<<

Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia

*) in Support of the Text with Literature Citations. Referrals to illustrations in Appendix 2.

Cancer in the . The insertion of the Agrobacterium tumefaciens circular T (transferred) DNA into the of its new host, the plant (Gelvin BS. Microbiol Molecular Biol Rev 2003;67:16–37). The plant cancer “crown gall” (agrocallus; Agrobacterial crown gall) consists of malignantly transformed cells replicating the agrobacterial T DNA plasmid (reviewed in postscript Table XXXV). For reference: Koncz C Mayerhofer R Koncz-Kálmán Zs et al EMBO J 1990;9:1337–1346. Transfer of potentially oncogenic bacterial and to patients: Septicemic Bacteroides enterotoxigenic (Sinkovics J G & Smith JP Cancer 1970;25:663–671; Viljoen KS et al PLoS One 2015;10(3):e0119462); Bartonella bacilliformis etc (Guy L et al PLoS Genet 2013;9(3):e1003393; Harms A & Dehio C Clin Microbiol Rev 2012;25:42–78; Llosa M et al Trends Microbiol 2012;20:355–9; Minnick MF et al PLoS Negl Trop Dis 2014;6(7):e2919); Helicobacter pylori (Bonsor DA et al J Biol Chem 2015;pii:jbc.M115.641829; Su YL et al J Immunol 2015;194:3997–4007; Vaziri F et al Pathog Dis 2015;73(3). pii.ftu021); Porphyromonas gingivalis (Katz J et al Int J Oral Sci 2011;3:209–215); Tuberculous infections with A. tumefaciens in patients (Ramirez FC et al Clin Infect Dis 1992;15:938–940).

DNA-binding Antibodies. DNA- (or RNA-) binding proteins use zink finger motifs, leucine zippers and winged (beta-sheet loops) helix-turn helix motifs (HTH, two helices separated by the loop, RNA/DNA-binding domains) in recognition of RNA/DNA receptors for attachment. Pro-apoptotic p53 is commonly attached to DNA (vide infra). Advanced multicellular established a fundamental relationship between DNA genes and circulating antibodies, which overlapped the pre-existing miR activity for posttranslational expression. One of the best examples is played out in the pathogenesis of the T lymphoma mycosis fungoides and Sézary syndrome (that may also hide the underlying retroviral pathogen/passenger presumed to be there by Dorothea Zucker Franklin) (Proc Natl Adad Sci 1991;88:7630–7634; 1997;94:6403–6407). One of the inducer oncogenes of mycosis fungoides is TOX (thymocyte selection-associated high mobility group protein box gene), which normally regulates T cell differentiation.

© Springer International Publishing 2016 559 J.G. Sinkovics, RNA/DNA and Cancer, DOI 10.1007/978-3-319-22279-0 560 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia

Overexpressed TOX induces mycosis fungoides tumor cell proliferation and migration. The TOX protein mRNA is under the control of miR-223 through specific alignment to its 3′ UTR (untranslated region) in the AGO complex. High blood levels of miR-223 bring about the cessation of mycosis fungoides tumor cell growth. The production of tumor initiator high mobility group (HMG) DNA-binding protein is targeting its own DNA genes of T cell dediffer- entiation and homing; it is switched off by a specific miR (Huang Y et al Oncotarget 2014;5:4418–4425; McGirt L et al J Invest Dermatol 2014; 134:1101–1107; O’Flaherty E & Kaye J BMC 2003;4:13).

Continuous Replication of the Trypanosoma in liquid media. Not in the insect’sgut, but in the blood stream of its mammalian host, the slender Trypanosoma cell is fed primarily on sugar. This protozoan is also capable to synthesize glucose-6-phosphate. Growing in vitro in suspension, its speed of replication is dependent on the concen- tration of sugar in the liquid media. The stress responsive heat shock proteins (Hsp90) work in cell survival pathways in the protozoa, but became oncoproteins in multicel- lular, incl. human, hosts. Questions still incompletely answered: In the rapidly growing T. brucei, sugar metabolism is warburgian? Insulin-like growth factor receptor (IGFR) is overexpressed? Hsp90 promotes growth; is there growth dependence on Hsp90? Intranuclear Ki-67 is overexpressed? Telomers are capped after each ? Hsp90 inhibitors (geldanamycin analogs) induced trypanosomal death due to heat shock. Positive answers would mean that the unicellular protozoan’s rapid growth is comparable to that of a . Cooperative studies of Ludwig Maximilian University (LMU); Institut National des Sciences Appliqueés (INSA), Université Toulouse; Centre National de la Recherche Scientifique (CNRS), Université Bordeaux. Allmann S et al Biol Chem 2013;288:18494–18505. Van Reet N et al Exp Parasitol 2011;128:285–290. Meyer KJ & Shapiro TA J Infect Dis 2013;208:489–499 http:// www.pasteur.fr/ip/easysite/pasteur/en/research/scientific-department/parasitology; http:/ phys.org/news/2013-07-parasite-sugar.html; http://www.ncbi.nlm.nih.gov/pubmed/? term=trypanosoma+liquid++culture Faculty Biology, Ludwig-Maximilians- UniversitätMünchen; Biozentrum, Grosshadernerstrasse 2–4, D82152 Martinsried, . The Johns Hopkins University School of Medicine, Baltimore, USA.

Stem Cells Ascend from the bottom of the Lieberkühn crypt to renew themselves and release somatic cells to function as epithelial cells of the mucous membrane (reviewed in Table I).

S. Yamanaka Lentivirally Transferred four stem cell genes (oct4; sox2; klf4; c-myc) for reprogramming human differentiated cells into pluripotential stem cells; re-differentiation of pluripotential stem cells into differentiated cell could be induced. http://syntheticdaisies.blogspot.com/2012/10/the-spawn-of-gurdons-frogs.html.

Dictyostelia amoebae. The Amoebozoan Dictyostelium discoideum exists in many forms: in sexual cycle, in vegetative cycle, and in social cycle. Its discoidin is a fibronectin; its tiger genes encode histocompatibility complexes; it uses Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 561

ERK/MAPKK signaling “cell survival pathways” (extracellular signal regulated kinase; mitogen-activated protein kinase kinase). MAPKK becomes a proto-oncogene in vertebrate mammalian (human) cells: in ras- (rat sarcoma) transformed cancer cells. Members of the D. discoideum clade (D. purpureum, D. fasciculatum) are comparable in their genomics and proteomics. Evolutionarily they separated from their common ancestor 600–800 mya and in comparison to the yeast, doubled their number of protein-coding genes up to 12,000 (Loomis WE Methods Mol Biol 2013;983:39–58). The other social amoeba, Acytostelium sub- globosum emerges as a different species, which increased its number up to 18, but not because it has become diploid. The starving D. discoideum forms a conditionally multicellular fruiting body with spore ball on a stalk. It is the migratory slug cells that either form the fruiting body or the stalk. The fruiting body represents the germ cells and the stalk consists of the terminally differentiated somatic cells. The A. subglobosum does not differentiate its stem cells to a stalk; its stalk is a-cellular. The cellulose synthase gene builds the cell-free stalk. If “The differentiation of mortal or sacrificed somatic cells from reproductive germ cells was the key event for the establishment and diversification of multicellular systems” (Urushihara H et al BMC Genomics 2015;16(1):80), then D. subglobosum should be regarded evolutionarily more ancient than D. discoideum. A. subglobosum and D. discoideum are casting light to the beginning of a decisive process in the development of multicellularity. The Dd-MRP4 mitochondrial ribosomal protein is able to induce in human cancer cells the process of programmed cell death (apoptosis). Mitochondrial ribosomes are of ancient bacterial derivation. The Dd-mrp4 gene product protein in D. discoideum is the major initiator of cell dif- ferentiation (induced by starvation). Differentiation induction is achieved by the Dd-MRP4 protein through its entry into the nucleus for activation of its target genes (miR genes?). Another unrelated and different D. discoideum ribosomal protein is S4 (Dd-RPS4). It is homologous to the human chromosome X-linked cytoplasmic ribosomal protein S4 (Hs-RPS4X) in 66% identity and 92% similarity in their aa sequence (Maeda Y Biomolecules 2015;5:113–120).

Amphioxus I, prominent among them is Branchiostoma floridae. Possesses notochord and primordial nervous system consisting of intraabdominal sensory cells and notochord nerve cells connected with axons and synapses. An advanced neuro- chemical network releases and circulates cholinergic and GABAergic/glycinergic (gamma aminobutyric acid) molecular mediators. The amphioxus’ achaete scute homologues (Ash) exist conserved up to Homo (Lu TM et al Development 2012;139:2020–2030). The Ash genes may act as proto-oncogenes subject to malignant transformation. The achaete scute homolog basic helix loop helix gene (ash) and the delta ligand Notch pathway evolved at this site. The adult amphioxus preserves its notochord, whereas tunicate larvae of Ciona lose their cordate charac- teristics through metamorphosis into adulthood. The amphioxus frontal eye spot reveals photoreceptor Joseph cells with many homologies to camera-type lens eyes of jawless (lamprey) to jawed (sharks) vertebrates (Candiani S et al BMC Neurosci 2012;13:59; Lu TM et al Development 2012;139:2020–2030; Vopalensky P et al 562 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia

Proc Natl Acad Sci 2012;109:15383–15388). The amphioxus and the sponge Amphimedon qeenslandica share an ancestral TGFβ gene (Song X et al Genomics 2014;103:147–153). An advanced miR system controls amphioxus (Zhou X et al Gene 2012;508:110–116). The amphioxus genome preserved inserted six clades of non-LTR named among a long list of non-LTR ele- ments of other sources including those from Ciona intestinalis (Permanyer J et al Int J Biol Sci 2006;2:48–53). The Lu TM team worked with B. floridae specimens col- lected in the Tampa Bay, Florida (W.P. Hall http://forums.about.com/ab-christianity/ messages?msg=10917.2462). As oncogenes, Ash induce esthesioneuroblastoma*), medullary carcinoma of the thyroid, small cell undifferentiated carcinoma of the lung, or transforms pre-existing adenocarcinoma cells into chemo-radiotherapy-resistant neuroectodermal malignant cells (Wang XY et al Lab Invest 2007;87:527–539) Single nucleotide polymorphism in the 3′ untranslated region of miRNAs (hsa-miR-1827) occur in small cell lung cancers, in which the L-myc1 (1p34) and achaete scute human homolog genes (11p15.1; 12q22-q23) are involved (Xiong F et al Cancer Res 2011;71:5175–5181).

*) Esthesioneuroblastoma. The orbits and sinuses contain a large, enhancing, and expansile mass occupying the ethmoid air cells. The cribriform plate is invaded. The left anterior cranial fossa is broken into. Preoperative platinum-based chemother- apy, surgical resection, and postoperative radiotherapy is the standard treatment of Hyams’ high grade and Kadish advancing stage tumors. From Mayo Clinics: USA, McElroy EA Jr et al Neurosurgery 1998;42:1023–1027; from Institut Gustave Roussy, Villejuif, , Modesto A et al Oral Oncol 2013;49:830–834; from Children Hospital, Rabat, Morocco, El Kababri M et al Pediatr Hematol Oncol 2014;36:91–95. Comment: Treated high grade tumors lie dormant and relapse.

Choanoflagellates (Monosiga brevicollis; ovata). Choanoflagellate genomic seg- ments containing cell survival pathway Pak (p21 activated kinase); when transfected into somatic cells of metazoan multicellular vertebrate hosts (mice; rats; human), pak/Pak induces “malignant transformation” (Watari A et al Oncogene 2010;29:3815–3826). The merlin-encoding tumor suppressor gene neurofibro- matosis NF2, the suppressor of cyclin D1 (or Bcl-1) promoter, is regulated by the pak/Pak pathway. PAK1 stimulates the cyclin D1 promoter; cyclin D1 mRNAs rise. Merlin inhibits the cell cycle in G1 by suppressing cyclin D1 and CDK4 (cyclin-dependent kinase) and dephosphorylating the retinoblastoma RB protein. The Rac/Pak axis is an oncogene (Xiao G-H et al Mol Cell Biol 2005;25:2384–2394).

Blooming Dinoflagellate Symbiodinium (zooxanthella) cells survive self-generated toxins that are highly lethal to multicellular life forms up to fishes and Florida manatees. ATP-cassette ABC transporter protein pumps expel the toxins by mechanisms similar to those of tumor cells gaining resistance to chemotherapy (Table I). Symbiodinium cells parasitize the cytoplasm of cnidaria corals, where they are replicating very rapidly. There is a mass exodus of flagellated mastigote Symbiodinium cells from the parasitized host cells. “Bleached” (whitened) coral Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 563 colonies are left behind. The motile mastigotes discard they flagellae and assume non-motile metabolically quiescent coccoid morphology ranging in size of 6–13 μm. Both mastigotes and coccoid cells undergo mitosis generating two mastigotes. Dinoflagellates carry reticulated . The light-harvesting center is in the thylakoid membrane; it contains a chlorophyll-protein complex. Symbiodinium cells carry also mitochondria retaining some of their original genes. The intranu- clear DNA is kept supercoiled within the . In the S-phase of the cell cycle, the uncoiled DNA duplicates. Symbiodinium cells rapidly replicate in cul- tures in the laboratory. The rapidly replicating are of interest: what genes are constitutively activated? Are intranuclear Ki67 proteins overproduced? The Symbiodinium genome operates over 42,000 protein-coding genes; duplicated genes; basic eukaryotic and horizontally acquired bacterial genes. It is spliceosomal intron-rich: 18.6 introns / gene; its spliceosomal snRNA genes (U1-U6) are clus- tered (Jeong HJ et al J Eukaryot Microbiol 2014;61:75–94; Shinzato C et al PLoS One 2014;9(1):e85182; Shoguchi E Curr Biol 2013;23:1399–1408). In Summary, some cnidarians carry virally infected endosymbiotic algae and respond with an active NFκB/STAT pathway (in Sinkovics JG Int J Oncology 2015;47:1211–1229).

Tibor Gánti’s Chemoton. The chemoton is a self-reproducing automatic machinery; it operates autocatalytic cycles of chemicals in a liquid base surrounded by a bilipid membrane. Chemotons grow by metabolism and reproduce by biological fission, but as non-genetic entities. Osmotic pressure within the microsphere (the chemo- ton) induces invagination of the membrane leading to fission. The chemical reac- tions within the chemoton are not dependent on enzymes. Divided chemoton units are identical without hereditary variation. Cycle stochiometry characterizes math- ematically and expresses quanitatively the chemical reactions occurring within the chemoton. Incorporation of a new external molecule (molecule T) into the system occurs through small gaps of the membrane. The amphipathic dynamic molecule advances the internal metabolism of the chemoton toward the acquisition of heri- table enzymes ( being the first). Chemotrons are the primordial first cells of the living matter (Gánti T: “The Principles of Life”. Oxford University Press, 2003; Chemoton Theory. I. Theoretical foundation of fluid machineries. II. Theory of living systems. Kluwer Academic/Plenum Publishers 2003. Csendes T. A simulation study of the chemotron. Kybernetes 1984;13:79–85).

An Advanced Oparin’s (кoaцepвaт,Oпapин) would be an imaginary protobiont, which would engulf either for mitochondrial symbionts (in cells), or for with eye spot for photosynthesis (in plant cells). Visiting lecturer Nasif Nahle, at Aguascalientes, Monterrey, Mexico in 2004, at the Conference of http://biocab.org/Astrobiology.html.

Reverse Transcriptase (D. Baltimore/H.Temin) transforms RNA into complemen- tary cDNA. mRNA is used as template. The ssDNA strand is made into a dsDNA strand on a primer by DNA polymerase. Taq (Thermus aquaticus) heat stable 564 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia polymerase (K. Mullins) synthesizes complementary DNA strands from primer in the polymerase chain reaction.

The Extant DNA/RNA Complex Reverts back to the Primordial RNA/DNA Complex. Predecessor cytogeneticist Barbara McClintock laid down the morphological foundations of chromosome science: deletions, inversions, translocations of mobile elements, ring formation, broken ends and fusions, that restructure the genome. Resurrection from ‘genome shock’. Insertion of related elements at distinct loci and remaining under coordinated regulation (McClintock B. Significance of response of the genome to challenge. Science 1964;226:792–800). Re-emerges the primordial dependence of DNA on RNA, and on protein enzymes. SINE (short interspersed nucleotide elements) releasing mRNAs. Retrotransductions of LINEs (long inter- spersed nucleotide element) consisting of RNA and cDNA molecules. A combination of exons and introns in inverted terminal repeats. MITE DNA transposons (miniature inverted-repeat transposable elements). Inter-prokaryotic, intereukaryotic, including inter-, horizontal gene transfers. Symbiotic cellular unisons (cyanobacterial plastids in plant cells; alpha-proteobacterial mito- chondria in animal cells). Tertiary symbioses in dinoflagellates, thus earning energy from photosynthesis. Evolution of genomes by whole genome doublings (WGD, repeatedly so) (Shapiro JA. Mobile DNA and evolution in the 21st century. Mob DNA 2019;1.4). The human genome is interspersed by transposable elements (TE), which are either DNA transposons, or RNA retrotransposons. The retro- transposons are SINEs, LINEs, LTRs (long terminal repeats), and Alus. TEs dictate the long term evolution of the genome. S (micro-, or macroS) are high copy number tandem repeats. The snoRNAs (small nucleolar) are the ancestors of the α-Satellate RNAs. Some ncRNAs are expressed from repetitive repRNAs. Noncoding ncRNAs of highly repetitive regions form a large reservoir capable to evolve into novel functional RNAs. The 300 bp Alu repeats (Arthrobacter luteus Alu enzyme that cuts DNA) are SINE family member ncRNAs. SINEs derive from tRNAs. SINE’s RNA polymerase III transcribes Alus. Alu sequences remain embedded in protein-coding genes. Small nuclear snRNAs act like TEs and end up as (Matylla-Kulinska K et al Functional repeat-derived RNAs often originate from -propagated ncRNAs. Wiley Interdiscip Rev RNA 2014;5:591–600). MicroRNAs (miR-661; miR-885-3p) balance p53 and MDM protein expressions by controlling their mRNAs. In another level, Alus embedded in the 3’UTR (untranslated region) of mRNAs, as co-recipients of the aligning microRNAs, may accept or reject alignment (Hoffman Y et al microRNAs and Alu elements J Mol Cell Biol 2014;6:192–197). The primate-related SINE-Alu sequences appeared first in the Branchiostoma amphioxus (Holland LZ A SINE in the genome of the cephalochordate Int J Biol Sci 2006;2:61–65). In the Argonaute (AGO) protein family, PIWI proteins bind PIWI-interacting piRNAs (P element-induced wimpy testis, drosophila); it is one of the three small RNAs (micro miRNA; small interfering siRNA). AGO proteins also bind miRNAs and siRNAs. PIWI proteins are primarily expressed in the germline, but somatic tissues are not exempt of their presence either; that includes stem cells. The PIWI/piRNA pathway Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 565 suppresses transposons, thus saving the integrity, and the regulation with chro- matin, of the protein-coding genes (Mani SR & Juliano CE Untangling the web Mol Reprod Dev 2013;80:632–654).

Acholeplasma () laidlawii was grown in culture and its fusogenic phage particles were purified and concentrated (www.lookfordiagnosis.com). Author’s first encounter with A. laidlawii occurred in the early 1970s at M.D. Anderson Hospital, where A. laidlawii was found to have contaminated a human sarcoma established cell line. The contaminated fluid was transferred to Ferenc Györkey of the Pathology Department at the Veterans Administration Hospital, Houston, TX for further studies in cell fusion experiments (unpublished). Similar contaminated human cancer cell cultures were reported from (Polinskaia GG et al Tsitologiia 2000;42:190–195; 794–801). A swine pathogenic Acholeplasma exists in Hungary (Stipkovits L et al Acta Vet Acad Sci Hung 1973;23:307–313; 361–368; J Hyg (London) 1974;72:289–296). Cells of the pathogenic PG8 strain of Acholeplasma laidlawii (the causative agent of phytomycoplasmosis in Oryza sativa L infected through their roots) release extracellular membranous vesicles. These vesicles contained virulence proteins, RNA nucleotide sequences, including rRNAs (Chernov VM, Chernova O A et al Scientific World J 2011;11:1120–1130; 2012;3154–3174; J Proteomics 2014;110:117–128). The presence of rRNAs indi- cates to this author that the extracellular membranous vesicles are ribosome-like exosomes. The phenomenon of exosome release is universal in the cellular world. Observations without actual precise counts indicate that virulent pathogenic or malignantly transformed cells release excessive numbers of exosomes. This author suggested that DNA-free but RNA-loaded exosomes (including rRNA) represent a retrograde evolutionary descent of the cell to the precellular era of the living matter. In the RNA World exosome-like units might have populated the Earth. Precellular -armed and readily mutable rRNA-containing ribosome-like units might have existed with simple ribonucleoproteins (RNP) within (Sinkovics JG Europ J Microbiol Immunol 2015;5:25–43). Metabolomic analysis shows some unique differences between A. laidlawii (strain PG-8A) and Mycoplasma pneumoniae in that, three amino acids (alanine, asparagine, valine) present in M. pneumoniae are missing from A. laidlawii. It is possible that alanin is very rapidly incorporated into proteins through aminoacyl-tRNA synthetase, thus apparently disappearing from the metabolome. A. laidlawii operates a unique lysine decarboxylase not possessed by any other . In riboflavin biosynthesis, in addition to the cus- tomary bifunctional riboflavin kinase, only A. laidlawii possessed enzymes for the conversion of diamino-hydroxyphosphoribosyl-aminopyrimidines (Vanyushkina AA et al PLoS One 2014;9(3):e89312). Virally infected (phage-carrier) JA1 strains of A. laidlawii reveal acute infections with cell lysis, and chronic non-lytic non-cytocidal infection with rapid growth of infected cells. A. laidlawii has no bacterial ; it is surrounded by a single lipoprotein cell membrane, similarly to , or to eukaryotic cells of uni- or multicellular hosts (Liss A & Ritter BE J Gen Microbiol 1985;131:1713–1718). After lysis of the membrane with antibody and complement, the remaining cytoplasms were referred to as ghosts 566 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia

(Brunner H et al Infect Immun 1976; 13:1671–1677), but without stating if the membrane-free cytoplasms could metabolize and to what extent. The membrane-free E. coli cytoplasms observed by this author were presented as examples of “cell-free living matter”, “plasma” (even though they were lost for further studies in 1956) (Sinkovics J Biol Közlem (Hungary) 1954;2:69–81; 1957;5:19–27; Acta Microbiol Hung 1957;4;59–75; Die Grundlagen der Virusforschung, Hung Acad Sci, 1956). However, extracellular E. coli ribosomes remained functional in vitro in the M W Nirenberg and J H Matthaei experiments (Proc Natl Acad Sci USA 1961;47:1580– 1586; 1588–1602). Now, A. laidlawii exosomes emerge; however, they are membrane-bound cytoplasmic units (vide supra).The extant Mollicute A. laidlawii strains exhibit a high degree of genomic and proteomic deviation among themselves; the deepest branching member of the clade remains A. laidlawii (Stepens EB et al Yale J Biol Med 1983;56:729–735; Kube M et al J Mol Microbiol Biotechnol 2014;24:19–35). The ancestors of the unique Mollicute mycoplasma A. laidlawii and its fusogenic coexisted with (crenarchaea) spheroplasts, a scenario that readily offers itself for theories of primordial cell fusions that might have created the first eukaryotic cells; a situation possibly amenable to reproduction in the lab- oratory (Sinkovics JG Acta Microbiol Immunol Hung 2001;48:115–127).

Fusogenic . Not all phages are lysogenic. An Acholeplasma phage (see Text) might have been the ancestor of eukaryotic fusogenic viruses, which induce coalescence of their host cells’ membranes. Of numerous eukaryotic fusogenic viruses, stand out the Mus cervicolor leukemia M813 fusing T lymphoma cells; the EnvV syncytin-producer fusing syncytiotrophoblasts of the placenta; HIV-1 fusion protein fusing infected lymphocytes; influenza viral fusion peptides fusing vesicles; parainfluenza and paramyxoviral cell fusion proteins; corona virus-induced syncytia; measles virus producing multinucleated giant cells; Sendai virus-fused cells; herpes simplex viral cell-fusogenic glyco- protein M; env gene/protein-acquiring endogenous retroviruses budding from human tumor cells (lymphoma, Reed-Sternberg cells, Kaposi sarcoma, adenocar- cinoma, melanoma) and inducing cell fusions. Virus-producer fused tumor cells may gain growth advantages; may express new antigenic targets to immune defenses or to immunotherapy (see Text). Upon cellular encounters, the identity or chemical relatedness of cell membrane or viral capsid/envelope structures leads to cell fusions (Ogle BM et al Reviews Molecular Cell Biology 2005;6:567– 575). A candidate fusion partner is the ancestral mycoplasma Acholeplasma, and the primordial mediator is its fusogenic virus (phage) (see in Text).

The much Debated Tree of Life was set into three domains by Ernst Haeckel: “Monophyletischer Stammbaum der Organismen” consisting of Protista, Plantae and Animalia. Extraordinary acquisition of genes through horizontal (lateral) routes invalidates the evolutionary pathways that were constructed by true vertical inheritance. Among , Mycoplasmataceae vie with Aquifex aeolicus for the basic position; regression of Mycoplasmataceae from Bacteroides is unacceptable Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 567

(Klenk H-P et al J Mol Evol 1999;48;528–541; Woese CR Maniloff J Zablen LB Proc Natl Acad Sci USA 1980;77:494–498).

After long debates, it has been fully accepted that cyanobacteria entered as endo- plasmic symbionts of the eukaryotic algae-to-plants lineage; and that ancestral purple proteobacteria have become the eukaryotic cytoplasmic mitochondria of animalia.

Archaea are more accurately divided as phyla Crenarchaeota, Euryarchaeota, Korarchaeota, and Nanoarchaeota. In evolutionary order, for the position of the first domain, vie the Mycoplasmataceae or Aquifex, with Nanoarchaea. Recent isolates include the Lokiarchaeota loaded with genes, whose signatures later become dominant in the eukaryotic proteomic repertoire (Spang A et al Nature 2015;521;173–179). The TACK archaeal superphylum consists of Thaumarchaeota/ Aigarchaeota/Crenarchaeota/Korarchaeota existing in sister relationship with Euryarchaeota, both being ancient carriers of genomes/proteomes that reappear in eukaryota (Raymann K et al Proc Natl Acad Sci USA 2015;12:6670–6675). A hyperthermophilic extremophile archaea isolated from the hot springs of the Yellowstone National Park carries a virus with a circular dsDNA genome, which encodes elaborate turret-like structures in its capsid. These structures of the Sulfolobus turreted icosahedral virus re-appear throughout evolution in bacterio- phages, algal viruses and adenoviruses. Its gene might have originated in a common ancestor that existed before the division of the three domains of life (Rice G et al Proc Natl Acad Sci USA 2004;101:7716–20).

Joseph, Rhawn: Genetics and evolution of the life from other planets. J Cosmology 2009;1:150–200). In contrast, the present author prefers to envision the origin of life on the ancient planet Earth. Between the first , virally-mediated fusion of two equal partners: a of an archaeon (a crenarchaeota) and a spheroplast of a prokaryota (a mycoplasma), followed by the later engulfment of the α-proteobacterium to become the mitochondrium, or a cyanobacterium to become a photosynthetic unit (). Phage-mediated fusions of cell wall-free mycoplasma-like cells (the Acholeplasma) do occur. The equal fusion partner of the prokaryota would be a crenarchaeota (both in the form of spheroplasts), but would they yield to the same fusogenic phage? These basic fundamental experi- ments of nature could possibly be reproduced in a laboratory. The candidate fusion partner archaea might have been thermophilic. Thermophilic archaea populated (still do) hot submarine vents. Light energy from the Sun does not penetrate the depths of the seas. There, geothermal radiation provides the energy to anaerobic photosynthetic pigments (Beatty JT et al Proc Natl Acad Sci USA 2005;102:9306– 10). Some nanoarchaea (N. equitans and Ignicoccus hospitalis) form unisons without fusion. Such unisons are expected to have been formed among the deepest branch-offs (Stetter KO: A brief history of the discovery of hyperthermophilic life. Biochem Soc Trans 2013;41:416–429. Jahn U et al and Ignicoccus hospitalis: New insights into a unique, intimate association of two 568 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia archaea. J Bacteriol 208;190:1743–1750. Podar M et al A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 2008;9(11):R158). Fused cells of equal ranks created the first ; the united large cell was able to engulf single-celled bacteria, which surrendered to endosymbiosis in a subservient position as mitochondria and plastids. The mito- chondria transferred most of their genes to the host , but retained the faculty of the endogenous apoptosis induction in their host cells. The widely practiced lateral (horizontal) gene transfers between archaea and bacteria (uni- directional; bidirectional?) resulted in species diversification, but transfer-resistant macromolecular genes preserved the dominant vertical routes of evolution (Abby SS et al Proc Natl Acad Sci USA 2012;109:4962–4967).

