Molecular Biology of Mycoplasmas: from the Minimum Cell Concept to the Artifi Cial Cell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Transposon Mutagenesis and a Minimal Mycoplasma Genome
R EPORTS thermore, while immunosubunit precursors- stained positive, whereas no staining of PA28Ϫ/Ϫ purchased from PharMingen (San Diego, CA). 25D1.16 containing 15S proteasome assembly inter- cells was observed. (10) and a PA28a-specific antiserum (2) were kindly 11. S. C. Jameson, F. R. Carbone, M. J. Bevan, J. Exp. Med. provided by A. Porgador and M. Rechsteiner, respective- mediates were detected in wild-type cells, 177, 1541 (1993). ly. Metabolic labeling, immunoprecipitation, immuno- under identical conditions 15S complexes 12. T. Preckel and Y. Yang, unpublished results. blotting, and sodium dodecyl sulfateÐpolyacrylamide were hardly detectable in PA28Ϫ/Ϫ cells (Fig. 13. M. Ho, Cytomegalovirus: Biology and Infection (Ple- gel electrophoresis (SDS-PAGE) were performed as de- 4B). Notably, PA28 was found to be associ- num, New York, ed. 2, 1991). scribed (3). 14. P. Borrow and M. B. A. Oldstone, in Viral Pathogenesis, 19. T. Flad et al., Cancer Res. 58, 5803 (1998). ated with the immunosubunit precursor-con- N. Nathanson, Ed. (Lippincott-Raven, Philadelphia, 20. M. W. Moore, F. R. Carbone, M. J. Bevan, Cell 54, 777 taining 15S complexes, suggesting that PA28 1997), pp. 593Ð627; M. J. Buchmeier and A. J. Zajac, (1988). is required for the incorporation of immuno- in Persistent Virus Infections, R. Ahmed and I. Chen, 21. A. Vitiello et al., Eur. J. Immunol. 27, 671 (1997). Eds. ( Wiley, New York, 1999), pp. 575Ð605. subunits into proteasomes. 22. H. Bluthmann et al., Nature 334, 156 (1988). 15. G. Niedermann et al., J. Exp. Med. 186, 209 (1997); 23. W. Jacoby, P. V. Cammarata, S. -
Venter Institute
Genomics:GTL Program Projects J. Craig Venter Institute 42 Estimation of the Minimal Mycoplasma Gene Set Using Global Transposon Mutagenesis and Comparative Genomics John I. Glass* ([email protected]), Nina Alperovich, Nacyra Assad-Garcia, Shibu Yooseph, Mahir Maruf, Carole Lartigue, Cynthia Pfannkoch, Clyde A. Hutchison III, Hamilton O. Smith, and J. Craig Venter J. Craig Venter Institute, Rockville, MD The Venter Institute aspires to make bacteria with specific metabolic capabilities encoded by artificial genomes. To achieve this we must develop technologies and strategies for creating bacterial cells from constituent parts of either biological or synthetic origin. Determining the minimal gene set needed for a functioning bacterial genome in a defined laboratory environment is a necessary step towards our goal. For our initial rationally designed cell we plan to synthesize a genome based on a mycoplasma blueprint (mycoplasma being the common name for the class Mollicutes). We chose this bacterial taxon because its members already have small, near minimal genomes that encode limited metabolic capacity and complexity. We took two approaches to determine what genes would need to be included in a truly minimal synthetic chromosome of a planned Mycoplasma laboratorium: determination of all the non-essential genes through random transposon mutagenesis of model mycoplasma species, Mycoplasma genitalium, and comparative genomics of a set of 15 mycoplasma genomes in order to identify genes common to all members of the taxon. Global transposon mutagenesis has been used to predict the essential gene set for a number of bac- teria. In Bacillus subtilis all but 271 of bacterium’s ~4100 genes could be knocked out. -
Microbial Identification Framework for Risk Assessment
