correspondence to: [email protected] ; [email protected] 20 21 22 23 Keywords: optogenetics, photopharmacology, Glutamate receptors, tethered ligands, 24 ion channels, azobenzene 25 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.093419; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 26 Abstract 27 Glutamate delta (GluD) receptors belong to the ionotropic glutamate receptor family, 28 yet whether they actually form functional and physiologically-relevant ion channels in 29 neurons remains a debated question. Here we used a chemo-genetic approach to 30 engineer specific and photo-reversible pharmacology in the orphan GluD2 receptor. 31 We incorporated a cysteine mutation in the cavity located above the putative ion 32 channel pore, for site-specific conjugation with a photoswitchable ligand. We first 33 showed that, in the constitutively-open GluD2 Lurcher mutant, current could be rapidly 34 and reversibly decreased with light. We then transposed the cysteine mutation to the 35 native receptor, to demonstrate with absolute pharmacological specificity that 36 metabotropic glutamate receptor signaling opens the GluD2 ion channel in 37 heterologous expression system. Our results assess the functional relevance of GluD2 38 ion channel and introduce an optogenetic tool that will provide a novel and powerful 39 means for probing GluD2 ionotropic contribution to neuronal physiology. 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.093419; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 40 Glutamate delta (GluD1 and GluD2) receptors are considered orphan because, 41 while having a strong sequence homology with the other ionotropic glutamate 42 receptors (AMPA, NMDA and Kainate), they are not activated by glutamate1,2. GluD 43 receptors are both widely expressed throughout the brain, GluD1 predominating in the 44 forebrain, and GluD2 being highly enriched in cerebellar Purkinje neurons3,4. Both 45 GluD1 and GluD2 play a role in the formation, stabilization, function and plasticity of 46 synapses4-7. Likewise, deletion of GluD1 or GluD2 genes in mouse results in marked 47 behavioral alterations8,9, and mutations in human GluD1 and GluD2 genes have been 48 associated with neurodevelopmental and psychiatric diseases10,11, attesting to their 49 functional importance in brain circuits. Nevertheless, due to the absence of 50 pharmacology, a detailed understanding of how GluD1/2 regulate specific neural 51 circuits, and notably whether their ionotropic activity is involved, is lacking. 52 53 Although GluD1 and GluD2 exhibit a domain similar to the ligand binding domain (LBD) 54 of other iGluRs12, no ligand has been found that directly triggers the opening of the 55 pore. Yet, several observations indicate that the ion channel of GluD receptors may be 56 functional. First, crystallization studies show that the LBD of GluD2 binds D-serine and 57 glycine, and that these ligands induce “agonist-like” structural rearrangements in the 58 LBD, even though they fail to evoke currents at wild-type (WT) GluD receptors 59 expressed in heterologous expression systems13. Second, a point mutation (A654T) in 60 GluD2 that causes the degeneration of cerebellar Purkinje neurons in Lurcher (Lc) 61 mice confers constitutive ion flow14,15. Current through GluD2Lc receptors is inhibited 62 by pentamidine and 1-Naphthyl acetyl spermine (NASPM)16,17, pore blockers of NMDA 63 and AMPA receptors, respectively. Furthermore, D-serine and glycine reduce the 64 spontaneous currents of GluD2Lc, suggesting a coupling between the LBD and the 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.093419; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 65 channel13,18. Third, receptor chimeras containing the LBD of AMPA receptors and the 66 membrane domain of GluD receptors show glutamate-induced currents19. Fourth, the 67 GluD1/2 receptor channel can be opened following activation of type I metabotropic 68 glutamate receptors (mGlu1/5), and these currents are almost completely blocked by 69 NASPM and reduced by D-serine20-22. Finally, the slow excitatory postsynaptic currents 70 observed in midbrain dopaminergic, dorsal raphe, and cerebellar Purkinje neurons, are 71 abolished upon gene inactivation or expression of dominant-negative pore mutants of 72 GluD1/220,22,23. All these findings indicate that GluD receptors likely possess a 73 functional ion channel pore. Yet, a direct evidence for ionotropic activity of GluD in 74 neuronal setting is lacking, due to the inability to specifically and acutely block GluD 75 conductance. 