The Unicellular Ciliate Protozoon, Paramecium tetraurelia, possesses nuclear dimorphism: a germline genome in its micronucleus (MIC) and a somatic genome in its macronucleus (MAC). Its cytochrome b5 genes carry out the ubiquitous electron transports. Upon its three or four rounds of whole genome duplications, the largest numbers of reduplicated and retained, and the smallest numbers of lost, genes are the cytochrome b5 genes (of the whole macronuclear and mitochondrial genomes consisting of some 40,000 genes). Among others, sequenced were the tRNA trp and tRNA tyr (tryptophan; tyrosine) genes. The paramecium germ line nucleus is transcriptionally silent, and the somatic macronucleus is transcriptionally active. Germ line-specific sequences (internal eliminated sequences, IESs) are excised by the thousands, but with great precision (as in other ciliates). One IES is located in an intron. Gene expressions are carried out with extraordinary replication fidelity, especially in their DNA polymerases, resulting in nucleotides conserving amino acid sites (Sung W et al Proc Natl Acad Sci USA 2012;109;19339–19344; Vayssié l et al Nucleic Acids Res 1997;25:1036–1041; Wu KJ et al Genet Mol Res 2013;12:1882–1896).

Conjugating Paramecia. After the sexual event, the new somatic MAC submits the germline MIC to a series of rearrangements. The rearrangements consist of the precise excision from the diploid germline genome of inserted parasitic DNA elements. Unique-copy Internal Eliminated Sequences (IESs) are excised by certain long ago inserted, but by now domesticated transposases, such as from the piggyBack (from cabbage looper moth Trichoplusia ni) to the PiggyMac element. Targeted are the Tc1/mariner, sardine and anchois transposons. All IESs are rem- nants of these, or other pre-inserted transposons. Some IES inserts shorten (<159 bp) and decay. Epigenetic ncRNAs locate the targets; ncRNAs remain on board to purify eukaryotic genomes of RNA-to-DNA inserts. Two dinucleotide TA sequences flank the IES to be excised. Mutated flanking TA dinucleotides with cis-acting Mendelian mutations prevent their excision; otherwise mutation in one of the two flanking TA dinucleotides pose an absolute requirement for IES excision. The Oxytricha genome is heavily infested by inserted transposons. The endonu- clease required for the cleavage of the Oxytricha genome is a transposase derived from its germline TBE (telomere-bearing elements) transposons. The piggyback Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 569 domain5 (PGBD) element was domesticated in the amphioxus 500 mya. It remains conserved in all vertebrates, but in the human genome it lost its catalytic motif and acquired restrictive-silencer factors, thus it is non-functional (Arnaiz O et al PLoS Genet20112;8(10):e1002984; Pavelitz T et al Mob DNA 2013;4(1):23).

The Vegetative Giardia Trophozoites are binucleated. The of the Giardia and the of the trichomonads are remnants of pre-existing mito- chondria (Dolezal P et al Proc Natl Acad Sci USA 2005; 102;10924–9). The giardial genome operates 6470 ORFs. They encode ubiquitin-activating enzymes. During the process of encystation, many proteins are eliminated by ubiquitination. Polo-like kinases, initiators of mitosis, are also degraded (Nino CA et al Microbiology 2013;2:525–539). The low branching unicellular eukaryotic diplomonads, Giardia, operate noncoding ncRNAs, small nucleolar snoRNAs, spliceosomal small nuclear snRNAs, and inhibitory micro miRNAs. Giardias pre- served the key ribozymes/RNPs for pre-rRNA processing (mitochondrial RNA processing in an amitochondriate). The H/ACA box snoRNAs (adenine cytosine adenine) are for pseudouridylation (posttranscriptional isomerization of uridine to pseudouridine ψ) of mRNA/rRNA/snRNA. The ψ synthases are guided to their targets by the small snRNAs already in the archaea. The location of pseudouridine nucleotides has been conserved throughout evolution. H/ACA-like RNAs, the first stem-loop, are shown (Chen XS et al BMC Genomics 2011;12:550; Kiss-László Z et al Cell 1996;85:1077–1088). The nucleolar localization elements, the single-stranded domain H box stands for ANANNA, N for any nucleotide; a 3’ hairpin is followed by the adenine cytosine adenine ACA box (Fourmann J-B et al PLoS One 2013;8(7):e70313). The three PI3K genes encode the kinases for the cell survival pathways. Giardia PI3Ks disable host dendritic cells rendering them from immunogenic to tolerogenic entities (Cox SS et al BMC Microbiol 2006;6:45; Hernandez Y et al J Eukaryot Microbiol 2007;54:29–32; Kamda JD & Singer SM Infect Immunol 2009;77:685–693). Giardia lamblia is expressing its cell surface antigens upon inhibition of iRNA (rendering inhibitory RNA machinery defective). Hugo D. Luján, Catholic University, Córdoba, Argentina. http://medgadger.com/ 2008/12/ is studying_the_chameleonlike_properties_of_giardia_parasites

Chlamydomonas reinhardtii single-celled-green-alga. The bi-flagellated photosyn- thetic green alga C. reinhardtii operates some 15.000 genes, cyclic AMP and GMP prominent among them, and generates oxygen in its chloroplasts. The ancestors of some genes of flowering plants and vertebrate mammalians (humans) are opera- tional in its genome, including those of the trichomonads, and mammalian verte- brate cells’ myb proto-oncogene. AlgaePath home page (Zheng H-Q et al BMC Genomics 2014;15:196 pp 1–11. doi:10.1186/1471-2164-15-196,http://AlgaePath. itps.ncku.edu.tw

The Colony of Volvox Cells swimming in accord toward light consists of the large (1 millimeter) gelatinous body surrounded by hundreds of non-reproductive cells. Inside the gelatinous body are the reproductive cells (gonidia) practicing isogamy. 570 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia

The related and more advanced Pleodorina gametes distinguish sperm-producing male individuals from ovum-holding female individuals, and thus practice aniso- gamy. The male Pleodorina gametes possess the active intranuclear otokogi (chi- valry) gene. The chlamydomonas mid/MID (minus dominance) gene, the forerunner of the otokogi gene, is operational in the otherwise indistinguishable plus female individuals; the males are recognized as the the minus individuals; plus-females rendered MID-negative minus males (but not vice versa) (Hisayoshi Nozaki, Biological Sciences Graduate School of Science, University of Tokyo, Japan. Nikon Corporation, 2011).

Of Retroviruses, the reticuloendotheliosis viruses (REV) excel as the most promi- nent collectors of cellular proto-oncogenes (c-onc → v-onc). None of this was known when Vilhelm Ellermann and Oluf Bang isolated the first chicken leukosis retrovirus in the first years of the last century, and when J.W. Beard, Dorothy Beard and Ursula Heine collected and maintained by passages all new isolates of leukemia-and sarcomagenic reticuloendotheliosis viruses at Dukes’ in Durham N.C. Hidesaburo Hanafusa in New York (beginning with the Rous sarcoma virus), and Peter K. Vogt and associates in Los Angeles CA, identified the oncoproteins encoded by the avian reticuloendotheliosis viral isolates. J.M. Bishop and H.E. Varmus and associates (D. Stehelin, P.K. Vogt), and H. Hanafusa established the cellular origin of these oncoproteins. Phylogenetic studies of the REVs reveal that they are of mammalian retroviral origin; their ancestral genomic sequences are conserved in the mammalian genomes. A REV- infected plasmodium (P. lophurae) was distributed in various laboratories in the 1930s for the study of anti-malaria vaccination. This plasmodium infected first laboratory birds with REV. From REV-infected birds a wide array of wild bird population picked up REV, which rapidly spread world-wide. The most mutagenic and promiscuous REV genomes inserted themselves within coinfected cells first into the Marek’s herpesvirus of turkeys (gallid herpesvirus type 2), and more recently into the avian fowlpox virus (Niewiadomska AM & Gifford RJ PLoS Biol 2013;11(8):e1001642). The Bittner mouse mammary tumor (MMTV) retrovirus may spread horizontally with the milk, or may insert its gene into its host’s genome for vertical spread. A MMTV-relative is detectable in human breast cancer tissue. MMTV encodes transmembrane gly- coprotein superantigens (Sag). Sag-expressor infected B lymphocytes spread the virus within their host. TCR Vβ CD 4+ lymphocytes respond to the horizontally spread MMTV infection. In lack of its own oncogene, the MMTV genome inserts itself into cellular proto-oncogenes, targeting the int, wnt and fgf/FGF, or Notch genes. An avian REV erythroblastosis virus-incorporated the EGFR gene which is expressed in some human breast cancer cells (Her2/neu). The amplified HER protein induces an antibody and T-lymphocyte-mediated immune reaction (Punkosdy GA et al Proc Natl Acad Sci USA 2011;108:3677–3682 george.pun- [email protected]; Holt MP et al Front Oncol 2013;3:287; Szakacs JG & Livingston SK Ann Clin Lab Sci 1994;24:324–338). Human endogenous retroviral gene-encoded proteins and fully mature enveloped retroviral particles are frequently expressed in human leukemia and solid tumor cancer cells. The endogenous Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 571 retroviral particles often induce the fusion of the malignant cell with a non-transformed host cell (monocyte-Mϕ) (Januszkieweicz-Lewandowska D et al Acta Haematol 2013;1229:232–237; Mullins CS & Linnebacher M World Gastroenterol 2012;18:6027- 6035; Wang-Johanning F et al J Natl Cancer Inst 2012;104:189–210).

Exogenous viruses force neoplastic transformation upon their host, usually over- coming host resistance. Exogenous virally induced neoplastic transformation for a cell is an attack, not a “rescue mission”, and as such, it is responded to immuno- logically. In contrast, domesticated ancient retroviral inserts (endogenous retro- viruses or retrotransposons) may internally (endogenously) induce cell transformations, that may be considered as an attempt at regressing the cell into a state of primordial immortality, and as such, it may be supported by the host. Not all endogenous retroviruses are reticuloendotheliosis viruses. Soft-shell clams (Mya arenaria) harbor the leukemogenic retrotransposon Steamer of the gypsy family. One clone of leukemic cells has been spreading among the clams. The leukemic cells express high levels of Steamer retrotransposon mRNAs. Steamer DNA is inserted in the cells’ genomic DNA, and reaches high copy numbers in leukemic haemocytes. The Steamer ORF encodes a large Gag-Pol protein, but not an env protein. Thus, Steamer does not spread as an infectious retrovirus. The leukemic cells show increased RT expression. Disabled p53 levels are high, and no apoptotic haemocytes are reported. Leukemic haemocytes spread the disease as they are able to travel in sea water. Similar leukemias exist in mussels (Mytilus) (see in text), and oysters (Crassostrea) (Arriagada G et al Proc Natl Acad Sci USA 2014;111:14175– 14180; Metzger MJ et al Cell 2015;161:255–263).

Ancestral Unicellular and Early Multicellular Utilized an Array of Transposable Elements (TE), LINE-1 (L1) Being Prominent, in Their Cell Survival Pathways, as Shown Conserved in the Extant Descendants. Malignantly Transformed (Cancer) Cells Also Utilize High LINE-1 Activity and HSP. The amoeba Dictyostelium discoideum operates a long list of repeated transposable elements (Glöckner G et al Genome Res 2001;11:685–694). The yeast Saccharomyces cerevisiae harbors the non- LTR retrotransposons LINE-1 (Dong C et al Genetics 2009;181:301–311). All ancient sexually developed phyla harbor LINE-1 and gypsy-like reverse transcriptases (RT) and mariner transposases. Listed in Table 1 of the cited article, these are the Cnidarian Hydra, ctenophores, and Spongiae. Only the asexually evolved bdelloid rotifers miss LINE and gypsy retrotransposons and their encoded RTases (but harbor mariners), indicating that in all other taxa LINE-and gypsy transposons are sexually transmitted. In absence of env/Env, these sequences are are not readily transmitted horizontally. Higher up on the evolutionary scale (Branchiostoma floridae; Danio rerio; Xenopus; Mus mus- culus), the genomic copy numbers of the LINE and gypsy sequences rise (Arkhipova I & Meselson M Proc Natl Acad Sci USA 2000;97:14473–14477). The gypsy family LINE-1 retrotransposons remained active in, and form cca 17% of the human genome. These elements express ORF 1 and 2 and are either 572 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia non-coding, or are able to encode endonucleases, RTases, and RNA-binding pro- teins, most of which are truncated and immobile. However, rapidly proliferating cells overexpress RT induction of LINE-1-derivation. Transposable elements often appear as non-coding ncRNAs. and miRNAs. Within them embedded are the TE sequences at their starting sites, whereas protein-coding exons are free of the TE sequences. RNAi (inhibitory RNA) by downregulating LINE-1, exerted anti-proliferative effect to human melanoma xenografts by inducing their differ- entiation. Upon cessation of RNAi administration, the tumor cells regained their aggressive undifferentiated phenotype and re-expressed L1 and RNA:DNA hybrids. The role of L1-encoded RT in the maintenance of the malignantly transformed state of the cell is essential (Spadafora C Ann N Y Acad Sci 2015;1341:164–171; Sciamanna I et al Oncotarget 2014;5:8039–8051). An example of extraordinary LINE-1 retrotransposon activity in cancer cells is the human colorectal carcinoma. L1 retrotransposition is carried by the process of target-primed reverse transcription (TPRT) with the help of ORF1/2-encoded endonuclease and RTase. The L1 ele- ments practice insertional mutagenesis in genes protein tyrosine phosphatase receptor type M (PTPRM), odd Oz/ten-m homolog 3 (ODZ3), roundabout axon guidance receptor homolog 2 (ROBO2), pericentriolar material 1 (PCM1) and cadherin -11 (CDH11), or ICDH12. The genes mutagenized by the human L1H (human) elements fulfill driver function for the transformed cell. Due to attempted DNA repair mechanisms, the inserted L1 elements suffer truncation, nevertheless sustain rapid cell cycle turnovers (elevated cell division) rates (Solyom S et al Genome Res 2012;22:2328–2338). L1 retrotransposition are prelude to generation. In that, the Trichomomas cells and the malignantly transformed (cancer) cells imitate each other (vide infra). In comparison to differentiated resting cells, de-differentiated active cells overexpress these retroelements. Both low branching unicellular, or early multicellular eukaryotes, ancestral and extant, and selected single cells of advanced multicellular hosts, in the process of malignant transfor- mation, utilize alike L1 sequences for survival. Termed ‘malignant’ only, because transformed single cells of advanced multicellular hosts inadvertently consume and kill their host. Questions arise: where is the origin of endogenous LINE-encoded RT overproduction? It was in the first unicellular and early multicellular eukaryotes, where it was in use in the cell survival pathways in support of survival in distress LINE-1 together with the ancient heat shock proteins (HSP) (Nicosia A et al PLoS One 2014;9(9):e 105908), were utilized in response to exogenous physicochemical environmental inflicts. In a form of retrograde phylogenesis, selected cells of multicellular extant hosts may return to that stage of evolution by reactivating genomic faculties conserved from the ancestors, and thus resume their phenotype of rapid replication and resistance to physicochemical inflictions. Is the cancer-free longevity of the blind or naked mole rats (Spalax; Heterocephalus) consequential to the absence of viable transposable elements (no LINE-1) in their genomes? (Manov I et al BMC Biology 2013;11:91. doi:10.1186/1741-7007-11-91).

Gene Methylators-Demethylators; Acetylators-Deacetylators. Early discovered histone lysine (K) methyltransferase protein domains are those from Paramecium Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 573 bursaria chlorella virus, and trithorax from drosophila’s suppressor of variegation Su (var), and enhancer of zeste (SET); further, the myeloid translocation protein, nervy, and deformed epidermal autoregulatory factor (DEAF; MYND; SMYD*). *) The two transcript variant human SMYD (SET and MYND domains) gene maps on 1q44 (Luo XG et al J Biosci Bioeng 2007;103:444–450). Highly over- expressed in cancer cells (Hamamoto R et al Cancer Sci 2006;97:113–118). SET and SMYD transactivate the promoter of telomerase reverse transcriptase (hTERT) by di- or trimethylating its H3K4. This process is highly and constitutively upregulated in malignantly transformed human cells. It is targeted for inhibition by small iRNA. The hTERT promoter is subject to demethylation and repression; and acetylation and phosphorylation (Liu C et al Cancer Res 2007;67:2626–31). Hypermethylation of the CpG island of the cycline-dependent kinase inhibitor p16/CDKN3A tumor suppressor gene at 9p21 (or deletion of this gene) is a pre-disposing event for the development of sporadic malignant melanoma (Gonzalgo ML et al Cancer Res 1997;57:5336–47). These are early recognized examples of epigenetic proto-oncogene transactivation and tumor suppressor gene de-activation by gene silencer/promoter methylation/demethylation (Dillon SC et al Genome Biol 2005;6(8):227).

Histone deacetylases are upregulated in malignantly transformed cells. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) induced differenti- ation of murine erythroleukemia cells (Richon VM et al Proc Natl Acad Sci USA 1998;95:3003–7). Histone deacetylase 1 is an activator of the translocated fusion oncogene/oncoprotein TMPRSS2/ERG in prostate cancer (androgene-dependent transmembrane serine protease; E26 ETS-related gene ERG) (Iljin K et al Cancer Res 2006;66:10242–6). The deacetylated constitutively expressed testosterone- driven androgen receptor genome drives prostate cancers. Histone deacetylase inhibitors re-acetylate and silence the androgen gene. Prostate cancer cells so treated undergo apoptotic death. Of numerous histone deacetylase inhibitors (depsipeptide, Na-butyrate, trichostatin, valproic acid), SAHA appears to be the most efficient (Marroco DL et al Mol Cancer Ther 2007;651–60). In black C57 mice, SAHA subdued allogeneic graft-vs-host disease with preservation of the graft-vs-leukemia effect (Reddy P et al Proc Natl Acad Sci USA 2004;101:3921–6).

Missense Mutations. Mismatch Repair. Rare missense point mutations (non-synonymous substitutions in a single nucleotide of a codon) may not be cau- sally cancer-associated; recurrent missense mutations are frequently cancer-related. In a nonsense mutation, the encodes a truncated protein. The encoded serine/threonine protein kinase of B-raf (rat fibrosarcoma) gene residing at 7q34 is BRAF, activator of the ancient MAP/ERK pathway. In the V600E mutation in codon 600 valine is replaced by glutamic acid (E). Somatic mutations prevalently associ- ated with the cause of cancers, while germ line mutations rather spell predisposition. For distinction, computational algorithms have been designed (Kaminker et al Cancer Res 2007;67:465–73). Frameshift mutations consist of deletions and inser- tions of several nucleotides resulting in the sequential position of codons, thus 574 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia altering the triplets, and thus of the . Frameshift indel mutations in the tumor necrosis factor superfamily gene 10 in prostate cancer cells disrupt its open reading frame disabling it to induce apoptosis (Xu X et al Gene 2013;519:343–7). The common single nucleotide polymorphisms (snips) consist of single nucleotide replacements (thymine for cytosine). In the two parental copies of the genome, single nucleotide polymorphic regions with different bases coexist in heterozygosity. Loss of one parental region leaves one copy remaining: hemizy- gosity for that region, due to loss of heterozygosity. Tumor suppressor genes losing one parental copy remain functional; loss of the second allele (Knudson’s second hit for the retinoblastoma gene) opens up unopposed oncogenic pathways. Microsatellites are repetitious up to six DNA base-pair sequences (simple sequence repeats, SSR). Instability of microsatellites occurs during faulty mismatch repair, leading to hypermutability of the genes involved (as in xeroderma pigmentosum; prominently in colorectal adenocarcinomata, etc). The evolutionarily conserved mismatch repair mechanism excises the faulty DNA segment and replaces it with the correct sequence (that can be over 1000 long). The mismatch repair enzymes MutS, MutH, MutL recruit other enzymes (methyl transferase, helicase, exo- and endonuclease) to jointly carry out the nicking, separating and replacing the involved segments. The process of mismatch repair may fail due to point mutations of the enzymes: mismatch repair deficiency. The familial non-polyposis colon cancer Lynch syndrome is characterized by germ line mutations of the mismatch repair enzymes (Boland CR Gastroenterology 2013;144:868–70).

The ‘driver mutations’ conferring selective growth advantages of the tumor cell usually appear in a set sequential order of tumor suppressor gene eliminations and proto-oncogene point mutations (the Vogelstein sequence in colon cancer). Thereafter, very large numbers of haphazard somatic gene mutations occur. Mismatch repair deficient tumors excel in the pursuit of this latter pattern. In this phase of host-tumor relationship, the tumor loses the support of its host, and is subjected to excessive lymphocyte-mediated immune reactions. Innumerable new protein mutations induce the attacker lymphocytes. In response, the tumor cell overproduces PD-1 ligands for the induction of apoptotic death in the attacker lymphocytes, and thus it prevails. External help with monoclonal antibodies nivo- lumab and pembrolizumab protect PD-1 from contact with its ligands; the intact lymphocytes attack and destroy the tumor. Thus is the extraordinary susceptibility of mismatch repair deficient tumors to antibodies that protect PD-1 from contact with its apoptosis-inducer ligands (Le DT et al New J Med 2015;372:2509–20).

The First Encounter with NK Cells. The NCI project site visitors arbitrarily trans- ferred the healthy control investigator’s (JGS) research funds from M.D. Anderson Hospital to the NCI intramural Herberman laboratory for the “clarification of the in vitro artifact reactions”. In the clarification efforts, the Herberman laboratory used the modern and accurate “radioactivity-release assay”, instead of the “out-moded and clumsy” chamber-slide assay. However the radioactivity-release assay did not dis- tinguish between different types of cytolytic lymphocytes. Neither the Hellström, nor Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 575 the Herberman laboratories visualized the morphological differences that attacking lymphocytes clearly exhibited in the most meticulous and reliable chamber-slide assay (in use in the Sinkovics Lab). Several years later the Herberman Lab declared their discovery of “natural killer cells”, a subclass of lymphocytes, that killed autologous virally-infected or malignantly transformed cells without pre-immunization. The NK cells appeared as large granular lymphocytes (as shown earlier in the chamber-slide cultures in the Sinkovics Lab). Both healthy donors and patients with cancer possessed NK cells, but only the patients generated the small compact immune T lineage lymphocytes lytic to autologous (and related allogeneic) tumor cells (Lichtman MA: Historical landmarks in the understanding of the lym- phocytes. In P.H. Wiernik et al (eds) “Neoplastic Diseases of the Blood”. Springer Science, New York, 2013; Pp 789–83. Sinkovics JG & Horvath JC. Internat J Oncol 2005;27:5–47; Sinkovics JG: “Cytolytic Immune Lymphocytes…” Schenk Buchverlag, Passau & Budapest, 2008). From the late 1960s on, at the Section of Human Tumor Virology & Immunology of M.D. Anderson Hospital, this author (JGS) observed lymphocyte-mediated cytotoxicity expressed to various target cells, prominent among them human sarcoma, melanoma and kidney carcinoma cells. Lymphocytes killed human tumor cells by cytoplasmic lysis or by nuclear clumping (later recognized as apoptosis) illustrated in photographs and graphs. Patients with metastatic melanoma or sarcoma circulated small compact lymphocytes (later: immune T cells) and large granular lymphocytes (later: NK cells), that killed autol- ogous (and related allogeneic) tumor cells in vitro (Sinkovics JG: “Cytolytic Immune Lymphocytes…” Schenk Buchverlag Passau/Budapest 2008). While the patients’ lymphocytes killed tumor cells in vitro, in vivo the tumors could advance. Treatment of disseminated rhabdomyosarcoma-afflicted twin with buffy coat lymphocytes of the healthy twin sister was attempted in 1968. The healthy twin yielded large granular lymphocytes attacking the afflicted twin’s rhabdomyosarcoma cells. Remission was induced; that was lost later to relapse (Sinkovics JG Expert Rev Anticancer Ther 2007;7:31–56; 183–210). The failure of immune T cells to eradicate a tumor in vivo was attributed (in other laboratories) to the induction of Treg cells that were directed to eliminate immune T cells. The chemokine stromal cell-derived factor-1 as ligand-to-receptor CXCL→R, acted in a network to direct Treg cells. Depleting the host’s resident lymphocyte population allowed autologous immune T cells (and NK cells) to attack tumor cells in vivo and to induce remissions. S.A. Rosenberg & associates (Patrick Hwu now M.D. Anderson professor) at the NIH/NCI established the efficacy of immune T (and NK) cell infusions into lymphocyte-depleted hosts by inducing durable remissions of metastatic tumors (especially melanomas) (Rosenberg SA Cancer Immunology: Building on Success, NIH/NCI Sept 22–23 2011). Consideration was given to low dose intraabdominal radiotherapy for the induction of innate immunity in lymph nodes in response to gut flora invasion of the lymph nodes (explained in Sinkovics JG “Cytolytic Immune Lymphocytes…” Schenk Buchverlag, Passau/Budapest pp 264–5, 2008). Recently discovered autologous immune T cells with genetically engineered TCRs (the CAR chimeric antigen receptors), and replicating in their tumor-bearing hosts in vivo, are able to 576 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia completely eradicate metastatic tumors (lymphocytic leukemia-lymphoma cells; solid tumor cells). Massive tumor cell lysis occurs so rapidly that patients suffer, and are to be protected from, acute tumor lysis syndromes (Morgan A et al Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314:126–129; Robbins PF et al Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011;29:917–924; Frigault MJ et al including Carl H June. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol Res 2015;3:356–367), that is tumor-specific immune T cells. Resting continuously (as long as residual tumors exist; or even after the eradication of all tumors), the immune T cells survive. Their renewed attacks on relapsed tumor cells sustain complete remissions for years: a result tantamount to cure (earliest results reviewed in Science Dec 20 2013).