Microbial Identification Framework for Risk Assessment May 2017 Cat. No.: En14-317/2018E-PDF ISBN 978-0-660-24940-7 Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: • Exercise due diligence in ensuring the accuracy of the materials reproduced; • Indicate both the complete title of the materials reproduced, as well as the author organization; and • Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with or with the endorsement of the Government of Canada. Commercial reproduction and distribution is prohibited except with written permission from the author. For more information, please contact Environment and Climate Change Canada’s Inquiry Centre at 1-800-668-6767 (in Canada only) or 819-997-2800 or email to [email protected]. © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment and Climate Change, 2016. Aussi disponible en français Microbial Identification Framework for Risk Assessment Page 2 of 98 Summary The New Substances Notification Regulations (Organisms) (the regulations) of the Canadian Environmental Protection Act, 1999 (CEPA) are organized according to organism type (micro- organisms and organisms other than micro-organisms) and by activity. The Microbial Identification Framework for Risk Assessment (MIFRA) provides guidance on the required information for identifying micro-organisms. This document is intended for those who deal with the technical aspects of information elements or information requirements of the regulations that pertain to identification of a notified micro-organism. -
The Mysterious Orphans of Mycoplasmataceae
The mysterious orphans of Mycoplasmataceae Tatiana V. Tatarinova1,2*, Inna Lysnyansky3, Yuri V. Nikolsky4,5,6, and Alexander Bolshoy7* 1 Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, 90027, California, USA 2 Spatial Science Institute, University of Southern California, Los Angeles, 90089, California, USA 3 Mycoplasma Unit, Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, POB 12, Beit Dagan, 50250, Israel 4 School of Systems Biology, George Mason University, 10900 University Blvd, MSN 5B3, Manassas, VA 20110, USA 5 Biomedical Cluster, Skolkovo Foundation, 4 Lugovaya str., Skolkovo Innovation Centre, Mozhajskij region, Moscow, 143026, Russian Federation 6 Vavilov Institute of General Genetics, Moscow, Russian Federation 7 Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Israel 1,2 [email protected] 3 [email protected] 4-6 [email protected] 7 [email protected] 1 Abstract Background: The length of a protein sequence is largely determined by its function, i.e. each functional group is associated with an optimal size. However, comparative genomics revealed that proteins’ length may be affected by additional factors. In 2002 it was shown that in bacterium Escherichia coli and the archaeon Archaeoglobus fulgidus, protein sequences with no homologs are, on average, shorter than those with homologs [1]. Most experts now agree that the length distributions are distinctly different between protein sequences with and without homologs in bacterial and archaeal genomes. In this study, we examine this postulate by a comprehensive analysis of all annotated prokaryotic genomes and focusing on certain exceptions. -
MIB–MIP Is a Mycoplasma System That Captures and Cleaves Immunoglobulin G
MIB–MIP is a mycoplasma system that captures and cleaves immunoglobulin G Yonathan Arfia,b,1, Laetitia Minderc,d, Carmelo Di Primoe,f,g, Aline Le Royh,i,j, Christine Ebelh,i,j, Laurent Coquetk, Stephane Claveroll, Sanjay Vasheem, Joerg Joresn,o, Alain Blancharda,b, and Pascal Sirand-Pugneta,b aINRA (Institut National de la Recherche Agronomique), UMR 1332 Biologie du Fruit et Pathologie, F-33882 Villenave d’Ornon, France; bUniversity of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33882 Villenave d’Ornon, France; cInstitut Européen de Chimie et Biologie, UMS 3033, University of Bordeaux, 33607 Pessac, France; dInstitut Bergonié, SIRIC BRIO, 33076 Bordeaux, France; eINSERM U1212, ARN Regulation Naturelle et Artificielle, 33607 Pessac, France; fCNRS UMR 5320, ARN Regulation Naturelle et Artificielle, 33607 Pessac, France; gInstitut Européen de Chimie et Biologie, University of Bordeaux, 33607 Pessac, France; hInstitut de Biologie Structurale, University of Grenoble Alpes, F-38044 Grenoble, France; iCNRS, Institut de Biologie Structurale, F-38044 Grenoble, France; jCEA, Institut de Biologie Structurale, F-38044 Grenoble, France; kCNRS UMR 6270, Plateforme PISSARO, Institute for Research and Innovation in Biomedicine - Normandie Rouen, Normandie Université, F-76821 Mont-Saint-Aignan, France; lProteome Platform, Functional Genomic Center of Bordeaux, University of Bordeaux, F-33076 Bordeaux Cedex, France; mJ. Craig Venter Institute, Rockville, MD 20850; nInternational Livestock Research Institute, 00100 Nairobi, Kenya; and oInstitute of Veterinary Bacteriology, University of Bern, CH-3001 Bern, Switzerland Edited by Roy Curtiss III, University of Florida, Gainesville, FL, and approved March 30, 2016 (received for review January 12, 2016) Mycoplasmas are “minimal” bacteria able to infect humans, wildlife, introduced into naive herds (8). -