76 77 To fill this gap, we bestowed light-sensitivity to the GluD ion channel pore using 78 an optogenetic pharmacology approach24. We incorporated a cysteine point mutation 79 at the surface of GluD2, right above the hypothetical channel lumen, onto which can 80 be anchored a photoswitchable tethered ligand (PTL). Light is then used to modify the 81 geometry of the PTL, thereby presenting/removing the ligand to/from the channel, 82 resulting in optical control of ionotropic activity. Here we demonstrate rapid and 83 reversible, optical control of ion current through a cysteine-substituted GluD2 receptor. 84 This novel tool, called light-controllable GluD2 (LiGluD2), allows rapid, reversible and 85 pharmacologically-specific control of GluD2, and may help provide a mechanistic 86 understanding of how this receptor contributes to brain circuits and behaviors. 87 88 Our approach to probing the functionality of the ion channel in GluD is to install 89 a photo-isomerizable pore blocker at the extracellular entrance to the channel lumen 4 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.093419; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 90 (Figure 1A). The tethered ligand is site-specifically attached to a cysteine-substituted 91 residue. In darkness or under green light, the PTL adopts an elongated shape and 92 reaches the lumen, resulting in ion channel blockade, while under violet light, it 93 switches to a twisted, shorter configuration, relieving blockade. Our design of the PTL 94 was based on the chemical structure of pentamidine (Figure 1B), a pore blocker that 95 efficiently blocks current through GluD2Lc receptors17. The PTL, called MAGu, contains 96 a thiol-reactive maleimide (M) moiety, a central photo-isomerizable azobenzene (A) 97 chromophore, and a guanidinium (Gu) head group that resembles the amidinium 98 groups of pentamidine (Figure 1C). MAGu was selected notably because its synthesis 99 route has been described (referred to as PAG1c in the original article25). In aqueous 100 solution, MAGu could be converted to its cis form using 380 nm light, and converted 101 back to trans either slowly in darkness (t1/2 ~ 20 min) or rapidly upon illumination with 102 525 nm light (Supp. Fig.1A-B), in agreement with previous reports26. To find the best 103 attachment site for MAGu on GluD, we developed a homology model of the GluD2 104 receptor, based on the structure of the recently crystallized GluA2 receptor27 (see 105 methods). Using this model, we selected a series of 15 residues, located on the peptide 106 that links the LBD to the third transmembrane domain (TM3) that lines the channel 107 lumen, for mutation to cysteine (Figure 1D-E). 108 109 Since no known ligand directly gates the ion channel of GluD2, we used a Lc 110 mutant, L654T, which displays a constitutively open channel14,15, for screening the 15 111 single-cysteine mutations. Accordingly, we found that heterologous expression of 112 GluD2-L654T, but not of the wild-type (WT) protein, in HEK cells produces large 113 currents that reverse at membrane potential close to 0 mV and are reduced by 114 externally-applied pentamidine (Figure 2A). Subtracted Lc current showed clear 5 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.093419; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 115 rectification at positive potentials, as reported with the blockade by NASP another GluD 116 blocker16. Therefore, the L654T Lc mutant was subsequently used as a screening 117 platform to find the best attachment site for MAGu on GluD2. Each of the 15 residues 118 identified in Fig. 1D were mutated individually to cysteine on the L654T background, 119 and tested using patch-clamp electrophysiology. Cells were treated with MAGu (20 120 µM, 20 min) and Lc currents were measured in voltage-clamp mode (-60 mV) under 121 different illumination conditions to toggle MAGu between its cis and trans states.