Some Misconceptions. In 1968, the landmark paper of Hellström & Hellström appeared to have set the basic rules of cancer immunology. In the case of pediatric neuroblastoma, granulocyte-cleared peripheral blood “lymphocyte suspensions” of patients (and their mothers) specifically inhibited the growth of autologous (“au- tochthonous”) tumor cells (but not fibroblasts). The sera of the donors, who yielded ‘colony inhibitory lymphocytes’, contained antibodies, which were specifically inhibitory to tumor cell colonies in a strictly complement-dependent manner. “In no case did lymphocyte from healthy controls, from patients with non-neoplastic disease or from patients with other kinds of tumor selectively inhibit the growth of neurob- lastoma cells.” Patients’ sera and complement acted similarly to the lymphocytes in tumor cell colony inhibition assays. Both the text and the summary contains the fateful statement: “In no case were tumor cells selectively inhibited by lymphocytes from the controls, which included children with other tumors, children with non- neoplastic diseases, or mothers of healthy children…” (Hellström IE, Hellström KE, Pierce GE, Bill AE: Demonstration of cell-bound and humoral immunity against neuroblastoma cells. Proc Natl Acad Sci USA 1968;60:1231–1238). The work was supported by USA NIH and American Cancer Society grants. The manuscript was sponsored for publication by USA National Academy of Sciences member Frank L. Horsfall Jr. The paper failed to explain that if the control lymphocytes never killed tumors selectively, could they kill tumors ‘non-selectively’? In the late 1960s, at the Section of Clinical Tumor Virology and Immunology in the M.D. Anderson Hospital, this author (JGS) was engaged in the establishment of human tumor cell lines (lymphoblasts-lymphocytes in suspension cultures; solid tumors, especially sarcoma, melanoma and kidney carcinoma) (Sinkovics JG et al Methods Cancer Res 1978;14: 243–323). Against these cultured tumor cells, the patients’ and healthy controls’ ficoll-hypaque purified lymphocytes (prepared by Cameron Tebbi and Jerry Cabiness) and sera were tested for non-specific and specific immune reactions. The chamber-slide assay was used; stained slides were viewed to actually visualize the lymphocytes’ interactions with tumor cells (Sinkovics JG & Horvath JC. Internat J Oncol 2005;27;5–47). It has become immediately evident that healthy individuals, first this author (and patients with tumors) circulate a class of lymphocytes (large Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 577 granular lymphocytes) that attached to allogeneic tumor cells and killed them. Under the effect of the Hellström paper (and on the recommendation of the first author of that paper, who actually rendered a NCI-appointed project site visit in this author’s (JGS) laboratory), it was declared that this author’s chamber-slide assay was out- moded, unreliable, and thus yielding “laboratory artifacts”. The author’s NCI grant was transferred to Ron Herberman’s in-house NCI laboratory in order to clarify what the “in vitro artifacts” meant. To the NCI project site visitors, it was unacceptable that lymphocytes would render an immune reaction without their specific pre-immunization. Even though, in reply, this author showed that his lymphocytes killed female breast and ovarian carcinoma cells, and that the lymphocytes respon- sible for this reaction were not the compact small T cells, but the large granular cells (referred to as ‘Burnet’s immune surveillance cells’ in the author’s laboratory). View convincing original photographs in Sinkovics JG Cytolytic Immune Lymphocytes. Schenk Buchverlag, Passau/Budapest, 2008. However, the incorrect “Hellström doctrine” prevailed until after Herberman’s and other laboratories proved the exis- tence of “natural killer cells” (same as the allogeneic large granular lymphocytes of this author). Marshall Lichtman credited this author (JGS) for the first observation of tumor cell-killer human large granular lymphocytes (later: NK cells) (Lichtman M A in P.H. Wiernik et al Neoplastic Diseases of the Blood. Springer Science New York, 2013. doi:10.1007/978-1-4614-3764-2_39.

HMG Proteins Drive the Amoeba Nucleus. High mobility group helix-turn-helix DNA-binding proteins are shared by the amoeba and its parasite mimiviruses. Prokaryotes, archaea and unicellular eukaryotes share HMG proteins. LUCA, the last universal common (cellular) ancestor, presumably operated HTH HMG pro- teins for carbamoyl phosphate synthetase. In the precellular RNA World the ancestors of these proteins functioned in ribonucleoproteins, ribozymes and riboswitches. The amoeba expresses intranuclear HMG14/17 proteins (Anantharaman V Koonin EV Aravind. Nucl Acids Res 2002;30:1427–1464). The HMGB1/2/3 transcription proteins of higher multicellular eukaryotes derive from the amphioxus’ single HMGB gene. Tumor cells of the highest eukaryotes utilize HTH HMGB proteins as auxiliary oncoproteins (Tables XI/I and XI/II). For amoeboid movement of invading tumor cells, see text.

Ribozymes Appeared. Tetrahymena thermophila revealed its group I intron ribo- zymes in Thomas Czeh’s laboratory. Ribozymes catalyze their substrates (“like protein enzymes”) intra- and intermolecularly. The tetrahymena ribozyme’s intramolecular catalysis consists of self-splicing (Golden BL et al Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO. Science 1998;282:259–264). Alu ribonucleoproteins con- sists of polymerase III-transcribed Alu sequences and signal recognition proteins (SRP9/14) united. In the ribosome, these units inhibit IRES-mediated (internal ribosome entry site) translation initiation (Ivanova E et al Nucleic Acids Res 2015;43:2874–2887). 578 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia

Spliceosomes. Spliceosome, the intranuclear organ of eukaryotes, consists of five small nuclear snRNAs and their associated proteins, the small nuclear ribonucleic proteins (snRNP). Each pre-mRNA/hnRNA (heterogeneous RNA) can generate the assemblage of its own spliceosome. Each spliceosome will contain five snRNAs marked as U1, U2, U4, U5, U6. In the spliceosome, ribozymal catalytic reactions remove (excise) the introns from nuclear pre-mRNAs and reconnect (ligate) the flanking exons: the splicing reaction of Philip Sharp. The assembly of snRNP particles occurs stepwise on hnRNA substrate. The first transesterification takes place in the bulging duplex of the U2 snRNP and the branch region of the hnRNA. The U2 snRNA auxiliary factor recruits U2 snRNP to the branch region. An altered conformation of RNA-RNA duplex is shaped by the peudouridine residue of the U2 snRNA. Splicing begins in the 2' OH of the bulging adenosine. U4/U5/U6 snRNPs form a triplet. U2 snRNA binds to the branch point sequence and RNA-RNA interactions displace protein-RNA interactions. The stem loops U4/U6 dissociate with the elimination of U4. Stem loop U6 base pairs with U2 snNA, and appears as the U2/U6 helix. Alternative splicing is performed when two different exons are recombined. BS = branch site ISL = internal stem loop http://www.cityofhope.org/ the-catalytic-core-of-the-spliceosome Excision of intron in the spliceosome (SM). Copyright McGraw-Hill Companies. McGraw-Hill Higher EducationMcGraw-Hill Online Learning Center Test mhh.co, Spliceosome abbreviations: LSm protein: like SM spliceosomal; Prp genes: precursor RNA processing (not “platelet-rich plasma”); Brr: balanced repeated replication (not “bad response to refrigeration”; not “bean root rot fusarium”); Snu: snRNP “snurp” proteins, snurps). The supras- pliceosomes remove the introns and ligate the exons. They are composed of four united active native spliceosomes equipped with components for processing intronic microRNAs and changing the 5’-end and the 3’-end pri- into pre-miRNAs. All five-spliceosomal U1, U2, U4, U5, U6 snRNPs are present. The RNA-editing enzymes ADAR1,2 are actively involved (dsRNA adenosine deaminase). The enzymes Drosha/DGCR8 are the major microprocessors (DiGeorge chromosomal region). Stop codon-mediated suppression of splicing (SOS) is installed. Latent splicing initiated by a mutated translation initiation codon (AUG) is suppressed by an initiator tRNA construct (Shefer K, Sperling J, Sperling K Comput Struct Biotechnol J 2014;11:113–122). Some degenerative diseases due to RNA/DNA processing errors occur (retinitis pigmentosa; spinal muscular atrophy) due to misregulation of splicing. Mutation of U2 snRNP results in defective snRNP assembly in CCL and myelodysplasia (Matera AG & Wang Z Nat Rev Mol Cell Biol 2914;15:108–121). Indeed, these malignant transformations are due to func- tional error of the RNA/DNA complex.

Drosophila Brain Tumors and Leukemia. The drosophila genome encodes the ontogenesis of the larva to adulthood with precision, but not without occasional lapses. Carcinogenesis appears to be included into the physiology of the genome: anlage lay down, differentiation, organ formation and polarity, stem cell maintenance with asymmetric release of somatic cells, provisions for progeny, cell senescence and death. Not in the case of every individual, but in selected (gain-of-function mutated) Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 579 hosts, regression of a part of the soma to germline level, or evolutionarily deeper down below, to the independent life style of immortalized single cells, takes its place. “Carcinogenesis” is recognized. Most commonly involved in this latter event are the hedgehog, notch, runt, polycomb, trithorax and wingless genes. Gene expressions are regulated by mono-dimethylases at H3K4me3 (trimethylated by the cara mitad enzyme); a demethylase acts also at H3K27. The polycomb repressive complex 2 (PRC) is the chromatin modifying enzyme of H3K27. The SET domain methyl- transferases (Su-var9/ enhancer of zeste/ trithorax) are the most prominent. Most drosophila genes have their orthologs downward and upward on the evolutionary scale. The drosophila trithorax (histone lysine methyl-transferase) and trithorax-related genes are orthologous to the mll1-mll2/MLL1-MLL2 (mixed lin- eage leukemia, lymphocytic, myelocytic) genes and gene product proteins. In human lymphomas and lymphocytic blastic leukemias the overproduced MLL proteins derive from a promiscuously fused mll gene (Chauhan C et al Development 2012;139:1997–2008; Geissler K & Zach O Ann Haematol 2012;91:645–669; Kanda H et al Mol Cell Biol 2013;33:1702–1710; Patel A et al J Biol Chem 2014;289:868–884; Rain AN et al Mol Cell Biol 2013;33:4844–4856; Xie J et al OncoTargets Ther 2013;6:1425–1435). The increased ectopic expression of meiosis-related gene-product proteins (cancer-testis, CT; synaptonemal complexes, SYCP; PIWI) in cancers, both in drosophila and human, indicates a soma-to-germline transitional shift in cancer (Feichtinger J et al Int J Cancer 2014;134:2359–2365). Receptor tyrosine kinase RTK (one of them EGFR), and the PI3K/Akt pathways, are the initiators of glioma induction in the drosophila brain. Right open ORF serine/threonine kinases 1/2 (RIOK) respond and form complexes with mTOR. Forced reduced expression of RIOK1/2 (immune iRNA) allowed p53-induced ces- sation of cell cycle and apoptosis to take place. The inhibitor of neuroblast differ- entiation (symmetrical cell divisions) is the early growth response EGR transcriptional regulator klu/Klumpfuss protein. Transplantable neuroblast (NB) tumor cells overexpress Klu. Drosophila larval type I NB cells divide into a large stem cell and a smaller ganglion mother cell, which symmetrically divides into two postmitotic ganglion cells. Type II NB cells divide asymmetrically into a stem cell and a smaller intermediate neural progenitor (INP) cell. Deadpan (Dpn) and Asense (Ase) proteins differentiate INP cells; without Ase and Dpn expression, INP cells remain stem cells. Gain-of-function mutated drosophila brain tumor gene (brat) and drosophila lethal(3) malignant brain tumor (l3mbt) gene induce malignantly transformed cell clones. Differentiation inducers are the Notch inhibitor Numb, and the cell cycle inhibitor Pro (prospero). Loss-of-function mutated numb and pro genes fail to induce neuroblast cell differentiation (Berger C et al Cell Rep 2010;2:407–418; Read RD et al PLoS Genet 2013;9(2):e1003253; springer com.article/10.1186% 2F1471-21645-24). The neurotrophin receptor p75NTR reacts to early growth response (EGR) transcriptional regulators. Klu is an EGR agent. EGR proteins contain three Zn finger motifs allowing them to positively or negatively regulate cell proliferation (apoptosis versus cell proliferation). In mammalian cells, EGR-1 is an inhibitor of TNF-related apoptosis-inducing ligand (TRAIL) expression in NK cells. The extracellular signal-regulated oncogenic ERK pathway in lung adenocarcinoma 580 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia cells induces the egr-1/EGR-1 gene/protein. EGR-1 acting as a DNA-binding protein, activates the VEGF-A promoter. Both the mutually exclusive K-RAS and EGFR mutated proteins also activate EGR-1. Activated EGR-1 overrules its inhibitor NAB (nerve growth factor binding) protein, when it is epigenetically silenced (unless NABs are constitutively expressed) (Balzarolo M et al Immunol Lett 2013;151:61– 67; Gao X et al Mol Cell Neurosci 2007;36:501–514; Shimoyamada H et al Am J Pathol 2010;177:70–83; Thiel G & Cibelli G J Cell Physiol 202;193:287–292). Terminal differentiation of blast stage myeloid leukemia cells is blocked by c-Myb or by C-Myc. EGR-1 could abrogate the c-Myc, but not the c-Myb blockade (Gibbs JD Cell Cycle 2007;6:1205–1209; Leukemia 2008;22:1909–1916). EGRs are evolu- tionarily conserved. A recent new discussion from another angle (Sinkovics JG Europ J Microbiol Immunol 2015;5:25–43). The ancestral oncogene / oncoprotein of human carcinoma of the thyroid, RET (rearranged in transformation) suffers gain-of-function mutation in the drosophila. Abnormal neural epithelium restored to normal by the administration of small molecular Ret inhibitor ZD6474, which is in human clinical trials as Zactima (Marcos Vidal & Ross Cagan, Mount Sinai School of Medicine) http://www.cancer.gov/NCIcancerbulletin/archive/2009/012709/page6

Reversed Ontogenesis. Hydractinia echinata and H. symbiolongicarpus colonies consist epithelial cells, stem cells or interstitial I cells (originally called Urkeimzellen, Stammzellen by August Weismann in 1883), and defensive stinging cells (microbasic mastigophores). The epithelial cells form the mass of the colony; these cells may de-differentiate into stem cells, or tumor stem cells. The genuine stem cells are in the interstitium in between epithelial cells in the epidermal com- partment. The stem cells provide germ cells. Silenced and activated stem cell genes include ancestral Wnt elements (from frizzled to β-catenin); Pin, encoding POU proteins and possible predecessors of Oct4; Myc; Nanog; Piwi. The stinging cells protect the integrity of the colony (practice allorecognition) and kill invader cells upon attempt at fusion by another, but incompatible, colony. POU proteins are pituitary/Oct-octamer/undifferentiated or uncontrolled (see text). Cnidaria consist- ing of anthozoa (the “flower ”, sea anemones, the Nematostella; Hydra and Hydractinia); and Medusozoa (medusa, the jelly fish) practice bidirectional regen- eration, transdifferentiation, and reverse development, or reversal of ontogenesis. In transdifferentiation, a differentiated cell assumes the appearance and functioning of another differentiated cell. In the reversal of ontogenesis, a mature cell assumes the appearance and functioning of one of its embryonic ancestors. Reverse develop- ment may be viewed as a physiological process of rejuvenation: senescence post- poned, life span extended (Carla EC et al Tissue & Cell 2003;35:213–222; Khalturin K et al Dev Biol 2007;309:32–44; Plickert G et al Int J Dev Biol Sci 2012;56:519–534; Schmich J et al Int J Dev Biol 2007;51:45–56). Induced de-differentiation (reprogramming) of somatic cells in a vertebrate multicellular host (a mammal) to pluripotent stem cells is a form of reverse evolution encoded by the classical stem cell product proteins (Oct4, Kfl4, Myc, Sox2: the OKMS). Dox (doxycycline) is an inducer of stem cells (breast cancer stem cells, BCSC). In the background, BMP/SMAD (bone morphogenetic protein; signaling mothers against Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 581 decapentaplegic, drosophila), and miR-200 induce mesenchymal-to-epithelial transition (MET), including the activation of stage-specific embryonic antigen 1 (SSEA) and pluripotency regulators Nanog and Sall4 (spalt-like transcription fac- tor). The induction and the maintenance of the state of pluripotency is encoded by two different arrangements of the stem cell genes (Golipour A et al Cell Stem Cell 2012;11:769–783). The cell rejuvenation process is an inherent ancient faculty of the RNA/DNA complex; mature somatic cells of a multicellular host are able to resort to it. If the promoters are constitutively amplified without a gain-of-function mutation, is the process excessive but still physiological? If the inhibitors (sup- pressors) suffer a loss-of-function mutation, is the process pathological? Certain “rejuvenating mutations” in the RNA/DNA complex may be viewed inherent and physiological, inasmuch as distant ancestors of cellular life (the medusa) practice it. The overgrowth of rejuvenated cell colonies may be lethal to their host. Further discussed (Sinkovics JG Europ J Microbiol Immunol 2015;5:25–43).

Nematostella vectensis, is the early branching metazoan cnidarian without meso- derm. The sea anemone, anthozoan cnidaria, N. vectensis, is among the first to operate the venus kinase receptor (vkr) gene, which characterized the first bilaterian phyla (Annelida, Mollusca, Echinodermata, Platyhelminthes). The receptor cap- tured extracellular amino acids and eventually formed the venus fly trap module of the larvae in invertebrate hosts up to the the metazoan cnidaria. Its possible role in cell-to-cell communication in higher ranking metazoan is unknown, however, the vkr gene was lost at the caenorhabditis and drosophila level (Vanderstraete M et al BMC Genomics 2013;14:361). The Wnt signaling pathway is very active in Nematostella larvae; its activity extends to TCF (T cell factor) signaling by intranuclear β-catenin. The hedgehog Hh pathway is active as well. The faultless physiological pathways establish the correct anterior-posterior axis and the dorsal-ventral polarity of the embryo (Marlow H et al Dev Biol 2013;380:324–334; Matus DQ et al Dev Biol 2008;313:501–518; Röttinger E et al PLoS Genet 2012;8 (12):e10031164). The Wnt/Hh/Tcf signaling pathways may malignantly transform human cells into adenocarcinomas. LIM homeobox Lhx transcription factors (lin- eage, caenorhabditis; isl, insulin-like rat gene enhancer binding protein; med-3, mechanosensory, cnidaria) of the cnidaria with proteins Rho and ROCK (rhom- botin; Rho-associated kinase) form fusion oncoproteins in human T cells. The hydra (H. magnipapillata) genome operates six Lhx genes (Boehm T et al Proc Natl Acad Sci USAc 1991;88:4367–4371; Srivastava M et al BMC Biol 2010;8:4). The achaete scute (ash) gene product proteins regulate the early neurogenesis in the cnidaria Nematostella (and in the early chordate Branchiostoma amphioxus); four such genes in Nematostella (Layden MJ et al Development 2012;139:1013–1022). Human ash genes encode transformation of adenocarcinoma cells into neuroecto- dermal cancer cells, or induce primary esthesioneuroblastomas (Linnoila RI et al Exp Lung Res 2005;31:37–55; Wang XY et al Lab Invest 2007;87:527–539). Cnidarian “small silencing” microRNAs (87 identified, including PIWI-interacting piRNAs) are extremely active in cleavage (post-transcriptional regulation / trans- lational inhibition) of mRNAs, thus regulating gene expression. Cnidaria 582 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia miRNAs/siRNAs are ancestral to those of both animalia (Bilateria) and plantae. Plant miRNAs are methylated (CH3) at their 3′ ends; animal miRNAs are not. The HOXD (homeobox) gene/protein cluster harbors its regulator, the intron-embedded miR-2026. The cnidarian miR-156 shows sequence homology with moss and Arabidopsis miRs reflecting back to a common ancestor of animalia and plantae (rule out horizontal transfers). The cnidarian miRs slice their mRNA targets directly, that is different from the mRNA slicing of Bilaterian miRs. The cnidarian ur-bilaterian miRNA miR-100 remains conserved in all vertebrates up to Homo (Moran Y et al Genome Res 2014;24:651–663). The human miR-100 often expresses tumor suppressive activity (hepatocellular carcinoma; osteogenic and chondrosarcoma; malignant lymphoma (Chen P et al Mol Cell Biochem 2013;383:49–58; Huang J et al Tumour Biol 2014;35:1095–1100; Li XJ et al Br J Cancer 2012;109:189–198). In non-small cell lung cancer, tumor suppressor miR-100 targets polo-like kinase (Liu J et al BMC Cancer 2012;12:519). Dihydroxyvitamin D and miR-100 suppress prostate cancer (Giangreco AA et al Cancer Prev Res 2013;6:483–494). miR-100 suppresses growth of transitional cancer cells of urinary bladder (Oliveira JC et al Asian Pac J Cancer Prev 2011;12:3001–3004). In small cell lung cancer, HOXA gene expressions favored the host by inducing tumor cell growth arrest and increased chemotherapy sensi- tivity and apoptosis. High expression levels of miR-100 reduced HOXA expres- sion. miR-100 targeted the 3’UTR region of the HOXA protein mRNA (Xiao F et al Eur J Cancer 2014;50:1541–1554). Devious expressions of “involved”“reg- ulated” without specifying up or down characterize the contradictory results reported on miR-100 and polo-like kinase interactions in human cancers. This ancestral interaction was established in the cnidaria. In cnidarian cells, the existence and physiological functioning of human disease-associated genes, including those of cancer, is remarkable. Prominent are 11 of the 12 human Wnt genes, and close to human-identical numbers and repeats of the BRCA2 and RAD51 genes (Sullivan JC & Finnerty JR Genome 2007;50:689–692). Add bone morphogenetic protein (BMP2/4 and TGFβ drosophila decapentaplegic orthologs with the mammalian counterparts) and the BMP antagonist chordin (Technau T & Steele RE Development 2011;138:1447–1456). Fully mature cnidarian cells practice bidi- rectional regeneration and reverse development, a form of transdifferentiation (TD). In TD, a fully differentiated cell functioning with a limited number of active genes, silences these genes, and activates a number of previously silenced genes, thus assuming the appearance and functioning of another mature cell (Graf T & Enver T Nature 2009;462:587–594). A reversal of ontogenesis consists of the de-differentiation of a fully matured cell. Cnidaria cells practice reverse develop- ment. De-differentiation of a mature somatic cell of set limited functioning in a vertebrate mammalian host is tantamount to a descent on the evolutionary scale to far distant ancestors? Cnidarians accept each-others plasmid DNA and laboratory-made transgenic cnidarians (Hydra; Hydractinia) exist (reviewed in Technau T & Steele RE Development 2011;138:1447–1458). Recently, a com- parison is being made between the cnidarian (N. vectensis) NFкB/STAT combined pathway and its more advanced derivative operational in human cells. The cnidarian Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 583 cell survival NFкB/STAT pathway’s human derivative is highly oncogenic espe- cially in certain malignant lymphoma cells. Extensively so in Reed-Sternberg cells of Hodgkin lymphoma, and mediastinal diffuse large B cell lymphoma with con- stitutive expression of these oncoproteins, and to a lesser degree in other B cell lymphomas and in the T cell lymphoma mycosis fungoides. A correlation with viral initiation in both case was suggested, inasmuch that cnidaria are often infected with herpes-like viruses that may be predecessors of the Epstein-Barr HHV4. The cnidarian endosymbiont algae carry these viruses. The cnidarian genomes carry predecessors of the human proto-oncogenes/oncoproteins, the runt-related Runx, Hedgehog and Wnt (wingless, drosophila; integrated, mouse); Sox (sex determi- nation region Y, SRY box); and the achaete scute predecessors, that will encode the first nervous system in the amphioxus, and become a proto-oncogene in the human genome, as inducers of esthesioneuroblastoma, small cell undifferentiated lung carcinoma and others (Sinkovics JG Europ J Mirobiol Immunol 2015;5:25–43; Abstracts, Second NorHGT & LUCA Conference, Sohan Jheeta, University Leeds, England; M D Anderson Hospital Symposium on Cancer Research, Oct 9–10 2014. Referenced manuscript in print Internat J Oncology 2015;47:1211–1229). In advanced eukaryocytes of multicellular (human) hosts, the Janus kinase-related STAT is activated by phosphorylation of its tyrosine residue Tyr705, dimerizes and translocates intranuclearly. There, it activates genes involved in cell survival, self-renewal, neo-angiogenesis, locomotion, and immune evasion. Constitutively activated STATs induce the malignant transformation of the cell. In human T lymphoma cells, Jak3 activates STAT3/5 DNA-binding proteins, that suppress the promoter gene of tumor suppressor miR-22, thus inducing constitutive replication of the involved T lymphocytes in absence of miR-22. Anti-Jak3 histone deacetylase inhibitors, or anti-Jak3 curcumin, reverse the process (Sibbesen NA et al Oncotarget 2015;6:20555–69).

The ancestral mena proteins appeared first in the cnidarians (Hydra; Nematostella), and in the yeast (Saccharomyces); and are fully operational in the Spemann-Mangold gastrula organizer blastomeres of the Xenopus. This is the site where the LIM homeobox gene lhx1/lim1, noggin and chordin (nog, chd) interact (Figure 38; Table XVI) (Krogan NJ et al Nature 2006;440:637–43; Insenser MR et al J Proteomics 2010;73:1183–95; Pham TK & Wright PC Expert Rev Proteomics 2007;4:793–813; Rentzsch F et al Proc Natl Acad Sci USA 2007;104: 3249–54; Yasuoka Y et al Development 2009;136:2005–14). View Internet/Google images of ‘mena proteins in Spemann blastomeres’. The vertebrate mammalian (including Homo) menaINV proteins (mammalian enabled; mammalian invasive; actin microfilament regulatory) remodel the cytoskeleton, regulate cellular apical orientation, determine cell polarity, and direct lamelli- and filopodial cell migration. The human ortholog is encoded from locus 1q42.12. When the gene is amplified, or is gain-of-function mutated in malignantly transformed cells (adenocarcinoma cells), the gene-product proteins appear in multiple isoforms, are excessively pro- duced, and dictate accelerated multicellular streaming locomotion, thus, invasive- ness and metastatic spread. Mena protein overproducing cancer cells exhibit highly 584 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia malignant behavior, express vasodilator phosphoproteins, create the microanatomic Tumor Microenvironment of Metastasis environment, and significantly shorten patients’ survival (Forse CL et al BMC Cancer 2015;15:483. doi:10.1186/s12885- 015-1468-6; Rohan TE J Natl Cancer Inst 2014;106:135. doi:10.1093/jnci/dju136). Macrophages support mena protein-expressor tumor cells, which withstand humoral and immune CD8 T cell-mediated host immune reactions (Di Modungo F et al Int J Cancer 2004;109:909–18; Roussos ET et al J Cell Sci 2011;124:2120–31; Wychoff JB et al Cancer Res 2007;67:2649–56). Comment. Here, a fundamentally basic physiological embryonic event is turned into a constitutively expressed cell survival pathway, for the rescue of some individual cells, while the host of these cells succumbs in the process.