Role of Protein Phosphorylation in Mycoplasma Pneumoniae
Pathogenicity of a minimal organism: Role of protein phosphorylation in Mycoplasma pneumoniae Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen vorgelegt von Sebastian Schmidl aus Bad Hersfeld Göttingen 2010 Mitglieder des Betreuungsausschusses: Referent: Prof. Dr. Jörg Stülke Koreferent: PD Dr. Michael Hoppert Tag der mündlichen Prüfung: 02.11.2010 “Everything should be made as simple as possible, but not simpler.” (Albert Einstein) Danksagung Zunächst möchte ich mich bei Prof. Dr. Jörg Stülke für die Ermöglichung dieser Doktorarbeit bedanken. Nicht zuletzt durch seine freundliche und engagierte Betreuung hat mir die Zeit viel Freude bereitet. Des Weiteren hat er mir alle Freiheiten zur Verwirklichung meiner eigenen Ideen gelassen, was ich sehr zu schätzen weiß. Für die Übernahme des Korreferates danke ich PD Dr. Michael Hoppert sowie Prof. Dr. Heinz Neumann, PD Dr. Boris Görke, PD Dr. Rolf Daniel und Prof. Dr. Botho Bowien für das Mitwirken im Thesis-Komitee. Der Studienstiftung des deutschen Volkes gilt ein besonderer Dank für die finanzielle Unterstützung dieser Arbeit, durch die es mir unter anderem auch möglich war, an Tagungen in fernen Ländern teilzunehmen. Prof. Dr. Michael Hecker und der Gruppe von Dr. Dörte Becher (Universität Greifswald) danke ich für die freundliche Zusammenarbeit bei der Durchführung von zahlreichen Proteomics-Experimenten. Ein ganz besonderer Dank geht dabei an Katrin Gronau, die mich in die Feinheiten der 2D-Gelelektrophorese eingeführt hat. Außerdem möchte ich mich bei Andreas Otto für die zahlreichen Proteinidentifikationen in den letzten Monaten bedanken. Nicht zu vergessen ist auch meine zweite Außenstelle an der Universität in Barcelona. Dr. Maria Lluch-Senar und Dr. -
Mycoplasma Agalactiae MEMBRANE PROTEOME
UNIVERSITÀ DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO IN SCIENZE BIOMOLECOLARI E BIOTECNOLOGICHE INDIRIZZO MICROBIOLOGIA MOLECOLARE E CLINICA XXIII Ciclo CHARACTERIZATION OF Mycoplasma agalactiae MEMBRANE PROTEOME Direttore: Prof. Bruno Masala Tutor: Dr. Alberto Alberti Tesi di dottorato della Dott.ssa Carla Cacciotto ANNO ACCADEMICO 2009-2010 TABLE OF CONTENTS 1. Abstract 2. Introduction 2.1 Mycoplasmas: taxonomy and main biological features 2.2 Metabolism 2.3 In vitro cultivation 2.4 Mycoplasma lipoproteins 2.5 Invasivity and pathogenicity 2.6 Diagnosis of mycoplasmosis 2.7 Mycoplasma agalactiae and Contagious Agalactia 3. Research objectives 4. Materials and methods 4.1 Media and buffers 4.2 Bacterial strains and culture conditions 4.3 Total DNA extraction and PCR 4.4 Total proteins extraction 4.5 Triton X-114 fractionation 4.6 SDS-PAGE 4.7 Western immunoblotting 4.8 2-D PAGE 4.9 2D DIGE 4.10 Spot picking and in situ tryptic digestion 4.11 GeLC-MS/MS 4.12 MALDI-MS 4.13 LC-MS/MS 4.14 Data analysis Dott.ssa Carla Cacciotto, Characterization of Mycoplasma agalactiae membrane proteome. Tesi di Dottorato in Scienze Biomolecolari e Biotecnologiche, Università degli Studi di Sassari. 5. Results 5.1 Species identification 5.2 Extraction of bacterial proteins and isolation of liposoluble proteins 5.3 2-D PAGE/MS of M. agalactiae PG2T liposoluble proteins 5.4 2D DIGE of liposoluble proteins among the type strain and two field isolates of M. agalactiae 5.5 GeLC-MS/MS of M. agalactiae PG2T liposoluble proteins 5.6 Data analysis and classification 6. Discussion 7. -
Molecular Detection of Urogenital Mollicutes in Patients with Invasive Malignant Prostate Tumor Osama Mohammed Saed Abdul-Wahab1, Mishari H