Recommended publications
  • Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed Hipscs To
    Hindawi Publishing Corporation Stem Cells International Volume 2013, Article ID 784629, 25 pages http://dx.doi.org/10.1155/2013/784629 Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny Leonhard Linta,1 Marianne Stockmann,1 Qiong Lin,2 André Lechel,3 Christian Proepper,1 Tobias M. Boeckers,1 Alexander Kleger,3 and Stefan Liebau1 1 InstituteforAnatomyCellBiology,UlmUniversity,Albert-EinsteinAllee11,89081Ulm,Germany 2 Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelstrasse 30, 52074 Aachen, Germany 3 Department of Internal Medicine I, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany Correspondence should be addressed to Alexander Kleger; [email protected] and Stefan Liebau; [email protected] Received 31 January 2013; Accepted 6 March 2013 Academic Editor: Michael Levin Copyright © 2013 Leonhard Linta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated.
    [Show full text]
  • Stem Cells and Ion Channels
    Stem Cells International Stem Cells and Ion Channels Guest Editors: Stefan Liebau, Alexander Kleger, Michael Levin, and Shan Ping Yu Stem Cells and Ion Channels Stem Cells International Stem Cells and Ion Channels Guest Editors: Stefan Liebau, Alexander Kleger, Michael Levin, and Shan Ping Yu Copyright © 2013 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Stem Cells International.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Nadire N. Ali, UK Joseph Itskovitz-Eldor, Israel Pranela Rameshwar, USA Anthony Atala, USA Pavla Jendelova, Czech Republic Hannele T. Ruohola-Baker, USA Nissim Benvenisty, Israel Arne Jensen, Germany D. S. Sakaguchi, USA Kenneth Boheler, USA Sue Kimber, UK Paul R. Sanberg, USA Dominique Bonnet, UK Mark D. Kirk, USA Paul T. Sharpe, UK B. Bunnell, USA Gary E. Lyons, USA Ashok Shetty, USA Kevin D. Bunting, USA Athanasios Mantalaris, UK Igor Slukvin, USA Richard K. Burt, USA Pilar Martin-Duque, Spain Ann Steele, USA Gerald A. Colvin, USA EvaMezey,USA Alexander Storch, Germany Stephen Dalton, USA Karim Nayernia, UK Marc Turner, UK Leonard M. Eisenberg, USA K. Sue O’Shea, USA Su-Chun Zhang, USA Marina Emborg, USA J. Parent, USA Weian Zhao, USA Josef Fulka, Czech Republic Bruno Peault, USA Joel C. Glover, Norway Stefan Przyborski, UK Contents Stem Cells and Ion Channels, Stefan Liebau,
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Grid1 Regulates the Onset of Puberty in Female Rats
    Grid1 Regulates the Onset of Puberty in Female Rats Jing Ye Anhui Agricultural University Ping Qin Anhui Agricultural University Hailing Li Anhui Agricultural University Tiezhu Kang Anhui Agricultural University Wenyu Si Anhui Agricultural University Zhiqiu Yao Anhui Agricultural University Ya Liu Anhui Agricultural University Tong Yu Anhui Agricultural University Yunhai Zhang Anhui Agricultural University Yinghui Ling Anhui Agricultural University Hongguo Cao Anhui Agricultural University Juhua Wang Anhui Agricultural University Yunsheng Li Anhui Agricultural University Fugui Fang ( [email protected] ) Anhui Agricultural University https://orcid.org/0000-0002-3203-6687 Research Keywords: GnRH, Grid1, puberty, rat, RFRP 3 Page 1/21 Posted Date: December 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-134074/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/21 Abstract The present study aimed to investigate whether Grid1, encoding the glutamate ionotropic receptor delta type subunit 1(GluD1), inuences the onset of puberty in female rats. First, we detected the expression of Grid1 mRNA and its protein in the hypothalamus from infancy to puberty. Second, we evaluated the suppression of Grid1 expression by Lentivirus-Grid1 (LV-Grid1) in primary hypothalamus cells through measuring the expression level of Grid1. Finally, LV-Grid1 was intracerebroventricular injected (ICV) into 21-day-old rats and to investigate the effect of Grid1 suppression on puberty onset in vivo. Results showed that GluD1 immunoreactivity could be detected in the arcuate nucleus (ARC), paraventricular nucleus (PVN), and periventricular nucleus (PeN). Grid1 mRNA levels were the lowest at prepuberty. Treatment of hypothalamic neurons with LV-Grid1 decreased the mRNA expression levels of Grid1 and Rfrp-3 (encoding RFamide-related peptide 3, RFRP 3), but increased that of Gnrh (encoding gonadotropin- releasing hormone, GnRH).