Ciona intestinalis. The ascidian urochordate sea squirt, vase tunicate, C. intestinalis (Chordata/Tunicata) demonstrates extraordinary genomic versatility, as it trans- forms from swimming tadpoles into tubular fixed to the floor in the bottom of the sea (Satou Y et al BMC Genomics 2012;13:208). The embryonic ciona swims with appropriate musculature. The mature ciona colony attached to the sea floor. In the swimming ciona larva or tadpole, the notochord and its pigment cell sensory organs, the photoreceptive ocellus and the melanin -containing otolith receive their activation by fibroblast growth factor FGF3 and its receptor, and the MAPK pathway. The MAPK proteins activate the ets1/2 transcription factor (named after the avian erythroblastosis retrovirus E26 E-twentysix, that originally incorporated the host cell proto-oncogene ets). The ETS protein activates the T cell factor gene (tcf/TCF) and the lymphocyte enhancer factor gene (lef/LEF). The tcf/lef genes are proto-oncogenes in the human genome, serving as targets to β-catenin. TCF/LEF are downstream members of the Wnt pathway through the intranuclear transfer of β-catenin. Another activator of the Wnt pathway is the downregulation of GSK3β (glycogen synthase kinase) gene product protein. Ciona operates TGFβ and its antagonist Smad (signaling mothers against decapentaplegic, drosophila); and hedgehog and JAK/STAT genes, active in a switched on and off mechanism in the metamorphosis of the tadpole into adult organisms (Hino K et al Dev Genes Evol 2003;213:264–272; Shi W et al Development 2009;136:23–28; Squarzoni P et al Development 2011;138:1421– 1432). The Ciona cell survival Wnt pathway is correlated with the human onco- genic Wnt pathway (Sinkovics JG Europ J Microbiol Immunol 2015;5:25–43). All the ancient pathways named are conserved in vertebrate mammalian cells in switched on and off sequences in embryonic ontogenesis. All the ancient pathways named become oncogenes/oncoproteins, when either amplified or constitutively expressed with or without gain-of-function mutations in vertebrate mammalian hosts (Sinkovics JG Europ J Microbiol Immunol 2015;5:25–43). FGF-R overex- pression with or without mutations or fusion acts as an oncoprotein in diverse (adenocarcinomas, including thyroid tumors) human cancers. FGF-induced lym- phangiogenesis promotes tumor cell invasiveness and metastasis (Larrieu-Lahargue F et al PLoS One 2012;7(6):e39540; Redler A et al PLoS One 2013;8(8):e72224). Otherwise, the LIM (Table XVI) and Hox homeodomain genes were lost from the Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 585

Ciona genome. Gene product proteins in Ciona are ancestral to thyroid hormones and their receptors (ciona nuclear receptor-1 as thyroid hormone receptor-associated protein) in vertebrate mammalian (human) hosts. The ciona nkx/Nkx gene/protein is referred to as TTF-1 (thyroid transcription factor, or natural killer homeobox protein, Nkx). The ortholog of mammalian vertebrate thyroid stimulating hormone activator of the NIS system (natrium-iodine symporter) and its mRNA in the ciona is Nkx/TTF-1. The amphioxus harbors ancestors of the vertebrate mammalian thyroid transcription factor-1. In ascidian larvae (Ciona), thyroid hormone precur- sors regulate larval metamorphosis in selecting cells to be retained, or to be elim- inated by apoptosis (Carosa E et al Poc Natl Acad Sci USA 1998;95:1152–1157. Di Fiore et al Life Sci 1997;61:623–629. Krishnan A et al Gene 2013;526:122–133. Ogasawara M et al J Exp Zool 199;285:158–169. Patricolo E et al J Exp Zool 2001;290:426–430. Tóth G & Noszál B Acta Pharm Hung 2013;83:35–45). In distress (heat; endoplasmic reticulum stress) ciona mobilizes cell survival pathways. It releases heat shock proteins (Hsp) as chaperones, and the BAG (Bcl-2-associated athanogene 3) co-chaperone proteins. Observe ciona cell responses to brefeldin, thapsigargin and tunicamycin (FujikawaT et al Cell Stress Chaperons 2010; 15: 193–204). The stressed ciona cell metabolizes like a tumor (colon cancer) cell (Yang X et al Histol Histopathol 2013;28:1147–1156). For the differentiating notochord-ephrins, Ciona cells establish the proper FGF/MAPK balance (Shi W & Levine M Development 2008;135:931–940). This overexpressed pathway is fre- quently operational in human cancer cells. Germ layer segregation in the ciona embryo is directed by β-catenin (Hudson et al Curr Biol 2013;23:491–495), a tcf/lef proto-oncogene-activator in human cells. Reviewed with historical details (Sinkovics JG European J Microbiol Immunol 2015;5:25–43). Are some thyroxin-related proteins physiological in the Ciona, become oncoproteins in human thyroid carcinoma? The other tunicate, Oikopleura dioica, compacted its genome even more, and reduced the numbers and sizes of its introns (down to 70 Mb with 18,000 genes with short introns of <50 nt, in comparison to the amphioxus 520 Mb genome operating 22,000 genes). Most lost O. dioica introns (spliced out in spliceosomes) are being recently replaced in different new positions. Of many retrotransposons, the O. dioica genome retained two prominent ones, Odin and Tor, and eliminated many others. O. dioica cells exposed to natural UV light at the surface of the oceans evolve fast due to an accelerated rate of point-mutations and to limited faculties of DNA repair. Is the O. dioica genome a representative of the mutator geno-phenotypes? So is the genome of C. savignyi, that split from C. intestinalis some 180 mya (Berná L & Alvarez-Valin F Genome Biol Evol 2014;6: 1724–1738).

Botryllus. The tunicate urochordates Botryllus live in colonies, and operate a 580 Mbp genome consisting of some 14,000 intron-containing, and some 13,500 intron-less genes. The Botryllus genomics has not as yet been correlated with those of the highly evolved multicellular eukaryotes (Homo included). Calling for “Botryllus Wnt, Hedgehog, NFkappaB/STAT “ etc etc etc, the answer is “no item found”. Cursory mention is available to correlation of Botryllus genes with mutated 586 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia counterparts in human diseases (cataracts; deafness; myopathy; pregnancy-specific glycoproteins), but not cancer. Native immunity and hematopoiesis (an NK-like cell in the common haemolymph of each zooid cluster) are accurately addressed (Khalturin K et al Proc Natl Acad Sci USA 2003;100:622–627. Voskoboynik A et al Elife 2:e00569). The origin of NK cells in the Botryllus; the correlation of the human maternal NK cells with the placenta and the fetus; and the imitation of the fetus by cancer cells were the subject matters of one of the discussions this author initiated in the early 2000s (Sinkovics JG & Horvath JC Int J Oncol 2005;27:5–47; Sinkovics JG, Horvath JC Kay HD Book of Abstracts, The 56th Annual Symposium Fundamental Cancer Research, The University of Texas M.D. Anderson Cancer Center, Houston TX 2003 p 117 #1–33). A more sophisticated presentation followed (Lightner A et al Clin Dev Immunol 2008:631920. doi:10. 1155/2008/631920).

Amphioxus II. Integrated in the amphioxus genome resides an ancient herpesviral genomic sequence related to oyster, and more distantly, to the gastropod abalone herpesvirus (Savin KW et al Virol J 2010;7:308. doi:10.1186/1743-422X-7-308). One of the genes in the amphioxus waiting to be recruited by the forthcoming adaptive immune system is the rag/RAG sequence. The protein expresses a retro- viral type II nuclease motif, localizes in the nucleus, and performs V(D)J-like recombination if brought together with a mouse RAG2 protein (Yu C et al J Immunol 2005;174:3493–3500; Zhang Y et al Proc Natl Acad Sci USA 2014;111: 397–402). A newly isolated bat betaherpesvirus encodes proteins homologous with human herpesvirus’ 6 U94, the incorporated parvoviral sequence; MHC class II homologous proteins; NK cell receptor-like lectins; and immunoglobulin beta-sandwich domains (Zhang H et al J Virol 2012;86:8014–8030). Herpesviruses ancestral to EBV were claimed to have incorporated V(D)J-like genomic elements (Dreyfus DH PLoS One 2009;4:e5778; Nillen et al Acta Microbiol Immunol Hung 2004:51:469–484), and thus initiated adaptive immunity in their hosts, which were living at the innate immunity level. Could the amphioxus herpesviral genome be the first possessor of primordial genes of adaptive immunity? It is also possible that herpesviruses incorporated the genes of adaptive immunity from hosts, which already possessed these genes firmly in use; this could be the case for some bat herpesviruses and EBV (see text).

Viral Oncolysates. In an interview, Sinkovics stated (in replying the question: “VOs cure sarcomas or melanomas?”) that metastatic tumors were not cured with VO treatment alone (however lives were prolonged). Unfortunately, the interviewer published the interview under the title: “Viral oncolysates are ineffective”. Most recent references avoid mentioning “viral oncolysates” by name; instead re-name them as “oncolytic vaccines”, and thus entirely omit referrals to their predecessors (Elsedawy NB & Russell SJ Expert Rev Vaccines 2013;12:1155–1172); however, claim and illustrate their rationality for high immunogenicity. The original theory in Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 587 support of VOs as cancer vaccines rested on the expectation that the immunized tumor-bearing host will recognize antigens of cytoplasm and cell membranes and viral capsids or other structural proteins fused at viral egress, as non-self. Therefore vaccinated subjects should respond to their altered self-antigens immunologically. Such immune responses by antibodies and immune T cells to autologous tumor cells (sarcoma, melanoma, adenocarcinoma) were documented in the chamber slide cultures in vitro in patients immunized with autologous VOs (Sinkovics JG Cytolytic Immune Lymphocytes. Schenk Buchverlag Budapest/Passau 2008), but the formation of such fused antigens was not experimentally documented at that time. The cancer cell surface antigens against which the host directed its immune reactions were not identified. For that reason, the NIH/NCI denied grant support for VO cancer immunotherapy. However, later elsewhere it has been well documented that such fused antigens are formed. Influenza viral structural proteins fuse not only with cell surface sialic acid proteins, but also with the host cells’ endosomal CD81 proteins (He J et al PLoS Pathog 2013; 9(10):e1003701). Thus, the influenza virus particles emerging from cancer cells expresses immunogenic cancer cell antigens fused with viral structural proteins. Properly prepared VOs (re-named “oncolytic vaccines”) may remain in use for cancer immunotherapy.

Lamprey lymphocytes. Leucine-rich repeat cassettes and variable lymphocyte receptors provide adaptive immune reactions without immunoglobulins. Release chemokines and interleukins and their receptors; express TCR (Mayer WE Proc Natl Acad Sci USA 2002;99:14350–14355; Pancer Z et al Proc Natl Acad Sci USA 2004;101:13273–13278; Uinuk-Ool T et al Proc Natl Acad Sci USA 2002;99:14356–14361;

Gnathostomata Collected and United the Genomics of the Adaptive Immune System. The by now extinct armored fish Placoderms predated the cartilagenous sharks and their followers, the bony fishes. While they preserved the innate immune system (Toll-like receptors with a chemokine, microRNA and some lympho- and cytokine network; phagocytic leukocytes, monocytes and macrophages, dendritic cells; invariable NK cells; but no immunoglobulins), the followers of the placo- derms, the chondrichtyes gnathostomata sharks, possess and practice a full adaptive immune system consisting of MHC cell-presented antigens, B and T lymphocytes with variable receptors and an extensive immunoglobulin network. Some of the genes of the complex adaptive immune system (V and RAG) appear singly “in the waiting” in the amphioxus and sea urchin, but assigned to tasks other than those of the forthcoming adaptive immune system. The adaptive immune system worked in unison for the first time at the placoderm/shark level. Vertically inherited and horizontally transferred genes generated the adaptive immune system. Either one or both, retrotransposons (harbingers, helitrons, politrons, transibs), and/or elements inserted into ancient herpesviral genomes (vdj, rag) and thus passed from host-to-host, encountered for the first time in united activity in the lymphoid tissues encircling the intestinal tracts of ancient sharks. Phylogenetic vertical inheritance interrupted by episodes of horizontal gene transfers secured the existence and 588 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia reinforced the performance of the system up to the highest level of vertebrate mammalian hosts (Dreyfus DH et al Virol J 2011;8:422. doi:10.1186/1743-422X-8- 422; Fugmann SD Semin Immunol 2010;22:10–16; Kapitonov VV & Jurka J PLoS Biol 2005;3(6):e181; Litman GW et al Nat Rev Immunol 2010;10:543–553; Niller HH et al Acta Microbiol Immunol Hung 2004;51:469–484). The adaptive immune system had to reconcile with the placenta of the vertebrate mammalian hosts. The placenta acts as a “pseudomalignant organ” inducing tolerance in its host (the mother) (Sinkovics JG Horvath JC International J Oncol 1999;14:615–646).

Ferroplasma acidarmanus. Tetraether-linked membranes enable the hyper-acidophil Ferroplasma acidarmanus to live and metabolize in hyperacidic (pH 0–1) environments. Zinc reaches extremely high concentrations in heavy metal-polluted environments inhabited by the arsenic-hypertolerant, iron-oxidizing extremophil archaeon and its relatives. These microorganisms suffer oxidative stress and produce methanethiol and volatile sulfur. In response, heavy metal exporter and zinc homeostasis genes and gene product proteins are constitutively expressed and upregulated in order to keep intracellular zinc levels low constant. The DNA strand separations in F. acidarmanus are performed by DNA helicases, which are recognized to be ancestral Rad3 xeroderma pigmentosum (F. Hebra & M. Kaposi, 1874) group D (FacXPD) proteins (related to the human enzymes in the pathological entity XP). These helicases possess unique iron-sulfur cluster (FeS) for their insertion to perform NER (DNA unwinding in nucleotide excision repair) and to initiate transcription. The FeS cluster recognizes the enzyme’s substrate, the ssDNA-dsDNA junction; thus, ssDNA-dependent ATP hydrolysis and ssDNA translocation are performed. The FacRd3 enzyme is a ssDNA translocase (Mangold S et al Extremophiles 2013;17:75–85. Pugh RA et al J Biol Chem 2008;283:1732– 1743; J Mol Biol 2008;383:982–998). The FeS clusters of the human XPD enzymes are subject to point mutations. A common XPD point mutations consists of the substitution of serine to cysteine. In the recessive human disorder XP: a common XPD point mutation is R683W (arginine; tryptophan) at 19q13, inhibiting NER. Other consequences of this mutation are trichothiodystropy and Cockayne syn- drome. The risk for melanoma is increased. Megakaryoblastic leukemia may occur. Risk for breast cancer in Egyptian women is increased (Hussein YM et al Mol Biol Rep 2012;39:1895–1901; Janjetovic S et al Acta Haematol 2013;129:121–125; Paszkowszka-Szczur K et al Int J Cancer 2013;133:1094–1100; Ueda T et al J Exp Med 2009;206:3031–3046). Triplex DNA formations (H-DNA) develop dsDNA breaks with the formation of γH2AX (histone variant; ataxia telangiectasia) foci, which recruit XPD. The phosphorylated serine 139 and tyrosine 142 residues of H2AX induce p53-mediated apoptosis (Tiwari MK & Rogers FA Nucleic Acids Res 2013;41:8979–8994), thus preventing transformation. Mutations of helicases other than XPD (RecQ4; BLM; WRN) lead to Fanconi anemia; Bloom syndrome; Werner syndrome (see text). The descendant of the archaean enzyme in the human genome suffers point mutations; the mis-repaired DNA either translocates (c-myc in Burkitt’s lymphoma in the H-DNA triplex, cited by Tiwari & Rogers), or encodes an oncoprotein. Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 589 p53/MDM. The pro-apoptotic p53 gene product protein is neutralized by the anti-apoptotic MDM oncoprotein. The gene and gene-product protein mdm/MDM (murine double minute; human counterpart) exerts ancient opposition to the p53 family members: the MDM proteins fused with the p53/p73 proteins direct the complex to ubiquitination. The MDM protein is a ubiquitin ligase. Thus the MDM protein can transform cells (rat embryo fibroblasts) into focus-forming entities, which grow into tumors in nude mice. The human mdm gene from its locus 12q13-15 encodes its MDM protein. Human sarcoma cells amplify the mdm gene and overproduce the MDM protein. In human malignant tumors the MDM4 protein is the most active suppressor of p53/p73. In the MDM/p53 protein complex, the p53 transactivator pro-apoptotic protein is inactivated (Barak Y & Oren M EMBO J 1992;11:2115–2121; Momand J et al Cell 1992;69:1237–1245; Oliner JD et al Nature 1992;358:80–83. Bert Vogelstein, Clayton Professor of Oncology; Johns Hopkins University Medical Institutions; Ludwig Center at Johns Hopkins; Sidney Kimmel Comprehensive Cancer Center; Baltimore, MD). The sea squirt (Ciona intestinalis) and the amphioxus operate the first mdm/MDM1 genes/proteins (only one mdm gene, which also encodes a p53 family member). Choanoflagellates did not as yet reveal a mdm/MDM system; they may be devoid of it. However a genome-protector p53 family ancestor exists in choanoflagellates. A substitute different from mdm/MDM suppresses p53 in the caenorhabditis. The drosophila is devoid of the classical MDM proteins, yet both drosophila and caenorhabditis experience constitutively replicating cells tantamount to malignant transformations. The mdm genes underwent duplications in cartilaginous fishes (chondrichtyes); since then, MDM2/4 remain conserved. The p53 proteins were DNA-binding, whereas the MDM proteins do not target the p53 gene; the MDM proteins form complexes with the p53 proteins (Momand J et al Gene 2011;486:23–30). The mussel (mollusk) Mytilus trossulus expresses the ancestor of the MDM2/4 mole- cule (before its divergence) and the p53 ancestor p63. The mussel MDM molecule forms complexes with its p63/63 proteins. The N-terminal deleted p63 (ΔNp63) isoform was up-, and the transactivation domain p63 (TAp63) isoform was down-regulated. Not quantitatively, but by its codon 13 mutation, the mussel haemocytes’ ancestral ras gene dictates uncontrolled cell divisions (Muttray AF et al Comp Biochem Physiol B Biochem Mol Biol 2010;156:298–308). In plants (maize; rice), the MDM1/2 genomic elements reveal long terminal inverted repeats (LTIR), possible functional transposase-binding sites, as if they were originally Mutator Elements; their 8–9 bp termini are those of mutator-like elements (Yang G & Hall TC J Mol Evol 2003;56:255–264).

G 4 Quadruplex DNA. All eukaryotic G-quadruplexes assemble from G-rich single-stranded (ss) DNA sequences when dsDNA is unwound. The human telom- eres contain TTAGGG repeats in dsDNA 2–15 kb strands ending in a G-rich single-stranded 3′ overhang consisting of 50–400 nucleotides. Intramolecular G-qadruplexes in the template inhibit DNA polymerases; DNA synthesis is stalled. Translesion DNA polymerases are recruited to the sites of replication blockade. Thus, misincorporation of nucleotides occurs: mutagenesis ensues. Single strand gaps lead 590 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia to ds breaks, the hallmark of pre-cancerous state. Some helicases may succeed or fail to resolve G-quadruplex structures (Fanconi, Bloom, Werner syndrome helicases) (Edwards DN et al PLoS One 2014;9(1):e80664). Proto-oncogenes/oncogenes often assume constitutive G-quadruplex formations and encode oncoproteins (KIT, BCL2, VEGF, KRAS, MYC, SRC). Recruitment of the DNA damage marker γH2AX (ataxia) reveals the site involved. G-quadruplex-stabilizing ligands exist in human cancer cells (breast adenocarcinoma) (Lam EY et al Nat Commun 2013;4:1796). In unicellular eukaryotes (oxytricha), G-4 DNA structures function as a cell survival pathway. In the differentiated somatic cells of multicellular hosts, G-quadruplexes maintain telomeres and induce dsDNA mutations: they act as oncogenes. G-4 quadruplexes are targeted for cancer therapy. Natural and synthesized G-quadruplex-intercalating agent telomestatin (S2T1-6OTD) disables c-Myc in medulloblastoma and rhabdoid tumor cells (Shalaby T et al Mol Cancer Ther 2010 9;167. doi:10.1158/1535-7163.MTC-09-0586). An acridinium methosulfate derivative (RHPS4) brings primitive neuroectodermal tumor, glioblastoma and medulloblastoma cells to standstill at G1 by anti-proliferative effect (Lagah S et al PLoS One 2014;9(1):e86187). Enantiomer NiP (nickel; a non-superposable stereoisomer) induced telomere uncapping and G-overhang degradation in tumor (but not in normal human fibroblast or umbilical vein endothelial) cells. The lesions attracted γH2AX. Some of the 3′ overhang-protective shelterin proteins were removed. The tyr707-phosphorylated hTERT protein translocated from nucleus to cytoplasm and was reduced in amount. Cell cycle inhibitors (p16; p21) rose. G-quadruplex remained stable; it could not protect the tumor cells against apoptosis: apoptosis may overrule the G-quadruplex (Wang J et al Nucleic Acids Res 2014;42: 3792–3802). After their discovery (Gellert M et al Proc Natl Acad Sci USA 1962;48: 2013–2016), DNA G-quadruplex formations were recognized to have occurred within human proto-oncogenes (bcl-2; K-ras; myb; c-myc; hTERT) (Ambrus A et al Biochemistry 2005;44:2048–2058; Dai J et al Nucleic Acids Res 2006;34:5133– 5144; J Am Chem Soc 2006;128:1096–1098; Cogoi S & Xodo LE Nucleic Acids Res 2006:34:2536–2549; Palumbo SL et al J Am Chem Soc 2009:131:10878–10891). These structures first downregulate transcription. However, mutations occur within the quadruplex DNAs, which abrogate the negative effects, and induce increased gene expressions: loss of quadruplex stability abolishes the gene silencing effect of the quadruplex formation. The promoter gene of the human telomerase is a subject of DNA G-quadruplex mutations in glioblastoma and melanoma cells. The central quadruplex of the structure is affected. For example, guanine-to-adenine mutations produce new binding sites for the ETS oncoprotein (product of the E26 retroviral c-onc→v-onc proto-oncogene). Such mutations in a G4 DNA-quadruplex within the hTERT (human telomeric reverse transcriptase) promoters in glioblastoma and melanoma cells increases those gene expression (Chaires JB et al PLOS 2014;9(12): e115580). Telomeric overexpressions in malignantly transformed cells are the major contributors to the cells’ immortality. However, G-quadruplex-forming G-rich oligodeoxynucleotides (GQ-ODNs), and the telomeric G-tail oligodeoxynucleotides (TG-ODNs) may exert antiproliferative activity in tumor cells, leading to apoptosis, Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 591 mediated by ataxia telangiectasia mutated ATM-dependent c-Jun NH2-terminal kinase (JNK) (Qi H et al Cancer Res 2006;66:11808-16).

Theileria-Infested Bovine Lymphocytes support the parasite by assuming “malig- nant transformation”. The tick-transmitted protozoan T. parva undergoes a major transitional life cycle in the lymphoid cells of the infected ruminants. The gametes transform in the guts of the tick into into zygotes, the fused male and female gamonts. Kinetes derive from gamonts and occupy cellular elements of the tick’s salivary glands. There, the infectious sporoblasts and sporozoites are formed. In the mammalian (bovine, ovine) lymphocytes sporozite-derived schizonts undergo merogony and emerge as merozoites. The schizonts-containing lymphocytes de-differentiate into lymphoblasts and multiply rapidly by clonal expansion expressing constitutively certain proto-oncogenes . The lymphoblasts and the schizonts divide synchronously. The lymphoblasts exert cytotoxicity to parenchy- mal host cells. Immune T cells of the host recognize the infected lymphoblasts and try to kill them. The killed lymphoblasts release the pathogen in its piroplasma stage. The piroplasmas enter red blood cells and upon tick bites of the host enter the ticks’ gut, where the piroplasmas convert into sporozoites; the sporozoites will infect the mammalian hosts. The African East Coast fever endemic in cattle (Faculty of Veterinary Science, University of Zimbabwe, Harare. Assistance to Veterinary Service of Zambia. Control of East Coast Fever in Zambia. Control Strategy for theileriosis in Rwanda. Centre for Ticks and Tick-borne Diseases in Malawi. ITM Antwerp Annual Report 2002 D. Geysen http://www.itg.be/internet/ jaarverslag02/en/animalhealth.html.

Life Cycle of Malaria Plasmodium. The analysis of plasmodia mitochondrial gen- omes indicates that human ancestors were infected with plasmodia of gorilla origin in median estimate 365,000 years ago; human-adapted plasmodia radiated thereafter. P. malariae might have been the first human malaria pathogen, and P. falciparum is the last most recent acquisition, while human infestation with P. vivax might have originated even more recently from Southeast Asian macaques (Baron JM et al J Mol Evol 2011;75:297–304; Escalante AA et al Proc Natl Acad Sci USA 2005;102:1980–5; Sabbatini et al Infez Med 2010;18:56–74). The P. falciparum genome harbors a phage integrase-like domain referred to as Pf-Int atv locus Mal13P1.42. Pf-Int is a tyrosine recombinase; the mRNA encoded enzyme is a 490 aa polypeptide. The enzyme is not essential for the life cycle of the plasmodium, but it contributes to its genetic diversity and virulence (Ghorbal M et al PLoS One 2012;7(10):e46507). Targeting the ubiquitin/proteasome system kills the plasmodia (Chung DW & Le Roch KG Infect Disord Drug Targets 2010;10:158–164). The proteasome inhibitors bortezomib and carfilzomib kill the human myeloma cell (Jurczyszyn A et al Contemp Oncol (Poznan) 2014;18:17–21).

Pinealoma. The circadian rhythms of the pineal gland and their ancient beginnings, and their oncologic connotations, are present in the pinealoma. This neuroendocrine organ receives its adrenergic innervations from the hypothalamic suprachiasmatic 592 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia nucleus. Peripheral photosensitive cells (some of them in the retina) provide input to the suprachiasmatic nucleus (Hafner et al PLoS Comput Biol 2012;8(3): e1002419. Parenchymal cells of the gland produce from serotonin the nocturnal hormone melatonin. Other constituents are germ cells and neuroectodermal cells. All cellular elements are synchronized by the circadian rhythm. Pineal gland tumors are of parenchymal, germ cell, and neuroectodermal histopathology. Tumors may de-differentiate into pineoblastomas, anaplastic xanthoastrocytomas or papillary cancers. All pinealomas are interconnected with the clock genes of the circadian rhythm. Long noncoding RNAs are metabolically and transcriptionally extremely active. Leading genes are for proteins BMAL (brain and muscle Arnt-like), Clock, Cry and PER (circadian molecular clocks; cryptochromes; period), CREB/ETS (cAMP-response element-bindig protein; E-twentysix retroviral proto-oncogene), c-Myc at 17q (myelocytosis), CaMP/CaKM (calcium/calmodulin-dependent protein kinase), Wee (small), cyclin D cell circle genes (Coon SL et al Proc Natl Acad Sci USA 2012;109:13319–13324; Kees UR et al Cancer Cytogenet 1998;100:159– 164; Kelleher FC et al Cancer Lett 2014;342:9–18; Tovin A et al PLoS Genet 2012;8(12):e1003116.

Neurospora crassa, operates active CREB proteins (vide supra). Superoxide anions through protein phosphatase 2 activate the positive elements of the circadian clock (Gyöngyösi N et al Free Radic Biol Med 2013;58:134–143).The signalosome integrity is essential for hyphal growth. The circadian clock activates the MAPK/ERK (MAK) pathway; it induces robust activation of genes ccg (clock-controlled genes) and mitochondrial gene U07465 (Bennett LD et al Eukaryot Cell 2013;12:59–69; Zhou Z et al PLoS 2012;8(5):e1002712). The pro- tein arginine methyl transferase PRMT in a cell survival pathway protects against oxidative stress (Feldman D et al PLoS One 2013;8(11):e80756). The CaMK proteins phosphorylate frq (frequency), thus accelerating cell growth (Gooch VD et al J Biol Rhythms 2014;29:38–48; Yang Y et al J Biol Chem 2001;276:41064– 41072).The Δcamk-2 mutant CaKM protein remained active in oxidative stress and exhibited thermotolerance. The Δcamk-1,3,4 mutant genes reduced growth rate and hyphal growth and failed to protect against oxidative stress (Kumar R & Tamuli R Arch Mikrobiol 2014;196:295–305; Yang Y et al J Biol Chem 2001;276:41064– 41072). A genome-wide characterization of blue-light-regulated genes of N. crassa is available (Wu C et al G3 Bethesda 2914;4:1731–1745). The N. crassa genes encode kinases for the phosphorylation of amino acids serine, threonine, tyrosin in order to activate proteins; and phosphatases to deactivate proteins by removal of the phosphate groups (dephosphorylation). The class 2 phosphatases (PP2A) dephos- phorylate, thus inactivate MAPK. Loss-of function-mutated PP2A phosphatases allow MAPK overactivity to its constitutive expression. Hyphal overgrowth and hyphal cell fusions follow. The proliferating hyphae fail to respond with cessation of growth to the inhibitory chemical butyl-hydroxy-peroxide (t-BuOOH, Sigma) (Bennett LD et al Eukaryot Cell 2013;12:59–69; Ghosh A et al G3 Bethesda 2014;4:349–365). Response to the light-induced circadian rhythm activates MAPK. Recently reviewed (Sinkovics JG Europ J Microbiol Immunol 2015; 5:25–43). Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 593

Comment. The human CaKMs promote cancer cell (breast, endometrium) growth and are targeted for therapy (Bitschgi A et al Proc Natl Acad Sci USA 2013;110: E1026–1034; Takai N et al Cancer Lett 2009;277:235–243).The Neurospora gen- ome contains the elements antecedent to protooncogenes (Creb; MAPK) and tumor cell promoter (frq; PRMT; CaKM; Δcamk-2) and tumor suppressor genes (Δcamk-1,3,4). In some human cancers cells (colon cancer; neuroblastoma; myeloid leukemia) some of the CaKM pathways were apoptosis/necroptosis- or differentiation-inducers (Jutong S et al J Clin Invest 2007;117:1412–1421; Kim do Y et al J Agric Food Chem 2009;57:10573–10578; Nomura M et al Cancer Res 2014;74:1056–1066). Pineal region masses: differential diagnosis (Smirniotopoulos JG et al RadioGraphics 1992; 12: 577). Correlate with circadian rhythm of Neurospora crassa (in Appendix 2 Explanations to the Figures, Figure 63).