Abdul-Wahab et al. Infectious Agents and Cancer (2021) 16:6 https://doi.org/10.1186/s13027-021-00344-9 RESEARCH ARTICLE Open Access Molecular detection of urogenital mollicutes in patients with invasive malignant prostate tumor Osama Mohammed Saed Abdul-Wahab1, Mishari H. Al-Shyarba2, Boutheina Ben Abdelmoumen Mardassi3, Nessrine Sassi3, Majed Saad Shaya Al Fayi4, Hassan Otifi5, Abdullah Hassan Al Murea6, Béhija Mlik3 and Elhem Yacoub3* Abstract Background: The etiology of prostate cancer (PCa) is multiple and complex. Among the causes recently cited are chronic infections engendered by microorganisms that often go unnoticed. A typical illustration of such a case is infection due to mollicutes bacteria. Generally known by their lurking nature, urogenital mollicutes are the most incriminated in PCa. This study was thus carried out in an attempt to establish the presence of these mollicutes by PCR in biopsies of confirmed PCa patients and to evaluate their prevalence. Methods: A total of 105 Formalin-Fixed Paraffin-Embedded prostate tissues collected from 50 patients suffering from PCa and 55 with benign prostate hyperplasia were subjected to PCR amplification targeting species-specific genes of 5 urogenital mollicutes species, Mycoplasma genitalium, M. hominis, M. fermentans, Ureaplasma parvum, and U. urealyticum. PCR products were then sequenced to confirm species identification. Results significance was statistically assessed using Chi-square and Odds ratio tests. Results: PCR amplification showed no positive results for M. genitalium, M. hominis, and M. fermentans in all tested patients. Strikingly, Ureaplasma spp. were detected among 30% (15/50) of PCa patients. Nucleotide sequencing further confirmed the identified ureaplasma species, which were distributed as follows: 7 individuals with only U. -
Development of an Artificial Cell, from Self- INAUGURAL ARTICLE Organization to Computation and Self-Reproduction
Development of an artificial cell, from self- INAUGURAL ARTICLE organization to computation and self-reproduction Vincent Noireauxa, Yusuke T. Maedab, and Albert Libchaberb,1 aUniversity of Minnesota, 116 Church Street SE, Minneapolis, MN 55455; and bThe Rockefeller University, 1230 York Avenue, New York, NY 10021 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2007. Contributed by Albert Libchaber, November 22, 2010 (sent for review October 13, 2010) This article describes the state and the development of an artificial the now famous “Omnis cellula e cellula.” Not only is life com- cell project. We discuss the experimental constraints to synthesize posed of cells, but also the most remarkable observation is that a the most elementary cell-sized compartment that can self-reproduce cell originates from a cell and cannot grow in situ. In 1665, Hooke using synthetic genetic information. The original idea was to program made the first observation of cellular organization in cork mate- a phospholipid vesicle with DNA. Based on this idea, it was shown rial (8) (Fig. 1). He also coined the word “cell.” Schleiden later that in vitro gene expression could be carried out inside cell-sized developed a more systematic study (9). The cell model was finally synthetic vesicles. It was also shown that a couple of genes could fully presented by Schwann in 1839 (10). This cellular quantiza- be expressed for a few days inside the vesicles once the exchanges tion was not a priori necessary. Golgi proposed that the branched of nutrients with the outside environment were adequately intro- axons form a continuous network along which the nervous input duced. -
The Phylogenetic Composition and Structure of Soil Microbial Communities Shifts in Response to Elevated Carbon Dioxide
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Minnesota Digital Conservancy The ISME Journal (2012) 6, 259–272 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide Zhili He1, Yvette Piceno2, Ye Deng1, Meiying Xu1,3, Zhenmei Lu1,4, Todd DeSantis2, Gary Andersen2, Sarah E Hobbie5, Peter B Reich6 and Jizhong Zhou1,2 1Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK, USA; 2Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; 3Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China; 4College of Life Sciences, Zhejiang University, Hangzhou, China; 5Department of Ecology, Evolution, and Behavior, St Paul, MN, USA and 6Department of Forest Resources, University of Minnesota, St Paul, MN, USA One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2. -