    [Show full text]
  • The Glutamate Receptor Ion Channels
    0031-6997/99/5101-0007$03.00/0 PHARMACOLOGICAL REVIEWS Vol. 51, No. 1 Copyright © 1999 by The American Society for Pharmacology and Experimental Therapeutics Printed in U.S.A. The Glutamate Receptor Ion Channels RAYMOND DINGLEDINE,1 KARIN BORGES, DEREK BOWIE, AND STEPHEN F. TRAYNELIS Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia This paper is available online at http://www.pharmrev.org I. Introduction ............................................................................. 8 II. Gene families ............................................................................ 9 III. Receptor structure ...................................................................... 10 A. Transmembrane topology ............................................................. 10 B. Subunit stoichiometry ................................................................ 10 C. Ligand-binding sites located in a hinged clamshell-like gorge............................. 13 IV. RNA modifications that promote molecular diversity ....................................... 15 A. Alternative splicing .................................................................. 15 B. Editing of AMPA and kainate receptors ................................................ 17 V. Post-translational modifications .......................................................... 18 A. Phosphorylation of AMPA and kainate receptors ........................................ 18 B. Serine/threonine phosphorylation of NMDA receptors ..................................
    [Show full text]
  • The Concise Guide to PHARMACOLOGY 2015/16
    Edinburgh Research Explorer The Concise Guide to PHARMACOLOGY 2015/16 Citation for published version: CGTP Collaborators, Alexander, SP, Peters, JA, Kelly, E, Marrion, N, Benson, HE, Faccenda, E, Pawson, AJ, Sharman, JL, Southan, C & Davies, JA 2015, 'The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels', British Journal of Pharmacology, vol. 172, no. 24, pp. 5870-5903. https://doi.org/10.1111/bph.13350 Digital Object Identifier (DOI): 10.1111/bph.13350 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels. British Journal of Pharmacology (2015) 172, 5870–5903 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: Ligand-gated ion channels Stephen
    [Show full text]
  • The Identification and Functional Implications of Human-Specific
    BMC Evolutionary Biology BioMed Central Research article Open Access The identification and functional implications of human- specific "fixed" amino acid substitutions in the glutamate receptor family Hiroki Goto1, Kazunori Watanabe1, Naozumi Araragi1, Rui Kageyama1, Kunika Tanaka1, Yoko Kuroki3, Atsushi Toyoda4, Masahira Hattori5, Yoshiyuki Sakaki2, Asao Fujiyama2,6, Yasuyuki Fukumaki*1 and Hiroki Shibata1 Address: 1Division of Human Moelcular Genetics, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan, 2RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan, 3RIKEN Advanced Science Institute (ASI), Advanced Computational Sciences Department, Computational Systems Biology Research Group, Synthetic Biology Team, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, Japan, 4Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan, 5Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan and 6National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan Email: Hiroki Goto - [email protected]; Kazunori Watanabe - [email protected]; Naozumi Araragi - naozumi.araragi@uni- wuerzburg.de; Rui Kageyama - [email protected]; Kunika Tanaka - [email protected]; Yoko Kuroki - [email protected]; Atsushi Toyoda - [email protected]; Masahira Hattori - [email protected]; Yoshiyuki Sakaki - [email protected]; Asao Fujiyama - [email protected]; Yasuyuki Fukumaki* - [email protected]; Hiroki Shibata - [email protected] * Corresponding author Published: 8 September 2009 Received: 14 November 2008 Accepted: 8 September 2009 BMC Evolutionary Biology 2009, 9:224 doi:10.1186/1471-2148-9-224 This article is available from: http://www.biomedcentral.com/1471-2148/9/224 © 2009 Goto et al; licensee BioMed Central Ltd.