Trichomonas. The parabasalian trichomonads enriched their genomes through receptions by horizontal transfers and insertion of prokaryotic genes, prominent among them the GTPase signaling system (Anantharaman V et al Gene 2011;475:63–78). The eukaryotic GTP-binding signal transductions are conducted by ancient monomeric proteins of the Ras superfamily. The enzymes catalyzing GTP to GDP emerged in prokaryota and archaea, and are conserved in eukaryota. The ribbon plots and crystal structures of the GTPases are very well known. The ancestral GTPase MnmE (methylaminomethyl E) was acquired in eukaryotes from a protomitochondrial endosymbiont. The ancestral E. coli Ras-like protein (Era) is present in the Aquifex aeolicus. An ancestral Era might have existed in precellular ribosomes? Chlamydia, Mycobacteria and fungi lost Mnm and Era. In plants and fungi, the Era-related GTPase (Erg) is operational. The human Era homolog ERAL (Era-like) remains located in the mitochondrial matrix. Overexpressed ERAL induces mitochondrial apoptotic death of HeLa cells. Related and conserved GTPases conduct ribosome assembly, cell cycle regulation and stress response. The vast majority of bacteria (over 75% of the species) share 13 GTPases. Many of these GTPases remain conserved in eukaryotes functioning as translation factors, or signal recognition associates. Of translation factors, IF (initiation factors) expand from archaea to human cells. Some of the signal recognition associates remained in chloroplasts, where they mutually activate each other (Verstraeten N et al Microbiol Mol Biol Rev 2011;75:507–542). The prokaryotic MgLA (CH3-galactoside trans- port, L-arabinose) proteins are considered to be the ancestors of their eukaryotic descendants (Notley-McRobb L & Ferenci T Genetics 2000;156:1493–1501; Dong JH et al Gene 2007;396:116–124). N-ras appears to be a derivative of prokaryotic cold-shock domain proteins (Doniger J et al New Biol 1992;4:389–395). Early multicellular eukaryotes with two ecto/endodermal cell layers without meso- derm (N. vectensis, C. intestinalis) operate ancestral GTPase ras genes. Ras family genes are absent in plants and alveolates (P. falciparum). Rho family genes replace them. Rab family genes operate in amebozoans and ciliates. The ras gene-coded monomeric GTP-binding proteins of 181 aa appear in the T. vaginalis (Xu MY et al Biochem Cell Biol 2007;85:239–245). In the human genome 167 ras superfamily sequences are operational. Some basic science reviewers omitted all oncogenic 594 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia connotations. For the of human Ras superfamily, see Figure 3 of the article (Rojas AM et al J Cell Biol 2012;196;189–205). The Harvey (H) and Kirsten (K) ras sarcoma genes were found in the Moloney murine leukemia/sarcoma retrovirus strains passaged in rats: ras rat sarcoma. The low branching unicellular eukaryote Trichomonas in its very large 160 mb genome operates ancestral Ras subfamily protein-encoding intronless genes (Rsp) (Xu MY et al Biochem Cell Biol 2007;85:239–245). Transfer from its ancient free-living entity to being a parasitic microorganism has come with major genomic changes in the trichomonads: replacement of lost genes by horizontally acquired novel genes. Indeed, tri- chomonads share numerous genes with bacteria, yeast fungi, Entamoeba, Giardia, and the human host. The ras genes are not named in the list of laterally acquired genes (Singh S et al, Bioinformation 2012;8:189–195). The Trichomonas genome harbors three myb (myeloblastosis, avian) transcription factor genes, whose gene-product proteins attach to Myb protein recognition sites (MRE) in its genome. The iron-responsive promoter region of the ap65-1 gene (adhesion protein, adhesin) is the target of the Myb proteins. Cytoadherence is essential for the pathogenicity and virulence of trichomonas cells. The adhesion DBD (DNA-binding domain) protein is a pyruvate:ferredoxin oxidoreductase homologous to a similar gene of Entamoeba histolytica (Moreno-Brito V Cell Microbiol 2005;7:245–58). The tri- chomonas Myb3 protein displays 83% aa identity with the human c-Myb. Its binding to DNA is similar to that of the FOXO (forkhead box) protein (Wei S-Y et al Nucleic Acids Res 2012;40:449–460). The most widely spread ras proto-oncogenes/oncoproteins served in cell survival pathways of bacteria and archaea before moving into eukaryotes. In multicellular hosts, the cell survival pathways have become proto-oncogenic transformators. In unicellular eukaryotes (amoeba; ciliates; trichomonas) appear the ancestral myb/Myb pathways not known to be constitutively expressed, but essential for virulence. Trichomonas may coexist with pathogenic viruses (HPV, BK polyoma virus, XMRV, the xenotropic murine leukemia virus-related virus, HIV-1), in the human female and male genitourinary tract (including the prostate), and remains a suspect for the initiation of malignant transformation.

The Trichomonas genome is large, constantly active due to multiple gene acqui- sitions; readily trans-speciates the cell (amoeboid to flagellar, to and from); carries the ancestors of several human proto-oncogenes, primarily myb/Myb; and is loaded with pseudogenes (1354 annotated pseudogenes). The total gene numbers are between 46,000 to 60,000 in six chromosomes. Transposable elements make up 45%, pseudogenes 5% of the genome. There are 668 ribosomal rRNAs and 468 transfer tRNAs; snRNAs, snoRNAs, miRNAs, long non-coding lncRNAs are all operational in the nuclear spliceosome and the cytoplasmic AGO/Dicer complex. Many lncRNAs reveal significant sequence similarities to genomic loci annotated as protein-coding genes. Thus, these lncRNAs are descendant pseudogenes. The fact that prokaryotes and archaea do not possess spliceosomes indicates that these organs appeared first in eukaryotes. Yet the Trichomonas introns appear to support the “introns first” hypothesis. In opposition, eukaryotic introns derive from the Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 595 presumably intron-rich LECA (last eukaryotic common ancestor) (Rogozin IB et al Biol Direct 2012;7:11; Vaňáčková S et al Proc Natl Acad Sci USA 2005;102:4430– 4435; Woehle C et al BMC Genomics 2014;15:906). Pseudogenes persist as copies of ancestral protein-coding genes deriving from gene duplications or retrotrans- positions of mRNA sequences. Thus, pseudogenes may yield endogenous miRNAs to inhibit the mRNA of a related fully operational gene; they may be transcribed into dominant-negative polypeptides. All in these, the trichomonas genome is similar to an oncogenome. In this last aspect, human cancer cells accumulate and utilize pseudogenes for their own promotion. Prominent example is the stem cell proto-oncogene oct/Oct4 encoded from gene POU5F1 (Pit-1, pituitary; Oct1,2; Caenorhabditis unc, uncoordinated) at chromosome 6p21.3, and its numerous pseudogenes in glioblastoma and hepatocellular carcinoma, where they upregulate the PI3K/Akt pathway (Zhao QW et al Oncol Rep 2015;33:1521–1529). In prostate cancer, both ETS-positive and ETS-negative cells express the gene CXADR, but only ETS-negative cancer cells express its pseudogene CXADR-Ψ (retrovirus Ets/E26; coxsackie virus adenovirus receptor, CAR). In breast cancer, the ATP8A2 (adenosinetriphosphate) gene and its pseudogene ATP8A2Ψ compete. The pseudogene-expressor tumor cells gain replication and migration advantage (Kalyanja-Subaram S et al Cell 2012;149:1622–1634). Thus, the Trichomonas pseudogenes may also serve (not yet documented) as factors of increased virulence. lllustrations can be found at Science Photo Library Trichomonas vaginalis_para- sites_computer_artwork_z100202.jp. The avian retrovirus myeloblastosis E26 (Ets E twentysix) incorporated its host’s c-myb gene. The human c-myb oncogene/Myb oncoprotein is expressed in HeLa cells, as shown by staining with fluorescent polyclonal IgG antibody ab167537 of ABCAM 888-7722226.

Epithelial-to-Mesenchymal Transition. Tumor cells may recruit fibroblast-, or monocyte-Mϕ-like cells to fuse with them and thus assume a highly mobile slick elongated shape. Accordingly, the cytoskeleton is transformed. The cytoplasm is vimentin-positive. These tumor cells locally invade tissues, or enter into lymph vessel or vascular endothelial cells, into the lumen of lymphatic and blood vessels, in order to be able to travel by the lymph or blood stream and settle at, and colonize, distant sites (Dittmar T & Zänker KS “Cell Fusion in Health and Disease. II. Cell Fusion in Disease”, 2011. Advances in Experimental Medicine and Biology, 2010; 714. Springer Dordrecht Heidelberg London New York. Sinkovics JG Int J Oncol 2009;35:441–465). The biological meaning (metastasis formation), early and reli- able recognition and the value of immediate treatment for circulating tumor cells (CTC) are under extensive investigation Epithelioid breast cancer cells leave the tumor mass, convert into elongated mesenchymal-like cells to enter blood vessels (Karabacak NM et al Nat Protoc 2014;9:694–710; Ma X et al Tumour Biol 2014;35:5551–5560; Shao C et al PLoS One 2014;9(2):e88967). 596 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia

Oxytricha fallax and trifallax. These large (1 mm) unicellular ciliates ingest nutri- ents in food vacuoles (a “digestive tract”; osmoregulate their cytoplasm with con- tractile vacuoles (a kidney-like “urinary tract”), and evacuate waste through their “cytoproct”. In their macronucleus they carry over 25 million minichromosomes (fragmented chromosomes) and over 30,000 genes. Massive apoptosis occurs when post-conjugation the germline micronucleus (Mic) transforms (“differentiates”) into the somatic macronucleus (Mac): transposons and non-coding DNA sequences are eliminated. Transposases excise and do not reinsert the transposons. The fragmented genome is precisely reconstructed based on ssRNA copies of each minichromosome gene. The oxytricha genomes, cap their chromosomes’ ends after each binary fission of vegetative clones (karyonides), or conjugation. Prior fission, the Mac chromo- somes end-reduplicate. Telomeres are re-caped. Thus, they experience no double break repair, or breakage-fusion-bridge catastrophes (first described by Barbara Mc McClintock in 1938). The G-rich 20 bp sequence telomeres are de novo polymerized, templated by an RNA component, and primed by a 3'OH end. Telomeres maintained in full length prevent senescence of the cell (Nowacki M et al Nature 2007;451:153–158; Science 2009;324:935–938; Williams KR et al BMC Genet 2002;3:16). The oxytricha mitochondrial genes are arranged in two tran- scriptional directions (in contrast to paramecia mitochondrial genes arranged in just one transcriptional direction). The oxytricha mt genome contains a large linear plasmid. These mitochondria have recently acquired this plasmid, because its ORFs have not as yet engage in the tryptophan codon usage (the tryptophan bias). The mt genome encodes 11 tRNA genes, more than other ciliates’. It operates both RNA and DNA polymerases; one RNA polymerase is of bacteriophage-derivation. Thus, the ancient proteobacteria before became mitochondria harbored phages. Others are distantly related to DNA polymerases of the amoebozoan D. discoideum, or of the oomycete Phytophthora (Table XXX). The mitochondrial genes are capped by 35 bp telomeres (Swart EC et al Genome Biol Evol 2012;4:136–154).

Pluricellular Advancement of a Cancer Cell Armada. By morphological appearance, the crawling locomotion of cancer cells imitates that of the amoeba. A pseudopod protrudes first and attaches to the ground; the body elongates; the rear of the cell is retracted. The malleable cytoplasm can negotiate narrow spaces between fibers, but the nucleus retains its firm substance, except for some limited elongation. The cancer cell nuclei are usually larger (7 μm2 cross section) than that of normal cells (T lymphocyte, 4 μm2; neutrophil leukocyte, 2 μm2). Extracellular collagen matrix can be dissolved by metalloproteinases. The sedentary cuboid cancer cell restructures its cytoskeleton, becomes sarcomatoid and mobile and activates the descendants of the native amoebal genes, that were in use for cell locomotion since ancient times (see text). What is not available for the solitary amoeba, the colonies of cancer cell have acquired: multicellular mechanocoupling moving cell sheets forward in a coordi- nation arranged between leader and follower cells, in which the leader cell applies a traction force to the follower cells. The Rho GTPase-driven leader cell is able to drag follower cells by peripheral pluricellular actin-myosin cables. Multicellular migra- tion follows and results in collective cancer cell invasion (Alexander S et al Curr Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 597

Opin Cell Biol 2013;25:659–671; Friedl P et al Nat Cell Biol 2014;16:208–210; Reffay M et al Nat Cell Biol 2014;16:217–223; Wolf K et al J Cell Biol 2013;201:1069–1084). The pseudopods of Amoeba proteus: one pseudopod forms two arches and three points of contact with the substratum (Cameron I, Rinaldi RA, Kirby G, Davidson D. University Texas Health Science Center, Department Cellular Structural Biology; Southwest Research Institute, San Antonio, TX; University Colima, Colima, Mexico; Tulane University School Medicine, Department Structural Cellular Biology, New Orleans Louisiana. Cell Biology International 2007;31:759–776). Invasive human breast cancer cell driven by protein tTG (tissue transglutaminase, vide infra) chaperoned by Hsp70 protrudes its leading edge. The tTG protein protect cells from serum-starvation-induced apoptosis, and activates c-Scr and PI3K/mTOR complex proto-oncogenes (Boroughs LK, Antonyak MA, Cerione RA. Johnson JL Cornell University, Department Molecular Medicine, Ithaca, NY. J Biol Chemistry 2014;289:10115–10125).

Tissue Transglutaminase (tTG). tTGs form cross-linking isopeptide bonds between two proteins in embryogenesis, apoptosis, angiogenesis, and cancer. tTGs evolved through unicellular eukaryotes, crustaceans to vertebrate mammalians, incl Homo. Increased levels occur in malignantly transformed mammalian vertebrate cells: adenocarcinomas of esophagus, pancreas, kidney, prostate; melanoma (Ashour AA et al J Cell Mol Med 2014;18:2235–2251; Erdem S et al World J Urology 2014 Dec 17 SpringerLink PMID 25515319; Han AL et al Eur J Cancer 2014;50:1685–1696; Kim HJ et al Biomol Ther 2014;22:207–212; Leicht DT et al J Thorac Oncol 2014;9:872–881). In clear cell carcinoma of the kidney, strong TG2 expression correlated with metastatic disease and increased mortality (Park MJ et al J Pathol Transl Med 2015;49:37–43). tTG is a cell survival promoter, as it acts as an anti-apoptotic agent and PI3K/mTOR complex activator (Boroughs KL et al J Biol Chem 2014;289:10115–10125). tTG inhibitors suppress cancer cell growth (Ku BM et al J Cancer Res Clin Oncol 2014;140:757–767; Yakubov B PLoS One 2014;90 (2):e89285). The slime mold Physarum polycephalum pertains the life style of unicellular eukaryotes, such as amoeba and plasmodia. It possesses mammalian type tTGs, also related to the tTGs of Ciona, crustaceans, Drosophila, Caenorhabditis, fishes, and mammals, including Homo (Wada F et al Eur J Biochem 2002;269:3451– 3460). Comment: Another example of a life survival pathway operational in a unicellular eukaryote, that has become a human proto-oncogene.

Neuroblastoma (NB). Tumor suppressor gene and immunotherapy for NB. There is an extensive discussion in the text on biological measures that are able to induce differentiation in neuroblastoma cells. Toward tumor antigen ganglioside GD2-redirected, chimeric antigen receptor-armed (CAR) (vide supra), immune T cells, synergized with oncolytic adenovirus Ad5Δ24 expressing chemokine RANTES (regulated on activation normal T cells expressed and secreted; CCL5 from chromosome 17q1) in solid tumor immunotherapy (Nishio N et al Cancer Res 2014;74:5195–5205). Vα24 anti-GD2-expressor CAR-armed invariant natural killer cells (NKT) attacked NB tumors, thus extending patients’ survival without 598 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia inducing GvH disease (Heczey A et al Discov Med 2013;16:287–294; Blood 2014;124:2824–2833). Advancing NB in patients was due to the elimination of the FOXP1 (forkhead box) tumor suppressor gene in chromosome 3p14.1. The loss was not due to potentially reversible CpG gene hypermethylation. In tumor cell lines, doxycycline could induce re-expression of FOXP1 gene. These, and FOXP1-transgenic NB cells, ceased their growth and underwent either apoptosis or a neuronal differentiation pathways (Ackerman S et al BMC Cancer 2014;14(1):840. doi:10.1186/1471-2407-14-840). New monoclonal antibodies, new vaccines and adoptive transfer of immune T cells or NK cells (even allogeneic from parents or siblings) are in the investigational use (Croce M et al Immunotherapy 2015;7:285– 300; Seidel D et al Department Pediatric Hematology Oncology, University Medicine Greifswald, Germany. Cancer Immunol Immunother 2015; Epub PMID 25711293 SpringerLink). The NK cell line NK-92-scFV(ch14.18)-zeta carries the genetically engineered chimeric antigen receptor (CAR) specific to GD2 (disialo- ganglioside). It attacks and lyses GD2-expressor drug-resistant NB-cells. MYCN-amplified tumor-bearing patients should receive immunotherapy in addition to standard surgery, radio-chemotherapy (Csanády M et al Int Pediatr Otorhinolaryngol 2014;78:2103–2106). Neuroblastoma cells may be induced to re-differentiate. Comment. Gene therapy aimed at the oncogene, and immunotherapy aimed at the oncoprotein are to be combined. Some malignantly transformed tumor cells (acute promyelocytic leukemia, PML cells) carrying fusion oncoprotein with retinoic acid receptor (RAR) at t(15;17, or losing tumor suppressor genes (in NB, FOXP1), may recover from the stages of “malignant transformation” and resume their service as members of organized cell communities. Unexplained re-differentiation of chondrosarcoma cells in vitro in co-existence with lymphocytes of a healthy donor was observed (Sinkovics JG Pathol Oncol Res 2004;10:174– 187). Recently reviewed (Sinkovics JG Europ J Microbiol Immunol 2015;5:25–43).

Accelerated Life Style of the Ctenophores. Prior to the bilaterians, there existed four clades of metazoans: 1 Cnidaria corals, sea anemones (the Nematostella; Hydra/Hydractinia), Medusozoa jellyfish). 2 Porifera sponges, (Amphimedon; Suberites). 3 Placozoans (Trichoplax). 4 Ctenophores represented by the predatory omnivore Mnemiopsis leidyi (warty sea walnut) and Pleurobrachia pileus, the comb jelly. The ctenophores’ outer epidermal layer is separated by mesoglea from the inner gastrodermal layer. Mesenchymal smooth muscles are operational in the body wall, tentacles (the specialized colloblasts for capturing prey), and the pharynx. For swimming, there are eight longitudinal rows of cilia alongside the body. The cte- nophore cydippid larva is a free-swimming entity. The mature adult is a her- maphrodite harboring both ova and sperms for self-fertilization. Freshly shed eggs are immediately fertilized. The ctenophores possess photocells with opsins medi- ating light detection, operate TGFβ, homeodomain Hox and Frizzled Wnt path- ways, and a neurosensory system (Feuda R et al Genome Biol Evol 2014;6:1954– 1971; Moroz LL et al Nature 2014;510:109–114; Pang K et al EvoDevo 2010;1:10; Ryan JF et al Science 2013;342(6164):1342592; EvoDevo 2010;1:9; Biol Direct 2007;2:37), but operate a much premature microRNA system (Maxwell EK et al Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 599

BMC Genomics 2012;13:714; Moran Y et al Mol Biol Evol 2013;30:2541–2552). The ctenophores’ nervous system functions without serotonin (in contrast to that of the cnidarians). It consists of a subepithelial net, neurons in the mesoglea and innervation of the tentacles (Moroz LL et al Nature 2014;519:109–114). Ctenophores are usually captured in the Eel Pond of Woods Hole MA for genomic, metabolic, and innate immunological studies to be conducted at Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL; Rice University, Houston, TX, and at many other sites worldwide. From the western Atlantic Ocean, this extremely vigorous predator species is rapidly invading the Black, Caspian and North Seas (Ryan JF et al Science 2013;342/6164. doi:10.1126/1242592).

The ctenophore genome acquired several of its mitochondrial genes; especially tRNAs had been depleted; thus the M. leidyi mitochondria are small (10 kb, 10,326 bp, 33 ORF). Some (34) mt ribosomal proteins of M.leidyi are homologous to human MRPs, what is half of what A. queenslandica (61) and N. vectensis (62) possess. Just like the alga, Chlamydomonas reinhardtii, M.leidyi also trans- ferred its mitochondrial gene atp (adenosine triphosphate) to its nucleus. This continued to be like this in Cnidaria, Placozoa, Bilateria, and all Eumetazoa (in- cluding Homo). The mitochondrial atp genes were retained in the mitochondria in fungi, choanoflagellates and poriferan spongi (Pett W et al Mitochondrial DNA 2011;22:130–142).

M. leidyi operates some 16,545 protein-coding genes. Among the encoded proteins, there are glycoprotein hormones of the cystine knot growth factor protein super- family .These are the TGFβ; nerve growth factor, platelet-derived growth factor (without platelets), bone morphogenetic protein antagonists, which are the prede- cessors of the bursicons of insects, gremlin, neuroblastoma suppressor of tumori- genicity, and the Wnt-activator and BMP/TGFβ-inhibitor norrin (without bones). Norrin is one of the ligands to the LGR (leucine-rich repeat-containing G protein-coupled receptor) (Deng C et al J Cell Sci 2013;126:20602–20608. Roch GJ & Sherwood NM Genome Biol Evol 2014;6:1466–1479. Xu S et al PLoS Biol 2012;10(30;E10011286). The ctenophore M. leidyi expresses the LIM homeobox proteins (Table XVI) (Simmons DK et al EvoDevo 2012;3:2. doi:10. 1186/2014-9139-3-2). Cnidarians (N. vectensis; H. magnipapillata), ctenophores, and the placozoan Trichoplax adhaerens possess the ribonuclease family III Dicers operating in the RISC (RNA-induced silencing complex), but choanoflagellates (Monosiga brevicollis) are devoid of the system (Gao Z et al PLoS One 2014;9(4): e95350). The presence of mesenchymal genes (fibroblast growth factor, notch, hedgehog, nodal) is expected on account of the smooth muscles, but these are not detectable; the gli gene is present, but not the mesenchymal cells, rather the nerve cells express it. The hedgehog Hh and JAK/STAT pathways are not operational (Ryan JF Science 2013;342:1242502). Instead, the Wnt pathway with Frizzled proteins is highly upregulated, as it is acting without its customary inhibitors. Some introns of the Wnt genes are conserved in number, size and location up to the mammalian Wnt genes. Wnt ligands are accepted by the Frizzled (Fz) and LRP5/6 600 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia

(lipoprotein receptor-related protein), and Dishevelled (Dvl/Dsh) receptors. Thus GSK-3 (glycogen synthase kinase) could be inhibited through phosphorylation by Dvl/Dsh. Failure of GSK-3 to phosphorylate β-catenin allows for the accumulation of the latter in the cytoplasm and for its eventual transfer into the nucleus, there, for the activation of the targeted tcfTCF/lefLEF gene complex, whose gene product proteins activate promoter DNAs of numerous other genes. The descendants of the tcfTCF/lefLEF genes and their protein products will often form oncogenic path- ways in vertebrate mammalian (human) cells. This very same cascade is that of a constitutive oncogenic pathway in many human cancers (especially adenocarci- nomas). The ctenophores’“β-catenin-destructive complex” is deficient, in that it lacks axin, and its suppressor gene APC (adenomatous polyposis coli) is defective in expressing all its domains. The “destructive complex” in malignantly trans- formed human cells is notoriously rendered inactive due to loss-of-function mutations or deletions of its components (axin, APC, GSK). This is naturally so in ctenophores (M. leidyi). Further, the physiological inhibitors of the canonical Wnt pathway working in mammalian cells, are absent in ctenophore cells. These are primarily the dickkopf (drosophila) gene product proteins, Wnt inhibitory factor WIF (and Cerberus/CER, present only in vertebrates). The secreted frizzle-related protein MlSfrp lacks the netrin domain (Jager M et al PLoS One 2013;8(12): e84363, Pang K et al EvoDevo 2010;1:10. doi:10.1186/2014-9130-1-10; Schenkelaars Q et al Evol Dev 2015;17:160–169). In addition to its naturally overactive Wnt pathway, the ctenophore genome expresses several sox/Sox genes and high mobility group gene-product proteins, from the larval cydippid stage on. The Sox proteins are encoded by the regular mRNA pathway and are subject to miRNA/siRBA control. The mammalian sox genes form five groups (BCDEF). The ancestors of the BCEF sox genes are present in the ctenophore genome (M. leidyi; P. pileus). Some of these sox genes are shared with the Hydra and the Choanoflagellata (Schnitzler CE et al EvoDevo 2014;5:15). Comment: Genomic and protein pathways (wnt/Wnt; sox/Sox HMGP), that will become mammalian vertebrate proto-oncogenes/oncoproteins, are physiologically hyperactive (“upreg- ulated”) in the ctenophore genomes. Their suppressors are non-functional, as they are eliminated alike in the “malignantly transformed” cells of mammalian vertebrate (human) hosts. The ctenophore cells are physiologically driven by the predecessors of the proto-oncogenes Wnt/β-catenin (Sinkovics JG Europ J Microbiol Immunol 2015;5:25–43; Sinkovics JG Int J Oncology 2015;47:1211–1229).

The Evolution of Ribosomes. This author would like to further promote the idea that precellular ribozyme-armed, functional rRNA-containing precellular ribosomes existed on, and populated the ancient Earth. Thus, ribonucleoproteins (RNP) were synthesized with substantial genetic errors. If so, these structures might have syn- thesized the successors of the , and provided the platform on which pre- cellular viruses could have existed and grow by fusion. JH Matthaei and MW Nirenberg worked well with extracellular E. coli ribosomes in the late 1950s, early 1960s (Proc Natl Acad Sci USA 1961;47:1580–1586; 1588–1602). However, the ribosome assembly in bacteria (E. coli) requires RNA helicases (Peil L et al FEBS J Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 601

2008;275:3772–3782). Nevertheless, ribosomal assembly in vitro is slow, but possible (Shajani Z et al Annu Rev Biochem 2011;80:501–526). The in vitro 30S ribosome assembly cofactors are recognized (20 cofactors in bacteria), including rRNA-binding proteins, such as essential GTPases. Figure 1 of the cited article shows the Nomura assembly map. In the 30S , the role of Rims (RimM, RimP, ribosome maturation factor) has been clarified. The kinetic interactions of the Era (E. coli ras-like protein, see Trichomonas) with 16S rRNA and nucleotide cofactor GTP could be determined. The final ribosome biogenesis is depicted in Figure 4 of the article (Brunner AE et al J Mol Biol 2010;398:1–7). When singled out cells of multicellular hosts undergoing the process of the so-called malignant transformation in the form of de-differentiation to their ancestral life forms, could the excessive release of RNA-loaded exosomes be a manifestation of that process? Could the exosomes be viewed as the extant replicas of their predecessors, the precellular ribosomes? (Sinkovics JG Europ J Microbiol Immunol 2015;5:25–43). In ribosomal 60S subunits stalled translation recruits a ribosome quality control com- plex (RQC). In turn, RQC enlists alanine- and threonine- charged tRNAs. Consequentially, tRNAs elongate the nascent chain independently from mRNA. The incompletely synthesized nascent chains are degraded by ubiquitylation (Shen PS et al Science 2015;347:75–78). Comment: Are the natural ribosomes punctilious?

Problems with unexplained abbreviations. Lenghty complicated nomenclature is commonly cited in abbreviated form; the abbreviations often remain unexplained and not spelled out. In this Text, Legends, Tables and Appendix the abbreviations received extraordinary attention: they are often spelled out repeatedly. An exem- plary article deserves to be cited here for its clarity of style and for its elaborate listing of spelled out abbreviations: Futosi K, Fodor Sz, Mócsai A: Neutrophil cell surface receptors and their intracellular pathways (Int Immunopharmacol 2013;17:638–650). An extensive alphabetical list of abbrevia- tion for oncology terminology is printed in Weinberg RA: The Biology of Cancer. 2nd Ed Garland Science, New York & London, 2014. The volume publishes a very large number of superb illustrations in color.