Commentary the Minimal Cell Genome: ''On Being the Right Size”
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 10004–10006, September 1996 Commentary The minimal cell genome: ‘‘On being the right size” Jack Maniloff* Department of Microbiology and Immunology, University of Rochester, Medical Center Box 672, Rochester, NY 14642 ‘‘On being the right size’’ is in quotation marks in the title these studies, it is important to remember that organisms with because it has been used twice before–in each case to discuss small genomes have arisen by two vastly different evolutionary the size of biological systems in terms of interest at that time. pathways, one ‘‘top down’’ and the other ‘‘bottom up.’’ J. B. S. Haldane (1) originally used this title in the 1920s, for ‘‘Top down’’ genomes evolved in organisms with increasing a paper describing the relationship between animal size and metabolic requirements. At each metabolic level, there can be constraints like gravity, surface tension, and food and oxygen a minimal genome: from photoautotrophs, able to grow in a consumption. In the 1970s, N. W. Pirie (2) (acknowledging medium of only CO2, light, and inorganic salts; to simple Haldane) used the title for a paper analyzing how factors like heterotrophs, for which growth requires a basic medium membrane properties, water structure, and the volume needed containing an organic carbon and energy source (like glucose) for ribosomes and other macromolecules set lower limits on and inorganic salts; to fastidious heterotrophs, for which cell size. Now, in the 1990s, the title is used to discuss efforts growth requires a complex medium, frequently containing to define the minimal genome content necessary and sufficient undefined components (like serum); to obligate intracellular for a living cell. -
Synthetic Biology As a Technoscience: the Case of Minimal Genomes and Essential Genes
Published in Studies in History and Philosophy of Science (epub ahead of print) Synthetic Biology as a Technoscience: The Case of Minimal Genomes and Essential Genes Massimiliano Simons, Ghent University [email protected] Department of Philosophy and Moral Sciences, Blandijnberg 2, BE-9000, Ghent Abstract This article examines how minimal genome research mobilizes philosophical concepts such as minimality and essentiality. Following a historical approach the article aims to uncover what function this terminology plays and which problems are raised by them. Specifically, four historical moments are examined, linked to the work of Harold Morowitz, Mitsuhiro Itaya, Eugene Koonin and Arcady Mushegian, and J. Craig Venter. What this survey shows is a historical shift away from historical questions about life or descriptive questions about specific organisms towards questions that explore biological possibilities: what are possible forms of minimal genomes, regardless of whether they exist(ed) in nature? Moreover, it highlights a fundamental ambiguity at work in minimal genome research between a universality claim and a standardization claim: does a minimal genome refer to the minimal gene set for any organism whatsoever? Or does it refer rather to a gene set that will provide stable, robust and predictable behaviour, suited for biotechnological applications? Two diagnoses are proposed for this ambiguity: a philosophical diagnosis of how minimal genome research either misunderstands the ontology of biological entities or philosophically misarticulates scientific practice. Secondly, a historical diagnosis that suggests that this ambiguity is part of a broader shift towards technoscience. Keywords: Minimal genome ; essential gene; Mycoplasma ; Craig Venter; synthetic biology ; technoscience Competing interests No competing interests to declare.