    [Show full text]
  • Detection of H3k4me3 Identifies Neurohiv Signatures, Genomic
    viruses Article Detection of H3K4me3 Identifies NeuroHIV Signatures, Genomic Effects of Methamphetamine and Addiction Pathways in Postmortem HIV+ Brain Specimens that Are Not Amenable to Transcriptome Analysis Liana Basova 1, Alexander Lindsey 1, Anne Marie McGovern 1, Ronald J. Ellis 2 and Maria Cecilia Garibaldi Marcondes 1,* 1 San Diego Biomedical Research Institute, San Diego, CA 92121, USA; [email protected] (L.B.); [email protected] (A.L.); [email protected] (A.M.M.) 2 Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, CA 92103, USA; [email protected] * Correspondence: [email protected] Abstract: Human postmortem specimens are extremely valuable resources for investigating trans- lational hypotheses. Tissue repositories collect clinically assessed specimens from people with and without HIV, including age, viral load, treatments, substance use patterns and cognitive functions. One challenge is the limited number of specimens suitable for transcriptional studies, mainly due to poor RNA quality resulting from long postmortem intervals. We hypothesized that epigenomic Citation: Basova, L.; Lindsey, A.; signatures would be more stable than RNA for assessing global changes associated with outcomes McGovern, A.M.; Ellis, R.J.; of interest. We found that H3K27Ac or RNA Polymerase (Pol) were not consistently detected by Marcondes, M.C.G. Detection of H3K4me3 Identifies NeuroHIV Chromatin Immunoprecipitation (ChIP), while the enhancer H3K4me3 histone modification was Signatures, Genomic Effects of abundant and stable up to the 72 h postmortem. We tested our ability to use H3K4me3 in human Methamphetamine and Addiction prefrontal cortex from HIV+ individuals meeting criteria for methamphetamine use disorder or not Pathways in Postmortem HIV+ Brain (Meth +/−) which exhibited poor RNA quality and were not suitable for transcriptional profiling.
    [Show full text]
  • Genome-Wide Gene Expression Profiling of Randall's Plaques In
    CLINICAL RESEARCH www.jasn.org Genome-Wide Gene Expression Profiling of Randall’s Plaques in Calcium Oxalate Stone Formers † † Kazumi Taguchi,* Shuzo Hamamoto,* Atsushi Okada,* Rei Unno,* Hideyuki Kamisawa,* Taku Naiki,* Ryosuke Ando,* Kentaro Mizuno,* Noriyasu Kawai,* Keiichi Tozawa,* Kenjiro Kohri,* and Takahiro Yasui* *Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; and †Department of Urology, Social Medical Corporation Kojunkai Daido Hospital, Daido Clinic, Nagoya, Japan ABSTRACT Randall plaques (RPs) can contribute to the formation of idiopathic calcium oxalate (CaOx) kidney stones; however, genes related to RP formation have not been identified. We previously reported the potential therapeutic role of osteopontin (OPN) and macrophages in CaOx kidney stone formation, discovered using genome-recombined mice and genome-wide analyses. Here, to characterize the genetic patho- genesis of RPs, we used microarrays and immunohistology to compare gene expression among renal papillary RP and non-RP tissues of 23 CaOx stone formers (SFs) (age- and sex-matched) and normal papillary tissue of seven controls. Transmission electron microscopy showed OPN and collagen expression inside and around RPs, respectively. Cluster analysis revealed that the papillary gene expression of CaOx SFs differed significantly from that of controls. Disease and function analysis of gene expression revealed activation of cellular hyperpolarization, reproductive development, and molecular transport in papillary tissue from RPs and non-RP regions of CaOx SFs. Compared with non-RP tissue, RP tissue showed upregulation (˃2-fold) of LCN2, IL11, PTGS1, GPX3,andMMD and downregulation (0.5-fold) of SLC12A1 and NALCN (P,0.01). In network and toxicity analyses, these genes associated with activated mitogen- activated protein kinase, the Akt/phosphatidylinositol 3-kinase pathway, and proinflammatory cytokines that cause renal injury and oxidative stress.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • Supp Material.Pdf