A Contrast. Cancer chemotherapy. In the years 1960–70s combination chemotherapy has become the officially accepted, established, and firmly imple- mented standard treatment of leukemias and metastatic cancers. Non-specific immunization primarily with BCG was accepted (by now discontinued), but tumor-specific immunotherapy received practically no support. The concepts and aim of high dose combination chemotherapy were that the higher the dosage was raised, the better the chances will be to kill the last cancer cell, thus resulting in cure of the disease. Without recognized specific cancer antigens, attempts at immunizing against cancer were considered to be futile (but the general immune state of the patients stimulated by coryne-, or mycobacterial vaccines was allowed). This concept was developed by Georges Mathé at Gustave Roussy’s in Villejuif, France (le nécrologie; décédé 2010; in Acta Microbiol Immunol Hung 2010;57:322) and pro- moted at the National Institutes of Health / National Cancer Institute in Bethesda MD. 602 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia

It was most prominently practiced at the Department of Developmental Therapeutics (DDT) at M.D. Anderson Hospital. The DDT was a detachment of the NIH/NCI, and as such received the highest support from the NCI and from the Pharmaceutical Industry. Truly, partial and complete remissions for the first time were induced by combination chemotherapy in patients with leukemias and solid tumors. However, not all patients receiving the same treatment responded. The actual cure rate remained low, due to frequent relapses. Toxic side effects (severe protracted nausea; leuko- penic septic infections, often fatal septic shock; hemorrhagic events; neurological and endocrine side effects; retarded mentation) were slowly and steadily diminished by new combinations, platelet transfusions and anti-nausea medications. Intensified general medical and nursing care, and specialized attendance allowed the administration of full dosage chemotherapy as calculated in the protocols. Exceptional patients in durable complete remission with minimal residual side effects were prominently publicized. Private practice medical oncology clinics flourished on the high profits of combination chemotherapy. The efforts to cure leukemia and metastatic cancers culminated in the STAMP program initiated by the former head of the DDT, Emil Frei III. The STAMP regimen consisted of very large (triple) dosages of combination chemotherapy followed by “stem cell rescue” (autotransplants of stem cells collected from the circulating blood, or the bone marrow). Various aspects of the natural biology of the cancer cell were either unknown or ignored. The unusual natural biological features of the cancer cell consisted of its extraordinary radiation- and chemotherapy-resistance, manifesting in the form of recurrences after periods of “tumor dormancy” (now autophagy); the ability to circulate in the blood or lymph; to emit exosomes; to circulate its DNA; to recruit-supporting mesenchymal cells from the bone marrow or in its microenvironment; and to overcome immune reactions of the host, if any. The fact that the cancer-bearing patient generated some immune reactions against the autologous tumor was recognized. Some immunizations with irradiated tumor cells could be conducted, but were abandoned as ineffective. Vaccinations with viral oncolysates, in which a non-self viral antigen fused with a self cell surface oncoprotein, could have immunized the patient, but these projects received no grant support (because the targeted tumor antigen was not specifically identified). Instead, the highly upheld curative aim of combination chemotherapy was persuasively promoted (because it was known how it damaged the DNA in general, but without knowing exactly which oncogenes were targeted). The possi- bility that treatment-acquired endocrine or central and peripheral neurological defi- ciencies (especially in children and adolescents) may remain permanent, was listed among collateral damages acceptable for the cure. However, the end results of the STAMP program revealed that it was much more toxic, but not more effective than the previous standard dosage chemotherapy. The STAMP program was discontinued (Berry DA et al J Clin Oncol 2011; 29:3214–3223). In addition to its failure to improve treatment results (overall survival), a faked STAMP-like program was subjected to major falsifications of its results for the better: a most dismal event in the history of medical oncology (Bezwoda WR Eur J Cancer Care 1997;6:10–15; Bezwoda W et al Oncology 1990;47:4–8. Vickers A & Christos P. Bezwoda: “ev- idence of fabrication” in original article (J Clin Oncol 2000;15:2933). Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 603

Cancer Immunotherapy. Clifton Dexter Howe, the Head of the Department of Medicine (DM) at M.D. Anderson Hospital, was an open opponent of high dose combination chemotherapy (in the era when supportive measures were non-existent); eventually, he was demoted into an administrative position. This author (JGS) serving as a medical oncologist at the DM of M.D. Anderson Hospital (1959; 1962–1980) received no NCI support for human cancer immunotherapy, or virotherapy; he treated his patients at the Melanoma-Sarcoma Clinics and In-patient Service with standard full dose combination chemotherapy by approved institu- tional protocols. His proposal of immunotherapy with viral oncolysates was based on the idea, that viral structural, capsid or membrane proteins fuse with tumor cell membrane proteins at the egress of the viral particle, and that these fused proteins are “non-self” to the host, thus are immunogenic. In the treated subjects, viral oncolysis would be followed by anti-cancer immunization. Viral oncolysates induced strong anti-cancer immunity in mice. Influenza virus particles replicating in, and thus lysing cancer cells, would construct such fused, and thus immunogenic antigens. However, such fused and thus immunogenic proteins were not actually produced in the author’s laboratory. Their existence was documented elsewhere (in the literature). It remains a solid fact; so is the fusion of the influenza viral hemagglutinin with cellular sialic acid receptors expressed in the cell membrane (Hamilton BS et al Viruses 2012;4:1144–1168). The viral oncolysate immunotherapy protocol was approved by the M.D. Anderson Hospital Institutional Surveillance Committee in 1967; it was funded from private donations (not by the NCI); and its course was reported in the biannual M.D. Anderson Hospital’s Research Reports (as summarized in Sinkovics JG & Horvath JC Archives Immunologiae Therapiae Experimentalis Birkhäuser Verlag, /Switzerland 2008;56:3–59). This author recognized that large granular non-specific (later NK cells), and small compact specific (later immune T cells) lymphocytes are naturally generated against autologous tumor cells in tumor-bearing patients, and that these reactions quantitatively increased in patients receiving viral oncolysate vaccine. In the pre-IL-2 era, large live populations of these lymphocytes for treatment could not be produced and provided. Later in the 1990s in academic medicine-affiliated private practice of medical oncology at St. Joseph’s Hospital in Tampa, FL, this author with Joseph C. Horvath could apply viral oncolysate immunotherapy with standard combination chemotherapy given in full dosage, and use autologous immune lymphocyte infusions prepared in IL-2-containing liquid media for the treatment of metastatic melanoma. This author declined participation in any STAMP-like high dose chemotherapy programs, which were installed also in Tampa by private practitioners of medical oncology, and was carried out at St. Joseph’s Hospital under the egis of a nationally approved private company (dis- continued in total failure after a few years).

After many decades of trials and errors, the faculties of virotherapy and immunotherapy of cancer have by now succeeded in proving their extraordinary value in the treatment of lymphomas,-leukemias and certain metastatic cancers (especially melanoma). The basic elementary knowledge that the host recognizes and 604 Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia attempts the rejection of incipient cancers by antibody- and lymphocyte-mediated reactions has been well recognized and elaborated on, but without the practical means of effective therapeutic translation of this knowledge into practice (Harris JE & Sinkovics JG. The Immunology of Malignant Disease, 2nd ed Mosby, St. Louis, 1976; Sinkovics JG Cytolytic Immune Lymphocytes. Schenk Buchverlag, Passau-Budapest, 2008; Sinkovics JG Acta Microbiol Immunol Hung 2010;57:253– 347; Sinkovics JG & Horvath JC Acta Microbiol Immunol Hung 2006;53:367–419; Arch Immunol Ther Exper 2008;56:S1–59). Monoclonal antibodies were the first agents which could suppress oncoproteins. Rituximab and trastuzumab were the flagships followed by even more effective new agents. They combine well with standard dosage chemotherapy. The CHOP-R regimen is highly effective (probably curative) in diffuse B cell and other malignant lymphomas. Pertuzumab and trastu- zumab attack the breast cancer oncoprotein Her2/neu synergistically. Natural oncoprotein-reactive immune T lymphocytes without or with genuinely tumor cell-reactive NK cells extracted from the patient and grown to billion-size populations in IL-2-containing media, upon re-infusion attack and lyse large tumors (primarily melanomas). The National Cancer Institute program of Steven A Rosenberg proved that effectively oncoprotein-reactive immune T cells are mobilized in limited num- bers in patients with cancer. Retrieved from the patient, expanded by lymphokines in vitro, and re-infused, these autologous immune T cells lyse large tumors (but not without failures or relapses). Further, oncoprotein-reactive autologous immune T cells with the genetically engineered T cell receptors CAR induce complete remis- sions of curative effect in patients with lymphomatous malignant tumors (Frigault M et al Cancer Immunol Res 2015;3:356–367). Tumor cell destruction is so extensive and rapid that clinically it manifests in a tumor lysis syndrome with a lymphokine storm ensuing. Tumor lysis syndrome is treatable with rasburicase. IL-6 is the leader of the lymphokine storm. Major participants in the lymphokine storm are IL-2, IL-6, IL-10, TNFα and IFNγ. Monoclonal antibodies tocilizumab or siltuximab promptly neutralize IL-6 with life-saving efficacy. Ipilimumab protects from apoptotic death the CTLA-4+ T lymphocytes: they are ready to attack malignantly transformed melanoma cells. Potentially autoimmune T cells are further withheld by their natural inhibitor PD1 (programmed death). When the PD1 ligand activates receptor PD1, the PD1+ T lymphocyte kills itself in apoptosis. Malignant tumor cells masquerading as self, produce the PD1 ligands excessively, and thus eliminate PD1-expressor, autoimmune-active, T cells from their environment. The mcab pembrolizumab neutralizes the ligand and the PD1+ cell is free to attack the transformed cell; another mcab neutralizing the receptor PD1 (nivolumab), also rescues the T cell from its apoptotic death. At the potential price of some autoimmune reactions (thyroiditis; hypophysitis), a massive destruction of tumor (melanoma; bronchogenic carcinoma) cells ensues (Luke JJ & Ott PA Oncotarget 2015;6:3479–3492; Mahoney KM et al Clin Ther 2015. doi:10.1016/jclinthera.2015.02.018). Intratumoral Newcastle dis- ease virus inoculations (oncolytic viral therapy that was denied research funding at the NIH/NCI in the 1960–70s) combined with CTLA-4 checkpoint blockade mutually intensify the efficacy of each other reactions (Zamarin D et al Sci Transl Med 2014;6(226):2264ra32). Many times what worked in the rodent host, like this Appendix 1*) For Essential Information Very Well Illustrated in Google and Wikipedia 605 experiment, failed in the human host. Nevertheless, clinical trials on human patients with ipilimumab and oncolytic herpesvirus talimogene laherparepvec are ready to go (Clinical Trials.gov; NCT01740297). In metastatic prostate cancer, docetaxel chemotherapy added to androgen-depriving hormonal therapy may be additively effective. The Bavarian Nordic avian poxvirus-based prostate cancer vaccine ril- imogene galvacirepvec glafolivec increased the survival of chemotherapy-naïve patients with metastatic prostate cancer from 18 months to 31 months; and combined with ipilimumab, to 37 months (Report from the 2015 Genitourinary Cancers Symposium, The ASCO POST 2015;6:1, 3–4). A new generation of oncologists rises to catch up with decades of delays that the practice of cancer immunotherapy suffered, a replica of a natural faculty, undeservedly; while high dose combination chemotherapy (utterly alien to the treated host) was favored. Accept, that combi- nation chemotherapy saved and prolonged many lives. It will have to be kept in use as long as it contributes to survival with acceptable and reversible side effects. Targeted chemotherapy, with especially oncoprotein-targeted therapies (small kinase enzyme inhibitor molecules aiming at a special domain of oncoproteins); and monoclonal antibodies prominently remain in use. Therapeutic cancer vaccines based on live oncolytic viruses will emerge. Genetically engineered oncolytic viruses may surpass in efficacy naturally oncolytic viruses; some of them may replace lost tumor suppressor genes.

The initial natural defense of an organized cell community against malignantly transformed cells within, led by the NK cells and tumor suppressor gene-product proteins of the host, seldom eliminates a tumor without outside help. Tumor biology reveals that the multicellular host may promote the co-existence of inter- nally induced proliferation of transformed cells. In contrast, the host is opposed to the proliferation of externally induced transformed cells. These host immune reactions can be augmented to curative strength. The number of spontaneously regressed tumors, if any, is unknown. The malignantly transformed cells in mul- ticellular, especially vertebrate mammalian, hosts acquired placenta-like defensive reactions, that induce Th2-type tolerance in their host. Further, when the malignant transformation occurs in cells living in a multicellular community, those cells, in addition to their ancient inherited cell survival pathways, have evolved new fac- ulties, that neutralize or eliminate the tumor suppressor proteins of the host. These cells mobilize mesenchymal and vasculo-endothelial cells of their host to render full support to them, while they are undergoing a reversal into the life forms of their primordial ancestors. The genes which frequently undergo fusion in extant malig- nantly transformed cells are well conserved from their primordial ancestors and frequently function in stem cells (Narsing S et al Department Molecular Medicine, The University South Florida Morsani College of Medicine, Tampa, Fl. Cancer Genetics Cytogenetics 2009;191:78–84). Just practicing an inherent and conserved faculty of the primordial RNA/DNA complex, serving blindly and determinedly for the sustenance of living matter in the Universe. Appendix 2 Explanations to the Figures*)

*) In elaborated legends, the author is trying to render service to the readers.

Figure 1. The A and B X-ray diffraction spatial (3-dimensional) configurations of the double helix deoxyribose DNA molecule are from Rosalind Franklin’s lab (1951). The A-DNA B-DNA photographs are from Baianu IC et al. Maurice Wilkins’ lab yielded the C configuration in 1958. DNA A and B are natural (derive from living cells); DNA C configuration is an artifact formed in the drying process of a lithium-DNA salt. RNA the predecessor of DNA, is equipped with the 2’OH group on each of its ribose molecules; it frequently functions single-stranded (ss), but in certain circumstances (ds RNA viruses) it can assume a double-stranded (ds) helical structure (A-RNA to Z-RNA). The interferon-induced enzyme dsRNA adenosine deaminase acting on RNA (ADAR) promotes the A-to-Z left-handed helical dsRNA transition; ADAR specifically with high affinity binds to ds Z-RNA/Z-DNA.

RNA molecular constituents adenine, guanine, cytosine, uracil form from for- mamide under the impacts of high energy laser imitating extraterrestrial bom- bardments of the ancient Earth over four billion years ago (Ferus M et al J Phys Chem 2014;118:719–736; Proc Natl Acad Sci USA 2015;112:657–662).

Figure 2. Reverse transcriptases encode in Neurospora crassa the ancient mito- chondrial Mauriceville plasmid (Chen B & Lambowitz AM J Mol Biol 1997;271:311–332; Baidyaroy D et al Fungal Biol 2012;116:919–931) and the telomeres (Wu C et al Genetics 2009;181:1129–45). The chromosome harbors the Pogo transposable elements. Distinct subtelomeric elements and the TLH telomere-linked helicase are uniquely absent. The biological clock is circadian rhythm-dependent. Longevity versus senescence is determined in the T-loop structure of the TTAGGG duplex region. The ancestral proto-oncogene ras is known in N. crassa as the band (bd) gene; it is re-enforced by the longevity assurance gene lag/LAG. Macroconidia with gain-of-function mutated ras and lag genes live 120 days, versus 24 days median life span physiologically (Case ME et al Ecol Evol 2014;4:3494–3507). More in Figure 63.

© Springer International Publishing Switzerland 2016 607 J.G. Sinkovics, RNA/DNA and Cancer, DOI 10.1007/978-3-319-22279-0 608 Appendix 2 Explanations to the Figures*)

Figure 3. Sex determining region Y-box 2 (SRY) pluripotent transcription factors are active in embryonic stem cells. SOX high mobility group (HMG) proteins express evolutionarily conserved DNA-binding domain (Tables XI/I and XI/II). The human gene sox2 maps to chromosome 3q26.33. The so-called LIF (leukemia inhibitory factor) protein activates sox2 (and Krüppel-like factor 4, Klf4) genes. Proteins Oct4, Nanog and Sox2 maintain pluripotency for their stem cells. These gene product proteins form complexes with protein NPM1 (nucleophosmin; protein B23), a regulator of NFκB. The Sox2 protein inhibits mesenchymal, and promotes neuroectodermal, germ layer differentiation. Stem cells with active Sox2 protein renew themselves and release differentiated neural cell by asymmetric divisions. Hypermethylation of the sox2 gene (or its promoter) deprives the gene of its pluripotent faculty. Amplified (or constitutively expressed) Sox2 protein drives cancers (squamous cell carcinoma lung; high Gleason grade prostate adenocarci- noma; undifferentiated colorectal adenocarcinoma). More in Ctenophores: The cell survival pathways of the comb jelly ctenophores are driven by ancient sox/SOX genes/proteins (see more in the Appendix 1).

Figure 4. . Withstanding high dose radiation of canned food, there it was discovered alive and replicating. Its radioresistance is effective against 1.5 million rads. Survives 5000 Gray (500,000 rads) ionizing radiation; upon an exposure of 15000 Gy, it retains 37% of its viability. For comparison, 2.5– 5 Gy (250–500 rads) whole body exposure to the human subject is considered to be lethal. D. radiodurans metabolizes nuclear waste. Its ring-shaped DNA does not fall apart upon radiation exposure and retains high sensitivity to its extremely effective DNA repair enzymes. Carries two circular chromosomes 2.65 million base pairs long consisting of 3195 genes; and two 117000 and 46000 base pairs in size. Presented here in its tetrad form. Its DNA can migrate within the tetrads. The Mycoplasma laboratorium artificially constructed utilizes some D. radiodurans DNA repair enzymes.

Figure 5. The Coelacanth’s fins evolving toward hind legs, its gills transforming into lungs and its brain enlarging were postulates read out of its fossils. When the extant coelacanth re-appeared, those postulates had to be seriously doubted and eventually discarded. The transitional pathway from fish to amphibians is charac- terized by missing links. The maximum parsimony, neighbor-joining and maximum likelihood of the nuclear ribosomal genes 28S of coelacanths and lungfishes indi- cate that they are monophyletic and are related to the first land vertebrates. The mitochondrial cytochrome oxidase subunit genes’ nucleotide to amino acid sequences indicate coelacanth/lungfish and lungfish/tetrapod clades (overruling an immediate coelacanth/tetrapod clade) (Zardoya R & Meter A Proc Natl Acad Sci USA 1996;93:5449–5454; Yokobori S et al J Mol Evol 1994;38:602–609). Intron-containing Interferon gene type I in fish and amphibians, and intron-less IFN gene type III in amphibians (Xenopus) diverged during a transitional period of their hosts migrating from their aquatic environment to land. Intron-less type I IFN genes of reptiles, birds and mammals lost the intron-containing type I IFN genes due to an Appendix 2 Explanations to the Figures*) 609 retroposition event. The receptors of the Xenopus type III IFN are distinct from those of type I IFNs (Qi Z et al J Immunol 2010;184:5038–5046). The ancestors of the amphibians were the sarcopterygii lobe-finned bony fishes (osteichtyes: Latimeria coelacanths; Dipnoi lungfishes), whose pectoral and pelvic paired fins articulate with their pectoral and pelvic girdles using a single bone, that was the ancestor of the humerus in descendent tetrapod amphibians. Their shared 28S rRNA genes make coelacanths and lungfishes sister groups. Of the recombination activation genes rag1/2, one amino acid is deleted from the aminoterminal region of the Rag2 protein in lungfishes, chondrichtyes and amphibians, but not in the coelacanths. This deletion makes lungfishes and amphibians sister groups. The entire rag gene sequences suggest lungfishes to be the ancestors the amphibians, and all tetrapods, in the monophyly of sarcopterygii (Brinkmann H et al Proc Natl Acad Sci USA 2004;101:4900–4905). Illustrations: West Indian coelancant (Latimeria chalumnae) caught in 1974, Comoro Island.

Figure 6. The Amoebozoan, Dictyostelium discoideum exists in many life forms: in sexual cycle, in vegetative cycle, and in social cycle. Its discoidin is a fibronectin; its tiger genes encode histocompatibilty complexes; it uses an ERK/MAPKK signaling “cell survival pathway” (extracellular signal regulated kinase; mitogen-activated protein kinase kinase). MAPKK becomes a proto-oncogene in vertebrate mam- malian cells: in ras- (rat sarcoma-) transformed cancer cells. For vital functions of D. discoideum cells, the expression of the ancestral PTEN phosphatase gene is essential; it suppresses phosphatidyl inositol by dephosphorylation, like its ortholog human gene. D. discoideum’s cell cycle passes through G1 as if it were non-existent (the Rb protein fails to stabilize it); the protein-product of the retinoblastoma gene ortholog inhibits the S-phase of the cell cycle by interacting with transcription factor E2F (cyclin kinase E2 phosphorylator of the retinoblastoma protein); it also dictates the differentiation of spores (Lusche DF et al PLoS One 2014;9(9):e108498; Strasser K et al PLoS One 2012;7(6):e39914). See more in Appendix 1. Illustration: The Amoebozoan life cycle of Dictyostelium discoideum. Schaap, Pauline, College Life Sciences University Dundee. Evolutionary crossroads in developmental biol- ogy: Dictyostelium discoideum. Development 2011; 138: 387–396. doi:10.1242/ dev.048934, [email protected]

Figure 7. The Wnt (wingless; integration site, drosophila; mouse) pathway. DSH = disheveled; FRZ = frizzled; LPR = low density lipoprotein receptor-related protein; APC = adenomatosis polyposis coli; CK = cell cycle; GSK = glycogen synthase kinase; LEF = lymphoid enhancer-binding factor (associated with TCF = T cell factor, proto-oncogenes) The Wnt signaling pathway is ancient. It was and it is operational in the ancestral and in the extant Ciona and Nematostella. It is vital for the developing embryo in regulating cell proliferation and differentiation. In healthy cells, the Axin, APC, GSF proteins regulate β-catenin in the cytoplasm by marking it to ubiquitynation. In malignantly transformed cells (colon cancer cells with deleted APC gene, or otherwise defective “destruction complex”), β-catenin escapes demolition in the proteasome, and transfers from cytoplasm to nucleus. 610 Appendix 2 Explanations to the Figures*)

Being a DNA-binding protein, β-catenin activates proto-oncogenes TCF/LEF. In the genome of comb jelly ctenophores, the “destruction complex” is physiologically defective (lacks Axin), thus β-catenin readily enters the nucleus to activate its target genes (which are predecessors of vertebrate mammalians’ proto-oncogenes, tcf/lef); dickkopf, a major inhibitor of the Wnt pathway, is missing. The ctenophore cells physiologically function like Wnt-transformed entities (in the Appendix 1). Jörg Huesken, Walter Birchmeier, Max Delbrück Centrum, Berlin-Buch, Germany.

Figure 8. Staging of colon cancer. Educational videos. Tony Talebi & Caio Rocha Lima at The University of Miami Sylvester Comprehensive Cancer Center, Miami FL http://www.hemonc101.com/colon-cancer. With permission of copyright owner Terese Winslow. All rights reserved.

Figure 9. Warburg glycolysis (Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009;324(5930):1029–1033). In osseous metastases of hormone-resistant prostate cancer cells enhanced aerobic Warburg glycolysis is the main source of energy. The process is inhibited by simvastatin (mevalonate pathway inhibitor) and metformin (adenosine monophosphate-activated protein kinase activator) combined, resulting in cell cycle arrest in G1, and leading to the autophagy-apoptosis-necrosis pathway of the tumor cells (Babcock MA et al Cell Death Dis 2014;5(11):e1536).

Figure 10. Neuron with axons and synapses in their surroundings. (Boundless Textbook chapter 62.3 open contents http://en.wikipedia.org/wiki/Neuron).

Figure 11. Biomolecules. Lower left column from bottom up shows the synthesis of amino acids from simple organic molecules. These natural processes were repro- duced in the laboratory by and their occurrence was documented further very recently (Parker ET et al PNAS 2011;108;5526–5531; Orig Life Evol Biosph 2012;41:569–574). The self-replicating and hypercycling polypeptides and the chiroselective peptide replicator are cited from work carried out at the Ghadiri Laboratory, Scripps Research Institute (Lee DH et al Nature 1996;382:525–528; 1997;390:591–594; Saghatelian A et al Nature 2001;409:797–801). The right lower column from bottom up shows the formation of nucleotides (example: cytosine) from simple cyanide molecules. RNA, ribozymes, ribonucleoproteins (RNP), ribo- somes and riboswitches naturally existed in the pre-cellular/protocellular world. RNA and polypeptide molecules hypercycled; carbohydrates and lipids formed a-new, but without hypercycling. Vesicle-forming lipids arrived via meteorites (Murchison). RNA strands self-replicated in hypercycles in hydrothermal vents (Eigen M & Schuster P The Hypercycle. Springer Verlag). Arguments are presented for the coexistence of RNA and DNA and the complex formations thereof already in the precellular era. The ingredients of life started to interact in unison in double lipid-walled vesicles (Figure 12). There tRNAs captured amino acids and lined them up in chains. In spheroplast-like protocells, DNA has taken over from RNPs the initiation of protein synthesis. The genomes enriched themselves by capturing new Appendix 2 Explanations to the Figures*) 611 laterally entering genes and then propagated them vertically. Genomes increasing in size were condensed into individual chromosomes, which were separated from, but biochemically interacted with, compartments (especially spliceosomes and ribo- somes) formed in the nuclei and cytoplasm. The fusion of crenarchaeal and prokaryotic (mycoplama-like) spheroplasts as equal partners was very likely mediated by a fusogenic virus (phage, marked with red arrow). The ancestor of the Acholeplasma laidlawii phage is the fusogenic suspect (Figures 15–18). The com- plex large cells phagocytosed proteo- and/or cyanobacteria for ever-lasting intra- cellular in the ancestral animal and plant cells. Viral particles synthesized in the precellular ribosomes invaded the newly formed cells. A mutual exchange of host cell and viral genes had taken place. In phase one, viral particles lost the majority of their genes in favor of the host cell genome, and thus viruses became totally dependent for replication on their host cells. Viruses retained their “virus hallmark genes” not shared with their host cells (Koonin VE, Senkevich O, Dolja VV Biol Direct 2006;1:29). In phase two, viruses are retrieving host cell genes in order to inhibit host cell death (apoptosis) prior to the full maturation of the viral progeny; and present themselves to the host as “self” in order to alleviate host immune reactions. This illustration was presented first in Sinkovics J. Studia Physiologica Scientia, Budapest, 2001. Text ref 2.

Figure 12. Protocells. It is not known how protocells were formed. Gánti’s bio- chemical machine is the chemoton without a genome. Biological units were envi- sioned as Oparin’s coacervats; advanced coacervats became protobionts. Self-replicating and hypercycling RNA/RNPs and polypeptides interacted. Advanced biological units might have formed a conglomerate of adherent spheroplasts. Within the double lipid membrane of the spheroplasts, RNPs catal- ysed the generation and fusion of nucleotides and polypeptides. Short sequences existing in long non-coding RNA strands were to be transformed enzymatically into cDNAs (creating a natural cDNA library). Ribonucleotide reductase-like proteins converted RNA into deoxyribonucleotides (DNA), either in precellular, or in pro- tocellular ribosomes. If DNA existed in the precellular environment, it managed to enter the protocells together with RNA ribozymes. RNA/DNA complexes with their supportive proteins condensed into chromosomes. Cytoplasmic compartments (precellular ribosomes might have existed) were formed internally, or acquired horizontally from the outside. Horizontal acquisitions and exchanges of genes, even operons, were extensive. The first eukaryotes were fused cells with nuclei. Eukaryotes acquired mitochondria and/or chloroplasts. These organelles engaged in a workable unison with their host cells’ nuclei and cytoplasm. Nucleocentrists and cytoplasmists debate the priority of a genome, or a metabolizing cytoplasm with ribosomes in the origin of life pre-cellularly, or in the first protocells. Could any one of these units exist without the other? Figure was first introduced in Sinkovics J, Studia Physiologica Scientia, Budapest, 2001. Text ref 2.

Further developments: Szostak et al generating multi-lamellar vesicles; dividing long threadlike vesicles; protocells with native and synthesized ribozymes. Mann S 612 Appendix 2 Explanations to the Figures*)

Acc Chem Res 2012;45:21231–31241. Jia TZ et al Orig Life Evol Biosph 2014;44:1–12. Schrum JP et al Cold Spring Harb Perspect Biol 2010;(9):a002212. Teresawa H et al Proc Natl Acad Sci USA 2012;109:5942–5947. Sohan Jheeta: Emergence of cellular life from LUCA (Last Universal Cellular Ancestor). Sohan Jheeta: Life (Basel) 2013;2:518-523; 2015;5:1446-1453.

Figure 13. Alpha-Helical Peptides in autocatalytic reactions chiroselectively tem- plated and propagated their own synthesis in hyper- or supercycles. Template-directed condensation of peptide fragments occurs. In the presence of carboyl sulfide (as in volcanic fumes) in aqueous solution amino acids are con- densed into peptides. Thioester peptid nucleic acids (tPNA) cross-pair with RNA and DNA strands, and as such interact with side chain functionalities of the molecules. tRNA do not assume self-replicatory reactions (unless a catalyser for such a reaction is found) (Lee DH et al Nature 1997;390:591–594; Saghatelian A et al Nature 2001;409;797–801)

Figure 14. Plasma Alive. Sealed aged bouillon-cultures of E. coli yielded pleuropneumonia-like units (“Pleuropneumonie-ähnliche Eigenheiten”) that could regenerate vegetative cells. Through ruptured cell walls, aged E. coli cells released plasma with electron-dense units (bacterial chromosome fragments vs phage par- ticles). Some larger units (>350 mμ) measured by filtration (Ferenc Fornosi’s membranes) regenerated only after fusion, as visualized in light, dark field and electron microscopy technology (Iván Hollós). Large (>350 mμ) cytoplasmic units passed through collodion membrane filters of 600 mμ pore size (Ferenc Fornosi’s membranes) and regenerated into vegetative E. coli cultures. In dark field- and electron-microscopy, units passing the filter were seen to fuse. Other (fused) units physically attached to the surface of co-cultured Sarcina lutea cells. Regenerating units contained electron-dense formations (bacterial chromosomes? fusogenic phage?) (Sinkovics J Die Grundlagen der Virusforschung Ungarischen Akademie der Wissenschaften, 1956; Acta Microbiol Hung 1957;4:59–75; Nature 1958;181:566–567; Acta Microbiol Immunol Hung 2001;48:115–127; Studia Physiologica Scientia Budapest 2001;9:1–151; Hungarian (Magyar) Epidemiology 2008;5/3–4:237–255; Idem 2009;6:60; Sinkovics JG & Horvath JC Viruses ancient biomolecules. Cancer Research at the Millenium. The University of Texas M.D. Anderson Cancer Center, Houston, TX, 2000; pp 122–123). Cited in I.C. Gunsalus & R.Y. Stanier: The Bacteria, Academic Press N.Y., 1960; vol I: 345–6; A.J. Salle: Fundamental Principles of Bacteriology, 5th ed., McGraw Hill, N.Y. 1961; p 77. Author presented the cell wall-free plasma as a representative of primordial life forms (Sinkovics J: Pre-cellular forms of life in microbiology (in Hungarian). Biológiai Közlemények (Biological Publications) 1954;2:69–81. Gratitude to Elek Farkas† for allowing the conduct of these experimentations in 1954–5 at his Department of Virology in the State Institute of Public Health, (OKI) Budapest.

Figure 15. Individual Cells of Acholeplasma laidlawii Gamaleya PG8 strain release exosomes (Chernov VM Chernova OA et al, Kazan Institute Biochemistry Appendix 2 Explanations to the Figures*) 613

Biophysics, Russian Academy of Sciences, Kazan, Russian Federation. The Scientific World J 2012; article ID 315474). The 400–600 nm diameter Acholeplasma cells (like other prokaryota) release extracellular vesicles of bilayered membranes in sizes of 70–200 nm diameter enriched in virulence proteins (Chernov VM et al The Scientific World J 2011;11:1120–1130; J Proteomics 3014;110:117– 128). Acholeplasma cells carry a single of 1497 kb, 1.5 Mb; its rRNA operons and flanking tRNAs are depicted. A map of its genetic elements is constructed. Glycolysis from D-glucose is its ATP generating pathway (Kube M et al J Microbiol Biotechnol 2014;24:19–36). In addition to its lytic phages, the group 1 acholeplasmavirus is non-cytocidal, non-lytic; the cells remain chronically infected and undergo fusion (Brunner H et al Zbl Bakteriologie A 1980;248:120–128; Liss A & Ritter BE J Gen Microbiol 1885;131:1713–1718).

History of pleuropneumonia and L-forms of bacteria. Sabin AB. The filtrable microörganisms of the pleuropneumonia group. Bacteriol Rev 1941;5:1– 67. Sinkovics J. A new chapter in bacteriology: Pleuropneumonia-like growth. Orvosi Hetilap 1955;96:1401–1408 (illustrated). Sinkovics JG. Die Grundlagen der Virusforchung. Ungarischen Akademie der Wissenschaften, Budapest, 1956.

Figure 16. Acholeplasma laidlawii Кyльтypa клeтoк микoплaзмы. Ponomareva Anastasiya A. Kazan Scientific Centre Russian Academy of Sciences, Kazan, Russia. The cell membrane of the mycoplasma Acholeplasma laidlawii is cholesterol-free; its genome consists of 1,469,992 base pairs containing 34 tRNA genes and 1,469,992 ORFs; it carries two mRNA operons. Source: gratitude to Anastasiya Ponomareva A.

Figure 17. Nonlytic MVL-3 Viral (Phage) Particles form a chain of single particles aligned alongside the inner aspect of the cell membrane of an Acholeplasma laid- lawii cell (Gourlay RN Wyld SG Bland PA. J Gen Virol 1979;42:315–322). Such cells fuse (Haberer K, Maniloff J, Gerling D. J Virol 1980;36:264–270; Brunner H, Schaar H, Krauss H. Zbl Bakteriologie Hygiene I Abt Orig, Gustav Fischer Verlag, Berlin, Jena, Stuttgart, Germany; New York USA.1980;248:120–128).

Demonstration by electron microscopy of intracellular virus in Acholeplasma laidlawii infected with either MV-L3 or a similar but serologically distinct virus (BN1 virus).

Figure 18. Illustration 1: Thin section of two Acholeplasma laidlawii cells attached to each other by one non-lytic MVL3 phage particle before fusion. Fused cells appeared as giant cells. Mature MVL3 particles formed single (or double) lines just beneath the cell membranes, with the viral tails pointed toward the inner cell aspect of the membrane (Haberer K Maniloff J Gerling D J Virol 1980;36:264–270). From the Department of Microbiology, University Rochester Medical Center, Rochester, NY. Publisher: Journal of Virology. 614 Appendix 2 Explanations to the Figures*)

Illustration 2/3: The JA1 Acholeplasma strain harbors a nonlytic phage that fused the cells into large conglomerates. The conglomerates were 20-fold larger than the individual cells. Fusion of mycoplasma cells, not endomitoses, formed the large conglomerates. Longitudinal formations of fused cells extrude long filamentous structures, assume “tumor-like growth” patterns, and retain the enveloped virus particles (Brunner H, Schaar H, Krauss H. Zentralblatt für Bakteriologie Hygiene 1980;248:120–128). Shown here with gratitude to Professor H Brunner.

Further morphological studies on highly polymorph Acholeplasma cells: Polak-Vogelzang AA, Samson RA, De Leeuw GT Canad J Microbiol 1979;25:1373–1380.

Figure 19. T2 bacteriophages attach to the surface of a bacterial cell before pen- etration of the cytoplasm; the infected cell will be lysed. Phage http://en.wikipedia. org/wiki/File:Phage.jpg by Dr Graham Beards http://en.wikipedia.org/wiki/User: Graham_Beards is licensed under CC BY-SA 3.0 http://creativecommons.org/ licenses/by-sa/3.0/.

Bacteriophages of archaea and prokaryota transferred horizontally host cell genes; established temperate non-lytic relationships with some of their hosts; and laid down the basic biochemistry of virus-host relationship (Félix D’Herelle: “Le Bacteriophage”, Monographs Pasteur Institut, Masson, Paris 1921; Hugó von Preisz: “Die Bakteriophagie” Fischer, Germany, 1925. Luria SE & Delbrück M Genetics 1943;28:491–511; Lwoff A, by Morange M J Biosci 2005;30:591–594).

Figure 20. CRISPR (clustered regularly interspaced short palindromic repeats). The First Antiviral (Antiphage) Defense of Bacteria CRISPR [2342]. Schematic rep- resentation of the crRNA maturation/processing and Cas9-crRNA-tracrRNA com- plex assembly pathways (see text). (A). The wild-type CRISPR locus is transcribed as a long pre-crRNA molecule. Cas9 promotes pre-crRNA: tracrRNA duplex for- mation. The tracrRNA /pre-crRNA duplex regions are recognized and cleaved by the host RNase III to generate effector complexes that undergo further trimming at the 5' end by unknown nuclease(s) to produce mature Cas9-crRNA-tracrRNA complexes. (B) Short pre-crRNA transcripts produce functional effector complexes in the absence of RNase III (Karvelis T et al RNA Biol 2013;10:841-851).

Figure 21. Prokaryotes (and archaea) evolved upon a network of laterally trans- ferred genes (Kunin V & C.A, Ouzounis Genome Research 2003;13:1589–1594). In the spheroplast community of the first unicellular microorganisms, the genomes were wide open to gene losses and gains. Discarded or lost genes were replaced by sought after, readily accepted and put-into-service newly acquired genes. Apparently, at that stage, the gene product proteins caused no major immunological conflicts. Genes that existed within the clade were transferred by routes of conju- gation (J. Lederberg). Bacteriophages and viruses were the vectors of large trans- ferred genes. Viral cell surface receptors might have posed a restriction, but once in Appendix 2 Explanations to the Figures*) 615 the cytoplasm, the new genes readily entered the chromosomes (since nuclei and nuclear membranes did not as yet exist). Cell-fusogenic viruses must have mightily contributed to genomic transfers (Sinkovics JG. Acta Microbiol Immunol Hung 2001;48:115–121). In case of endosymbiosis in unicellular eukaryotes, the sym- bionts (mitochondria; plastids) exchanged their genes with those of the host cell nuclei, usually from the symbiont to the host. In many unicellular eukaryotes, there is a genetic micro-, and a somatic macronucleus (MIC/MAC) . The micronuclei carry numerous retrotransposons; these are meticulously excised and expunged when, after cell divisions or conjugations, the genomic micronucleus forms the genome of the somatic macronucleus. This is the line above which the widely spread promiscuity of horizontal gene transfers were curtailed, but never eliminated (Sinkovics JG Int J Oncol 2009;35:441–465; Adv Exp Med Biol 2011;714:5–89). Network of Horizontally Transferred Genes in Prokaryota and Archaea. With kind permission ©Barth F. Smeths PhD All rights reserved 2015.

Figure 22. Phylogenetic and symbiogenetic tree of living organisms. Recommended for reading: Koonin EV. Carl Woese’s vision of cellular evolution and the domains of life. RNA Biology 2014;11:197–204. Kutschera U. From the scala naturae to the symbiogenetic and dynamic tree of life. Biol Direct 2011;6:33. doi:10.1186/1745- 6150-6-33. Phylogenetic and Symbiogenetic Tree of Living Organisms. Konstantin Mereschkowsky’s by Cell Fusions in 1910 http://commons. wikimedia.org/wiki/File:Tree_of_Living_Organisms_2.png by Maulucioni http:// es.wikipedia.org/wiki/Usuario:Maulucioni and Doridi licensed under CC BY-SA 3.0.

Figure 23. Mitochondria, © AbD Serotec. All rights reserved. The mitochondrial inner and outer membranes undergo permeability transition. In this reaction, ANT (adenine nucleoside translocator) of the inner membranes activates voltage-dependent anion channels in the outer membrane. Water-soluble cytosolic substances enter the mitochondrial matrix. The membranes rupture with the release of cytochrome C and Bax (Bcl-2-associated X protein). Bax blocks Bcl-XL (B-cell lymphoma-leukemia gene-2, extra-large). CARD (caspase recruitment domain) in Apaf (apoptotic protease-activating factor) in the apoptosome releases and cleaves the procaspases. Caspase cascade is initiated with intranuclear fragmentation of the DNA. The mitochondrial internal apoptosis differs from the FasL→FasR-initiated (apoptosis stimulating fragment) cell surface-localized external apoptosis. The bio-philosophical connotations of the apoptotic phenomena (“cell suicide”) are widely disputed. In ontogenesis (in the cocoons of insects; in precursor organs of the mammalian kidney, etc.) tissue anlagen are readily dissolved by apoptosis, to be replaced by the permanently functional organ. In malignantly transformed cells, the RNA/DNA complex forcefully inhibits the apoptotic processes. Bcl-2 gene anti-sense inhibitors, microRNA Bcl-2 mRNA inhibitors, or BCL-2 enzyme-protein small molecular inhibitors occasionally overcome the blockade and force the ini- tiation of cancer cell apoptosis. Anti-cancer cell lymphocyte-mediated immune reactions naturally (or by of the lymphocytes’ TCR) aiming at apoptosis induction in the cancer cell, referred to in the late 1960s early 1970s as 616 Appendix 2 Explanations to the Figures*)

“nuclear clumping” (photographed and discussed in J.G. Sinkovics: “Cytolytic Immune Lymphocytes…” Schenk Buchverlag, Passau/Budapest, 2008).

Figure 24. Stroma. The thylakoid lumen. Phospholipid thylakoid membranes. Of 335 thylakoid proteins, 89 are operational in the lumen. Antenna proteins (photosystems I/II chlorophylls, carotenoids, phycobiliproteins) harvest light. From the chloroplasts, chlorophyll genes were transferred into the cell nucleus. Light-induced water oxidation (splitting) by photosystem II is generating oxygen, protons and electrons in the oxygen evolving complex; protons pumped across the thylakoid membrane from stroma to lumen; electron transport in the cytochrome b67 complex; plastoquinone reduced by ferredoxin; reduced plastoquinol oxidized by cytochrome b67 protein; ATP synthase activated by the proton gradient generates ATP. Proton concentration gradient across thylakoid membrane is 10,000-fold up, as compared to a 10-fold gradient across mitochondrial inner membrane.

Figure 25. Ribosomes. Did precellular sites of protein synthesis exist? Ribozymes and RNA-binding proteins appear to have been in existence and in action. Indeed, a globe-wide network of a Ribonucleoprotein World was fully operational. Ribozyme- and microRNA-packed exosomes released from extant cells (prokary- ota; uni- and multicellular eukaryota) represent a form of retrograde evolution to the precellular ribosome level? (Sinkovics JG European J Microbiol Immunol 2015;5:25–43). Viroids are relics of that world. Fusing viroids might have formed the first precellular large viruses. Did DNA join in, or appeared first only in the protocells? What primordial enzymes carried out the deoxyribosylation of the RNA molecule, or could the DNA molecule be synthesized from nucleotides same as the RNA had come to its existence eons earlier? Matthaei and Nirenberg utilized E. coli ribosomes working extracellularly for the discovery of the gene code (Proc Natl Acad Sci USA 1961;47:1580–1586; 1961;47:1588–1602). The RNA-binding proteins (domains, RBD) appear to have existed in the precellular world, predating LUCA, the last universal common ancestor. The RNA methylases of the Rossmann-fold class are assumed to be of pre-LUCA origin. Figure 1 of the cited article shows the RNA-binding THUMP domain (thiouridine synthase, methylase, pseudouridine synthase) being present in LUCA, as it was transferred from there into each one of the three derivative kingdoms. These base N-methylases share the [N/D]PP[Y/F] motif (asparagine/aspartic acid; proline, proline; tyrosine/phenylalanine) at the end of their strand 4 (Anantharaman V, Koonin EV, Aravind L. Nucleic Acids Res 2002;30:1427–1467). For ribosome evolution, see Appendix 1. mRA interactions http://commons.wikimedia.org/wiki/File:mRNA- interaction.png by Sverdrup licensed under CC BY-SA 3.0.

Figure 26. The Argonautes represent highly conserved primordial gene silencing systems. The argonaute (AGO) proteins mediate gene silencing by RNA interference (iRNA) in the RNA-induced silencing complex (RISC). Of four human argonautes (hAGO), only hAGO2 slices naturally RNA, but both hAGO1 and hAGO4 could be transformed into RNA-slicers. The slicer enzyme is guided to its mRNA target by a Appendix 2 Explanations to the Figures*) 617 small interfering siRNA. When inactive, the guide strand rests in the Mid-domain (middle) by its 5' end and in the PAZ domain (PIWI/Argonaute/Zwille, ZLL) by its 3' end. The active guide strand is phosphorylated at its 5' end. The PIWI domain (wimpy testicle, drosophila) is an RNAse. The triad DDH (aspartate- aspartate-histidine) signifies catalysis. The catalytic tetrad is DEDH (aspartic acid, glutamic acid, his- tidine). In the hAgo1-let-7 complex, nucleotides 21 and 22 of miR let-7 are bound to the PAZ domain. hAgo2 forms complexes with the N domain (duplex unwinding in RISC assembly) and with miR-20a; and the N domain (the “duplex wedge”)makes contact with let-7 (letter; lethal). The N domain of hAgo2 activates slicing in hAgo3. The PIWI domain is subject to mutation L674F (leucine, phenylalanine) in hAGO1. The double mutation F676L and Q677P (glutamine, leucine) disabled (no slicing) hAGO2 (Faehnie CR et al Cell Rep 2013;3:1901–1909. W.M. Keck Structural Biology Laboratory; Greg Hannon’s Laboratory; Howard Hughes Medical Institute Cold Spring Harbor Laboratory; Leemor Joshua-Tor Laboratory). RNAse endonu- cleases, the intranuclear Drosha class II (invertebrate Pasha), and the cytoplasmic Dicer class III process (shorten pri-miRs into 60–70 hairpin sequences) and load (processed sequences) into RISC (Laboratory RNA Biology Max Planck Institute Biochemistry, Am Klopferspitz 18, Martinsried 82152 Germany). The ancestors of the green alga, Chlamydomonas reinhardtii, already possessed and forwarded the zwille (zll) genes into plants (Arabidopsis thaliana) to encode AGO proteins (ZLL) that maintain shoot meristem stem cells for new organ (leaves, branches, angiogenesis, flowers) formation in plant embryos. Zll-mutant plants overexpress the erecta receptor (ER) kinase, and its ligands, regulators of vascular cell organization and replication (Czyzewicz N et al J Exp Bot 2013;64:5281–5296; Tucker et al BMC Genomics 2013;14:809; Uchida N & Tasaka M J Exp Bot 2013;64:5335–5343). Downstream of ER, a MAPK cascade drives proliferation of some selected cell clones. The activated ER sequence expresses a multiplicity of introns. The Wuschel homeobox ligands promote vascular cell proliferation (Etchells JP et al Development 2013;140:2224– 2234; Karve R et al RNA 2011;17:1907–1921; Meng X et al Plant Cell 2012;24:4948–4960). The AGO proteins engage in small smRNA silencing. Should Ago proteins silence a gene(s) encoding cell proliferation inhibitory factors, they may indirectly promote cell proliferations; should the proliferating cells carry a gain-of-function mutation, those cells may end up as a malignantly transformed stem cell clone. Illustration: Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L. The Making of a Slicer: Activation of Human Argonaute-1. Cell Reports 2013;3 (6):1901–1909. doi:10.1016/j.celrep.2013.05.033. RISC RNA-induced silencing complex [2343].

Figure 27. MicroRNAs. The intranuclear Drosha releases pri-miRNA →pre-miRNA to the cytoplasm. The cytoplasmic RNAse Dicer generates the duplex dsRNAs (miRNA/miRNA). The corresponding strand within RISC (RNA-induced silencing complex) aligns to the untranslated region (UTR) of the targeted mRNA and cleaves it. miRNAs may act as oncogenes, or as tumor sup- pressor genes. Federica Calore & Muller Fabbri (Department Molecular Virology, Immunology, Medical Genetics. Ohio State University Columbus, OH 43210). 618 Appendix 2 Explanations to the Figures*)

MicroRNAs and Cancer. Atlas of Genetics and Cytogenetics in Oncology Haematology 2011 pp 1–27. The microRNAs Drosha & Dicer miRNA http:// commons.wiikimedia.org/wiki/File:miRNA.svg by Kelvinsong licensed under CC BY 3.0.

Figure 28. Pseudouridylation [2344] H/ACA-box signature hairpin adenine cyto- sine adenine. Functional in archaea. Appear in first stem loop in Ciona intestinalis. Described in Giardia and Trichomonas. Human box H/ACA analyzed (Chen XS Penny D Collins LJ BMC Genomics 2011;12:550. Kiss AM Jády B Bertrand E Kiss T Mol Cell Biol 2004;21:5797–5807).

Figure 29. Kaposi Sarcoma. The most prominent herpesviral particles in KS cells are those of the KSHV/HHV-8 agents (illustrated in: Sinkovics JG “Cytolytic Immune Lymphocytes…” Schenk Buchverlag Passau/Budapest 2008) (147). The chaperon heat shock proteins mightily contributed to the survival of primordial archaeons, prokaryotes and unicellular eukaryotes in the overheated environment of the ancient Earth. Cellular and virally encoded oncoproteins continue to enlist a special form of HSP for their own protection: the enriched-in-tumor-cells etHsp90 (Moulick K et al Nat Chem Biol 2011;7:818–826). These transformed cells suc- cessfully practice anti-apoptotic defense and encode proto-oncogenic pathways (NFκB; PI3K/Akt; Bcl-2). Antagonized are FLIP, FLICE-inhibitory proteins, FADD-like IL-1β converting enzyme; Fas-associated death domain; Fas, fragment apoptosis signaling. Tumor cells induced and/or promoted by gammaherpesviruses Epstein-Bar virus (HHV4) and/or Kaposi sarcoma-associated herpesvirus (HHV8) encode oncoproteins that engage etHsp90 for their own protection. In primary effusion lymphoma (PEL), KSHV/HHV-8 with or without EBV, with or without HIV-1, is the leading pathogen (Matolcsy A Nádor RG Cesarman E Knowles DM Am J Pathol 1998;153:1609–1614). In PEL cell lines and in human PEL cells grown in mice, investigational small molecular inhibitor PU-H71 destabilized the oncoprotein protective effect of etHsp90 on KSHV/HHV8-induced oncoproteins. The BCL2 oncoprotein antagonist obatoclax (patented GX15-070) synergized in PEL cell-killing through autophagy and apoptosis with the patented PU-H71 etHsp90 antagonist (Najar U et al Blood 2013;122:2837–2847; Ojala PM Blood 2013;122:2767–2768). Herpesvirally infected cells often induce the release of latent retroviruses. This is very evident in KSHV/HHV8-infected KS cells of endothelial cell origin, even in the classical Mediterranean KS cell lines. The released retrovirus particles are not those of HIV-1, or related viruses, neither morphologically, nor immunohistochemically. In immunohistochemistry, the KS-related retroviral structural proteins were not identical with those of the human T cell lymphotrophic retrovirus (HTLV-1), but were related to those retroviral particles that occasionally appeared in Reed-Sternberg cells of Hodgkin’s disease (F Györkey† unpublished). In indirect immunofluorescence assays, patients with KS yielding these cell lines appeared to have circulating antibodies reacting with budding retroviral envelope antigens (Sinkovics JG. Cytolytic Immune Lymphocytes… Schenk Buchverlag, Passau/Budapest, 2008; Sinkovics JG & Horvath JC in “Kaposi sarcoma a breeding Appendix 2 Explanations to the Figures*) 619 ground of herpesviruses” Int J Oncol 1999;14:615–646, Errata: Int J Oncol 2005;27:5–47) (Figure 30).

Figure 30. Activated in KS. Herpesvirally infected cells often induce the release of latent (endogenous) retroviruses (reviewed in Sinkovics JG Acta Microbiol Immunol Hung 2010;57:253–347). This is very evi- dent in KSHV/HHV-8-infected KS cells of endothelial origin. The released retro- virus particles are not those of HIV-1, or related viruses, neither morphologically, nor immunohistochemically. In immunohistochemistry, the KS-related retroviral structural proteins were not identical with those of the human T cell lymphotrophic retrovirus (HTLV-1). Immunohistochemical relationship with retroviral particles budding from Reed-Sternberg cells of Hodgkin’s disease was found (unpublished, F Györkey †). In indirect immunofluorescence assays, patients with KS yielding these cell lines circulated antibodies reacting with budding retroviral envelope antigens (Sinkovics JG “Cytolytic Immune Lymphocytes…” Schenk Buchverlag, Passau/Budapest 2008; Sinkovics JG & Horvath JC Kaposi sarcoma… her- pesviruses. Int J Oncol 199;14:615–646; Errata: Int J Oncol 2005;27:5–47) (Figure 29). Illustration. A male patient of the Veterans’ Administration Hospital, Houston, TX, originally diagnosed with classical Mediterranean KS, that later turned out to be AIDS-associated, yielded cells of sarcomatoid morphology in primary tissue culture. The cells concealed herpesvirus-like particles, but yielded budding retroviral particles. The retroviral particles were neither those of HIV-1 nor HTLV-1. The patient circulated immunoglobulins reacting in indirect immunofluorescence assays with the envelopes of the budding retroviral particles. First published in Sinkovics JG et al Orvosi Hetilap 2006;147:617–621; re-published as Fig 4.18a, b in Sinkovics JG: “Cytolytic Immune Lymphocytes…” Schenk Buchverlag, Passau/Budapest, 2008 (147).

Figure 31. Entamoeba histolytica [2345] trophozoite by confocal microscopy. Endoplasmic reticulum stained green (Parasitology Research Springer Link). Genome clues (Matt Berriman, Wellcome Trust Sanger Institute). Complete gen- ome sequencing for E. histolytica is available. The intracellular parasite Entamoeba invadens operates extrachromosomal ribosomal RNA genes. Adaptations to dif- ferent hosts (E. invadens to reptiles) results in non-circular transcripts of ncRNAs deriving from the rDNA locus (Northern hybridization). In contrast, human-adapted intracellular E. histolytica works with circular transcripts (Ojha S et al Mol Biochem Parasitol 2013;pii:S0166-6851(13)00150-3). The large number of protein phosphatases propagating intracellular signals makes up to 3.1% of the proteome of E. histolytica (Anwar T & Gourinath S PLoS One 2013;8(11):e78714). E. his- tolytica evolutionarily conserves polyadenylation sequences in its mRNAs 3'- UTRs. Some of its mRNAs are subjected to decay by iRNAs (López-Camatrillo C et al Wiley Interdiscip Rev RNA 2013 Nov 8). Under oxygen-restricted conditions, the aerobic ATP-generating mitochondria of E. histolytica undergo transformations into -related organelles (mitosomes, hydrogenosomes) (Makiuchi T 620 Appendix 2 Explanations to the Figures*)

& Nozaki T Biochimie 2014;10:3–17). The amoeboid locomotion is comparable to that of tissue-invading cancer cells (see text).

Figure 32. Tetrahymena I. Twi12 association with tRNA fragments. (A) The schematics show the strategy of ZZTwi12 transgene knock-in and endogenous TWI12 locus knockout; the latter is evidenced with Southern blot data using Nhel-digested genomic DNA at right. The position of the Southern blot probe is indicated in the TWI12 locus schematic with a thin gray line. (B) RNAs copurified with Twi12 in vegetative growth (veg) or after 12 h of starvation (st12) were stained directly with SYBR Gold in comparison with size-selected total RNA from the same cultures. (C) The composition of sRNA library sequencing reads is depicted for reads with either a perfect match to the genome or a single internal mismatch as indicated. (D) Read numbers for tRNA fragments copurified with Twi12 were plotted relative to tRNA gene copy number as an approximation of full-length tRNA abundance. The labels of some data points at left were removed for clarity. mtGluTCC, SecTCA, ThrCGT, mtHisGTG. Pseud indicates combined reads from the 11 annotated tRNA pseudogenes, and mt indicates mitochondrial. This verbatim quotation from the article is very complex. The reader is advised to print out the entire text of the article (Couvillion MT, Sachidanandam R, Collins K. Department of Molecular and Cell Biology, University of California, Berkeley, CA. Genes Dev 2010;24:2742–2747) (125b).