    Supplementary Data Supplemental Figure 1. Methylation hidden Markov model Circles represent the states of the model. Transitions are represented by the arrows. P is the transition probability between states (10-30). While 1-P is the complement of P and represents the probability of the transition from the state to itself. Supplemental Figure 2. Pyrosequencing validation of tissue-specific methylation differences of genetic loci within N-HMDs and L-HMDs SH-SY5Y N-HMD IMR90 N-HMD SH-SY5Y L-HMD IMR90 L-HMD Pyrograms for DNA methylation at two genomic regions in SH-SY5Y and IMR90 cells. Gray shaded areas show CpG sites. Within the gray shaded boxes C denotes signal from methylated cytosines and T denotes signal from unmethylated cytosines. Blue boxes show percent methylation for that CpG site. (A-B) Pyrograms for N-HMD site just downstream of CNTNAP2 (chr7:147,788,348- 147,788,613). SH-SY5Y cells show 91% average methylation and IMR90 cells show 68% average methylation. (C-D) Pyrograms for L-HMD site between the CAV1 and MET (chr7:116,073,633- 116,073,874). SH-SY5Y cells show 10% average methylation and IMR90 cells show 79% average methylation. Supplemental Figure 3. Reproducibility of MethylC-seq biological replicates (A) Two examples on chromosome 7 showing that PMDs can be observed with very low sequencing coverage and the SH-SY5Y MethylC-seq data was reproducible. Top track shows MethylC-seq percent methylation data for SH-SY5Y cells using a single Illumina GAII sequencing lane on a biological replicate. The second track shows PMD as defined by the HMM on the original SH-SY5Y MethylC-seq data.
    [Show full text]
  • ION CHANNEL RECEPTORS TÁMOP-4.1.2-08/1/A-2009-0011 Ion Channel Receptors
    Manifestation of Novel Social Challenges of the European Union in the Teaching Material of Medical Biotechnology Master’s Programmes at the University of Pécs and at the University of Debrecen Identification number: TÁMOP-4.1.2-08/1/A-2009-0011 Manifestation of Novel Social Challenges of the European Union in the Teaching Material of Medical Biotechnology Master’s Programmes at the University of Pécs and at the University of Debrecen Identification number: TÁMOP-4.1.2-08/1/A-2009-0011 Tímea Berki and Ferenc Boldizsár Signal transduction ION CHANNEL RECEPTORS TÁMOP-4.1.2-08/1/A-2009-0011 Ion channel receptors 1 Cys-loop receptors: pentameric structure, 4 transmembrane (TM) regions/subunit – Acetylcholin (Ach) Nicotinic R – Na+ channel - – GABAA, GABAC, Glycine – Cl channels (inhibitory role in CNS) 2 Glutamate-activated cationic channels: (excitatory role in CNS), tetrameric stucture, 3 TM regions/subunit – eg. iGlu 3 ATP-gated channels: 3 homologous subunits, 2 TM regions/subunit – eg. P2X purinoreceptor TÁMOP-4.1.2-08/1/A-2009-0011 Cys-loop ion-channel receptors N Pore C C C N N N N C C TM TM TM TM 1 2 3 4 Receptor type GABAA GABAC Glycine g a b p2 p1 b a Subunit diversity a1-6, b1-3, g1-3, d,e,k, and q p1-3 a1-4, b TÁMOP-4.1.2-08/1/A-2009-0011 Vertebrate anionic Cys-loop receptors Type Class Protein name Gene Previous names a1 GABRA1 a2 GABRA2 a3 GABRA3 EJM, ECA4 alpha a4 GABRA4 a5 GABRA5 a6 GABRA6 b1 GABRB1 beta b2 GABRB2 ECA5 b3 GABRB3 g1 GABRG1 GABAA gamma g2 GABRG2 CAE2, ECA2, GEFSP3 g3 GABRG3 delta d GABRD epsilon e GABRE pi p GABRP
    [Show full text]