Figure 33. Tetrahymena Molecular Biology II. Retention of the tRNA 3' fragment as the tightly bound strand. (A) Blot hybridization of Twi12-bound tRNAs was performed using probes complementary to the 5' or 3' end of several abundant tRNAs. Direct SYBR Gold staining of Twi12-bond sRNAs is shown at left for reference. (B) Arrowheads and lines indicate the potential processing positions and detected sRNAs, respectively, for two of the tRNAs from A. The 3' CCA nucleotide of a mature tRNA are not illustrated. (C) Twi12-associated sRNAs were directly stained after RNP isolation using two different gentle, nondenaturing buffer con- ditions. (D) Twi12-associated sRNAs were 5' end-labeled after isolation using stringent purification conditions, with or without prior cross-linking; different concentrations of urea were used for washes prior to RNA extraction. (E-G) Twi12-cross-linked sRNAs washed with 2 M urea were used for blot hybridization to detect specific tRNA fragmentation (Shown in E) and for library construction. The length distribution of sequencing reads (F) is shown for 3' fragments that match the genome perfectly or have untemplated 3' C, CC, or CCA, with the combined nucleotide frequency at each position (G) revealing a 5' sequence signature. This verbatim quotation from the article is very complex. The reader is advised to print out the entire text of the article (Couvillion MT, Sachidanandam R, Collins K Department of Molecular and Cell Biology, University of California, Berkeley, CA. Genes Dev 2010;24:2742–2747) (125b).

Figure 34. The Synovial Sarcoma fusion oncoprotein was recognized as New York NY-ESO cancer testis class (CTA) antigen (Ayyoub M et al Cancer Immun 2004 Appendix 2 Explanations to the Figures*) 621

4:7). The fusion oncogene t(X;18)(p11.2;q11.2) was originally described in A.A. Sandberg’s laboratory in the 1980s. The cadherin-binding protein, β-catenin (β-C) connects the cytoplasmic tail of E-cadherin to the actin cytoskeleton. When β- catenin translocates into the nucleus, the sarcoma cell assumes spindle cell mor- phology. With β-C remaining in the cell membrane and cytoplasm, the sarcoma cell exhibits the epithelioid phenotype. The SSX1→Snail zink finger fusion protein is a strong antagonist of the repressor of the E-cadherin promoter. The SSX2→Slug fusion protein is a weak antagonist of the repressor of the E-cadherin promoter. When the repressor of the E-cadherin promoter prevails (suppressing E-cadherin), synovial sarcoma cells assume the monophasic spindle cell state (reviewed in Sinkovics JG Expert Rev Anticancer Ther 2007;7:31–56). Cadherin genes and proteins (lefftyrin, coherin, hedgeling) appeared first in the last common ancestor of choanoflagellates and metazoans, and in the single celled choanoflagellates (C. owczarzaki; Salpingoeca rosetta), before the divergence of the metazoan lin- eage. The sponge, Oscarella carmela possesses cytoplasmic β-catenin-binding cadherins with cytoplasmic tail (Nichols SA et al Proc Natl Acad Sci USA 2012;109:13046–13051). The basic evolution of cadherins predated that of the metazoans. The pre-metazoan pre-choanoflagellates’ cadherins can not be recog- nized beyond the first bilaterians. The cadherins in the cytoplasmic bridges of S. rosetta are different from the metazoan cadherins. Tyrosine kinases appeared first in C. owczarzaki as ligands in search of receptors; their receptors appeared later in single cells of multicellular metazoans (Suga H et al Sci Signal 2012;5(222)ra36). Illustration : Nichols SA Department of Biological Sciences, University of Denver, Denver, CO 80208; Roberts BW Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720. Within the Wnt pathway (Figure 7), the position of Dishevelled (Dsh) at the animal pole of the female pronucleus in the unfertilized egg of the sea anemone (Nematostella vectensis) is opposed to the vegetal pole, where Dsh is degraded. The position of Dsh determines the site of gastrulation, while β-catenin stabilizes the endoderm (Lee PN et al Dev Biol 2007;310:169–86). The ancient physiologically installed β-catenin becomes a DNA-binding proto-oncogene activator protein in the vertebrate mammalian hosts within the Wnt oncogenic pathway [2346].

Figure 35. Medical History. In the late 1960s, a middle aged male patient MDAH#73587 yielded established cell lines from his large locally invasive but not known to be metastatic chondrosarcoma of his right hip. His blood contained circulating small compact T lineage lymphocytes (later immune T cells), which promptly surrounded his tumor cells and lysed them in vitro. A healthy control individual (this author, JGS) yielded small compact circulating lymphocytes (later: immune T cells), which practiced emperipolesis over the patient’s allogeneic chondrosarcoma cells, but refrained from attacking them. Instead, the healthy control released large granular lymphocytes (later: natural killer NK cells), which firmly attached to the allogeneic chondrosarcoma cells and eventually lysed them (Sinkovics JG Pathol Oncol Res 2004;10:174–187). NCI project site visitors con- sidered that the healthy donor rejected a latent incipient chondrosarcoma (without 622 Appendix 2 Explanations to the Figures*) knowing it). The healthy male donor (JGS) then documented that his blood con- tained large granular lymphocytes, which attached to and lysed female breast cancer and ovarian carcinoma cells (Sinkovics JG, Reeves WJ, Cabiness JR. J Natl Cancer Inst 1972:48:1145–1149; Proc 63rd Ann Meet Am Assoc Cancer Res 1972; #57). Then the NCI project site visitors declared that the chamber-slide assay in use produced “in vitro artifacts”, since no specific immune reactions should occur without preimmunization and that such reactions were not observed in the Hellströms’ laboratory. However, that laboratory used a colony inhibitory assay for gross inspection, and without the actual visualization of individual attacker lym- phocytes. In contrast, the chamber-slide assay in the author’s Lab visualized and clearly individually distinguished the attacker lymphocytes (in Appendix 1). Illustration: Figures 1–2. The chondrosarcoma cell line, advanced passages, in the late 1960s. Figures 3–4. The patient’s small compact T lymphocytes collected and purified from peripheral blood killed in vitro autologous chondrosarcoma cells in 24–48 h. Figures 5 and 6. Healthy donor’s (JGS) small compact lymphocytes practice emperipolesis, but refrain from attacking allogeneic chondrosarcoma cells. Large granular lymphoid cells (arrows) firmly attach to, and eventually lyse, allo- geneic chondrosarcoma cells. These pictures are among the first photographs taken in the Sinkovics Lab of “large granular lymphocytes” attacking allogeneic human tumor cells without any pre-immunization (J.G. Sinkovics et al in: “Leukemia-Lymphoma” M.D. Anderson Hospital 14th Clinical Symposium in 1969. Year Book Medical Publishers, Chicago, 1970; Cancer 1971;27:782–793; The 7th San Francisco Cancer Symposium, Front Radiat Ther Oncol 1972;7:141– 154). Further medical historical event: upon first sight of the large granular lym- phoid cells (later: NK cells), chief pathologist James Butler suggested that they looked “monocyte-like” (even though the large granular cells failed to phagocytose bacteria) (Figure 27 citation) (278).

Illustration: Reproduction of microphotographs from the early 1970s from J.G. Sinkovics In: “Cytolytic Immune Lymphocytes” Schenk Buchverlag, Passau/Budapest 2008, page 120. 10.10. (147) Patient’s autologous lymphocytes attack chondrosarcoma cells and induce “nuclear clumping” (later: apoptosis). Several attacker lymphocytes lose their morphological integrity. 10.11. Autologous small compact lymphocytes (later: immune T cells) kill by cytoplasmic lysis squamous carcinoma cells of the nasopharynx. 10.12. Two autologous immune T cells kill by total disintegration a melanoma cell. 10.13 and 10.14. Immune T cells of patients with rhabdomyosarcoma attack and lyse allogeneic rhabdomyosarcoma cells. Using immune T cells (and not NK cells) in an allogeneic encounter indicates tumor-specific immune reaction to a shared tumor antigen in rhabdomyosarcomas.

Figure 36. Medical History concerning NK cells. Small compact lymphocytes (recognized later as immune T cells) of the patient with chondrosarcoma sur- rounded and killed the autologous tumor cells (in color). Of the control lympho- cytes deriving from this author (black and white), the small compact lymphocytes refrained from attack, instead large granular lymphocytes (later recognized as Appendix 2 Explanations to the Figures*) 623 natural killer NK cells) attached to the tumor cells to eventually lyse them (see previous Figure 35). Reviewed with dates of the photographs cited (Sinkovics JG Pathology Oncology Research 2004;10:174–187). The tumor antigens, that autol- ogous immune T cells or autologous and allogeneic NK cells were attacking, were not identified (presumed were amplified fetal antigens; mutated oncoproteins; NY-ESO antigens; HiWi antigens).

Illustrations: 1, Large granular lymphocytes (NK cells) and small compact lym- phocytes (immune T cells) of a patient (LN, MDAH#90641) with metastatic liposarcoma in remission after receiving chemoimmunotherapy including viral oncolysate (VO) added, attack in vitro a sarcoma cell deriving from the allogeneic sarcoma cell line #3743 from which the VO was prepared (Presented at the 22nd Annual Clinical Conference at M.D. Anderson Hospital in 1978; cited in ref 147). In Illustration 2, a graph prepared by H David Kay and Harikishan Thota in 1971 in the Sinkovics Lab clearly shows that the healthy author’s (JGS) large granular lymphocytes killed allogeneic tumor cells in vitro: an immune reaction without pre-immunisation (30c). Reprinted in the “Atlas. Effectors of Anti-Tumor Immunity” by M Kiselevsky. Springer Verlag, 2008.

Figure 37. The Hydra. The entire genome of the hydra (H. magnipapillata; H. vulgaris) has been sequenced. These diploblasts lack mesoderm, but the genes ancestral to the generation of mesoderm (snail, twist and their high mobility group protein forkhead, FoxA), are present. Other genes “in the waiting” are those of the photoreceptors, may be ancestral to the eye-encoding pax6/Pax6 cluster to come. Homologs of the verte- brate stem cells (Klf4, Oct4, Sox2, Nanog) are not detectable, but cells interstitially located in the parenchyma are multipotent stem cells. The cnidaria hydra possess and express the LIM protein complex (LIM homeobox Table XVI). LIM and ROCK (Rho-associated coiled coil kinase) proteins drive the amoeboid locomotion in human cancer (breast and prostate) cells. Of the six LIM homeobox clusters, the Hydra utilizes four (Srivastava M et al BMC Biol 2010 18;8:4). The hox/Hox gene/protein clusters of bilaterians to follow later are predated by a very active Wnt signaling pathway (both Disheveled and β-catenin). The Wnt system encodes the regeneration of mutilated body parts, both in Hydra, Hydractinia and Nematostella vectensis. The bone mor- phogenetic pathway (BMP2/4 and TGFβ/Dpp transforming growth factor decapen- taplegic, drosophila) and its antagonists chordin and gremlin, are operational in the Hydra/Hydractinia, even though morphological symmetry in these hosts is not yet present. This system will encode the Spemann-Mangold organizer in the newt (vide infra). Plasmid DNA injections created transgenic Hydra and Hydractinia species (Trevino M et al Dev Dyn 2011;240:2673–2679; Technau U & Steele RE Development 2011;138:1447–1466). In the evolution of its genome, the hydra experienced invasions of transposable elements, lateral gene transfers (some large bacterial genes inserted) and the retention of stem cells for its physiological ontoge- nesis, may be for its reversal from mature to immature cells, and for the rapid regen- eration of lost body parts (like its head) (Chapman et al Nature 2010;464:592–596.) 624 Appendix 2 Explanations to the Figures*)

Figure 38. The Spemann-Mangold Organizer [2347]. Cells of the gray crescent in the gastrulating amphibian (frog; newt) embryo form the notochord. Cells of the gray crescent of the newt blastula transplanted ventrally into another newt blasto- coel induced the development of another notochord located ventrally. It was not the transplanted gray crescent cells that grew into the second notochord; the trans- planted gray crescent cells induced the recipient host’s ectodermal cells to develop into notochords. Otherwise host bone morphogenetic proteins (BMP) would have converted the ectodermal cells into skin cells (epidermis). The transplanted gray crescent cells produced the host BMP antagonist proteins chordin and noggin, that prevented the trans-speciation of ectoderm into epidermis; thus, in absence of BMP, the ectoderm continued its predetermined physiological course to form notochords and central nervous systems. Other factors interacting, especially in the drosophila (insects, crustaceans, arachnids, annelid worms), are ADMP (anti-dorsaling mor- phogenetic protein), ACVR2A (activin A receptor type 2A), protein Nodal, and its antagonists, proteins Cerberus and Lefty. Another Nodal and Wnt antagonist is DKK-1 (dickkopf); SOG (short gastrulation) interacts with SMAD (signaling mothers against decapentaplegic, dpp, TGFβ). In the drosophila, the dorsally acting dpp (TGFβ) is blocked by the ventrally acting SOG. Insects develop ventral nerve cords (Inui M et al Proc Natl Acad Sci USA 2012;109:15354-15359; Spemann H & Mangold H (neé H. Pröscholdt: Transplantation Versuche… Über Induktion von Embryonalanlagen durch Implantation…Universität Freiburg-Breisgau). Induction of embryonic primordia by implantation of organizers from a species, 1923-4. Reprinted Int J Dev Biol 2001;45:13–38)

Figure 39. Caenorhabditis. A nematode living in the soil and feeding on bacteria with a difficult name to apply: caenos for recent, rhabdos for a wand (slender stick). Hermaphrodite females (XX) in vast majority of the population consist of 959 individually recognized cells; extremely rare males (X0) operate 1031 cells. The first totipotent cells of the embryo hatching from the eggs are asymmetrically dividing stem cells. In ontogenesis, some cells are eliminated by apoptosis. The 100-million base pairs C. elegans genome is condensed into six chromosomes; mitochondrial genomes further contribute. Individual genes frequently function arranged in operons. Distressed (starving) larvae enter the dauer stage: resist stress without ageing. Orthologs of the anaplastic lymphoma kinase (alk/ALK) proto-oncogene and TGFβ (DAF7) signaling establish the state of dauer in the larva. The scd gene (suppressor of constitutive dauer) fails to oppose. Further pathways activated in the dauer state are the IGF, TGFβ, SMAD, and v-Ski (Sloan-Kettering avian sarcoma retroviral isolates). Is the state of dauer in a larva analogous to a human pediatric tumor? Some mRNAs are destroyed by RNA interference (iRNA). There is H3K4 methylation and H4 acetylation. The miRNA let-7 (lethal, letter 7) induces cell differentiation and in vertebrate mammalian hosts is a suppressor of ras/Ras oncogenes/oncoproteins (deletion of let-7 may be lethal). In the healthy caenorhabditis, let-7 and argonaute (argonaute-like gene and protein, alg/ALG) synergize in the elimination of potentially harmful mRNAs. Let-7 is essential for the differentiation of the uterus and vulva. Let-7 deficient nematodes Appendix 2 Explanations to the Figures*) 625 experience the replication of undifferentiated vulvar cells and the rupture of the hypercellular organ (a lethal outcome). Are these “ulcers that do not heal” cancers? Insulin-like growth factor-(IGF-) blocked individuals extend their life-span three-fold. Wild Caenorhabditis strains are infected with positive-sense RNA nodaviruses (Le Blanc, Orsay, Santeuil strains). A state of viral carriership is established (Franz CJ et al J Virol 2012;86:11940. González-Aguilera C et al Brief Funct Genomics 2013 Dec 10. Hunter SE et al PLoS 2013;9(3):e1003353. Reiner DJ et al Curr Biol 2008;18:1101–1109. Gal, TZ; Glazer, I; Koltai, H (2004). “An LEA (protein late embryogenesis abundant) group 3 family member is involved in survival of C. elegans during exposure to stress”. FEBS Letters 2004;577: 21–26. doi:10.1016/j.febslet.2004.09.049. PMID 15527756. http://en. wikipedia.org/wiki/File:Caenorhabditis_elegans_hermaphrodite_adult-en.svg by KDS444 licensed under CC BY-SA 3.0.

Figure 40. SOX2 Gene amplification and protein overexpression foretell more favorable clinical course of squamous cell lung cancer. Strong nuclear immuno- histochemistry in squamous lung carcinoma cells in a sample (a). Lung squamous carcinoma cells with amplified and non-amplified Sox2 (b). No SOX2 amplification in tumor cells (c). Normal bronchial epithelial cells show limited confined SOX2 expression (d) (Wilbertz T et al, Mod Pathol 2011;24:944–953).

Figure 41. The Human Stem Cell Transcription factor SOX2 protein is encoded from chromosome 3q26.3-q27. The intranuclear SOX2 protein binds a receptive high mobility group (HMG) protein DNA domain (Tables XI/I and XI/II). Co-expressed with embryonic stem cell factors NANOG and Oct3/4, the SOX2 protein reprograms terminally differentiated cells into pluripotent cells. Certain human parenchymal cells expressing high levels of amplified SOX2 protein assume constitutive and incessant mitotic activity and grow into tumors with propensity to be invasive and metastatic. Sinonasal undifferentiated and inverted papillomatous carcinomas were driven by highly amplified SOX2 oncoprotein. The relapse rates of these tumors were increased. The early expression of SOX2 protein indicates inductive rather than promotional role for SOX2. SOX2-positive tumors developed more lymph node metastases than SOX2-negative tumors (Schröck A et al, PLoS One 2013;8(3):e59)

Figure 42. Notch [2350]. Gene mastermind is a notch signal effector in the dro- sophila. The human homolog of the drosophila notch gene is TAN-1 (T cell leu- kemia translocation-associated Notch homologue). The translocation is at t(7;9) (q34;q34.3). The locus 9q34.3 is homologous with the drosophila notch gene. The constitutively activated gene encodes the overproduction of gamma-secretase. The extracellular domain of TAN-1 is EGF-like; the intracellular domain is ankyrin-rich and as such is inhibitory to DNA-binding of the p50 subunit of NFκB. Exceptional IkB protein Bcl-3 acts like TAN-1. TAN-1 and Bcl-3 reverse transcriptional inhi- bition imposed on them by high levels of p50 dimers. In this case, TAN-1 promotes NFкB-dependent gene expression resulting in T cell activation; so does a truncated 626 Appendix 2 Explanations to the Figures*)

TAN-1 protein (Aster J et al Cold Spring Harb Symp Quant Biol 1994;59:125–136. Ellisen LW et al Cell 1991;66:649–661. Guan E et al J Exp Med 1996;183:2025– 2032. Pear WS & Aster JC Curr Opin Hematol 2004;11:426–433). Porphyromonas gingivalis induces proliferation of vascular smooth muscle cells by activating TGFβ and Notch signaling (Zhang B et al BMC Genomics 2013;14:770). See Notch activation in pediatric brain tumors (ependymoma) in the text.

Figure 43. An Annelid. The ancestral bilaterian protostome marine annelids are represented by Platynereis dumerilii. The triploblastic polychaete, P. dumerilii displays a far advanced neuropeptid network. Its Wnt and FGF ligand-to-receptor systems are highly active in its embryo. Its germ cells provide the progeny; the stem cell compartments lay down the organs consisting of somatic cells. No uncontrolled constitutively replicating stem cell clones (tantamount to tumors) have so far been reported (Conzelmann M et al BMC Genomics 2013;14(1):906; Denes AS et al Cell 2007:129:277–288). The achaete scute neurogenic genome (see Nematostella; Amphioxus) in its vertical evolutionary ascent uses P. dumerilii as one of its sta- tions (Simionato E et al BMC Evol Biol 2006;8:170). Illustration: Unpublished illustration of Dr Nicole Rebscher, University of Marburg, Germany; shown with gratitude.

Figure 44. Viral Oncolysates (VO) with, or without chemotherapy, were effective cancer vaccines before the era of molecular virology. H Koprowski and J Lindenmann independently prepared viral lysates of cultured tumor cells and used the cell-free lysates for immunization of tumor-bearing mice. Viral oncolysates contained the live oncolytic virus and a mixture of unidentified tumor antigens. Some of the antigens were recombined proteins of the viral and cell membrane envelopes/capsids. As such, these antigens were immunogenic in the hosts that would not have responded to their own self cell surface antigens. Tumor-bearing mice, rendered tumor-free upon immunization with viral oncolysates, specifically rejected challenge with large doses of live cells of the same tumor (oncolytic virus-free inocula) that they were bearing, but rejected upon pre-immunization with their viral lysates (Koprowski H et al Texas Rep Biol Med 1957;15:11–128; Lindenmann J & Klein PA. “Immunological Aspects of Viral Oncolysis”. Springer Verlag, Berlin-Heidelberg-New York, 1967). WA Cassel (Emory University, Atlanta, GA), and JG Sinkovics (University of Texas MD Anderson Hospital, Houston TX) prepared viral oncolysates in the 1970s for clinical use in patients with metastatic melanoma (Cassel WA, VO in itself without chemotherapy), and metastatic melanoma and sarcoma (Sinkovics JG, in combination of VO with chemotherapy). In not prospectively randomized patient populations, both inves- tigators reported partial remissions with prolongation of life. Cassel and Murray DR excelled in being able to record durable complete remissions. JG Sinkovics and Plager C were first to report synergism of VO and chemotherapy, manifesting in prolongation of remission duration and life over chemotherapy alone (vide infra). These investigators concluded that viral oncolysates first performed viral oncolysis, and then tumor cells undergoing lysis induced anti-tumor immunity. Sinkovics, Appendix 2 Explanations to the Figures*) 627

Cabiness J, Kay HD, Thota H, and clinical associates reported antibody and lymphocyte-mediated immune reactions quantitatively increasing in responding (and in non-responding) patients (Cassel WA et al In: “Viral Therapy of Human Cancers” edited/authored by JG Sinkovics & JC Horvath, Marcel Dekker, New York, 2005; Pp 677–689; Sinkovics JG “Cytolytic Immune Lymphocytes…” Schenk Buchverlag, Passau/Budapest, 2008; Sinkovics J G & Horvath JC Arch Immunol Ther Experiment, Wroclaw, Poland; Birkhäuser Verlag, Basel 2008;56S:1–59). Citations from other investigators using viral oncolysates for human cancer therapy (P Hersey; MK Wallack; V Schirrmacher) are provided (in “Viral Therapy of Human Cancers”, vide supra). Illustration: Tumor cells are shown undergoing viral lysis by PR8 influenza A virus, or NDV, before removal of all cellular debris. The final cell-free products were reached by carrying out a rigid triple-controlled protocol, providing a cell debris-free supernatant. Dieter Gröschel ascertained bacteriological sterility (including mycoplasma) and freedom from endotoxins (by limulus assay) of the final preparations. Not UV-irradiated pre- parates were used for human inoculations. However, even UV-irradiated VO preparations contained residual live oncolytic viruses (Horvath JC, Horak A, Sinkovics JG. Proc Am Assoc Cancer Res 86th Ann Meet Toronto 1995;36:493#2619). Autologous viral oncolysates were preferred over allogeneic preparations. Non-prospectively randomized patients in need of treatment were accepted and were tested clinically and by laboratory technology for response (or failure thereof) (Sinkovics JG & Horvath JC Int J Oncol 2006;29:765-777).

Figure 45. Coelomocytes [2351]. Innate immune coelomocytes of sea urchin Strongylocentrotus purpuratus. The polygonal P cells possess Sp-185-333-positive perinuclear vesicles. The small S phagocytic cells are Sp-185-333 positive. The discoid D phagocytic cells are Sp-185-333 negative (Brockton V et al George Washington University, Washington DC Cell Sci 2008;121:339–348). Progenitors of the variable leucine-rich repeats receptors (LRR/VLR) of the lamprey are present in the sea urchin genome in addition to 222 Toll-like receptors (TLR). The Toll-interleukin 1 receptor (TIR) and the MYd88 (myelogeous) domains are functional. IL-1 and IL-17 and their receptors are present. The recombination activator genes and proteins rag/RAG1/2 and the Immunoglobulin variable domain V genes are present for an unidentified (not adaptive immunity) function. The Transib family transposons’ DNA inserts encoded first the V(D)J/RAG1-2/RSS complex (variable/diversity/joining; recombination activating genes; recombination signal sequences). In the genomes of the sea urchin, amphioxus, hydra and starlet sea anemone (Nematostella) elements of the system occur singly and unlinked to one another. The entire system worked in unison first in the sharks (chondrichtyes) (Kapitonov V & Jurka J PLoS Biol 2005;3(6):e181; Fugmann S et al Proc Natl Acad Sci USA 2006;103:3728–3733; Rast JP et al Science 2006;314:952–956). The herbicide glyphosate induces DNA-damage in sea urchin embryos, however no excessive abnormal cell proliferations resulted (Bellé R et al J Soc Biol 2007;201:317–327). The sea urchin telomerases, contrary to the rules that invariant identity of crucial catalytic enzymes maintains cell survival lengths, are highly 628 Appendix 2 Explanations to the Figures*) hypervariable (Wells TG etal Mol Biol Cell 2009;20:464–480). Yet the life span of individual sea urchins extends 100 years.

Figure 46. The urochordate Botryllus (B. schlosseri) lives in colonies, in which individual members of the colony share a tunic and a circulatory system within it. In the haemolymph, one of the circulating cells expresses recognition toward self versus non-self. A colony approaching to fuse with a sedentary colony, may be recognized as non-self. The intruder cells will be killed by a process of dissolution. The process of rejection leaves behind scars in each colonies. The cells responsible to kill the allo-incompatible colony are the ancestors of the vertebrate mammalian natural killer (NK) cells (Khalturin K et al Proc Natl Acad Sci USA 2003;100:622–627). Poster presentation at M.D. Anderson Hospital’s Symposium “Cancer Immunity: Challenges for the Next Decade” by Sinkovics JG, Horvath JC, Kay HD on “From the origin of NK cells in the Botryllus to their interaction with syncytiotrophoblasts in the placenta” Abstracts 2003; #1–33:117. The fusion-histocompatibility gene locus consists of two cFuHC genes, one secreted, one membrane-bound (both referred to as ). A third related gene encodes the Botryllus histocompatibility factor (BHF), representing the faculty of the general tunicate allorecognition. Colonies able to fuse must carry histocompatible BHFs. Cells of blood vessels express BHF the most. The reaction of fusion versus rejection is determined by BHF in an as yet unknown mechanism. In the fused chimeric colonies, the stem cells of each colony strive to take over by eliminating the other colonies stem cells. Reconciliation in a mixed genotype is possible (Voskoboynik A et al Science 2013;341:384–387). Observe tunicate genes organized into operons and transcribed in single mRNAs in contrast to amphioxus and vertebrates operating operon-free genomes (Holland LZ J Exp Zool B Mol Dev Evol 2014. doi:10.1002/jez.b.22569). Addition in Appendix 1.

Figure 47. Of the AID/APOBEC enzymes [2352], the activation-induced cytidine deaminase (AID) converts cytosine to uracil. This enzyme is active in somatic hypermutation and class-switch recombination in adaptive immunity (see text). The eight human APOBECs (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) primarily restrict retrotransposons and retroviral genomic expressions. Human HIV-1 and papillomaviral genomes induce APOBEC over- expression (without or with mutagenesis induction). APOBECs specifically target as their exclusive substrate ssDNA, inducing in them cytosine to guanine (C→G) and cytosine to thymine (C→T) substitutions. The C→G and C→T substitutions are recognized as APOBEC signature mutations. Clustered mutations are termed kataegis, Greek for escalating thunderstorms (originally written in Russian Cyrillic letters). APOBEC signature mutations in exomes are common in adenocarcinomas (non-existent in acute myeloid leukemias). The figure shows APOBEC-signature mutations in four breast cancer subtypes (luminal A, luminal B, basal-like, and HER2-enriched). The HER2 protein was considered to be amplified, not mutated; however, it contains high copy number variations due to frequent APOBEC sig- nature mutations. APOBEC cytidine deaminases are a significant source of muta- genesis in the genomes of human cancers, to the extent that they may act as human Appendix 2 Explanations to the Figures*) 629 cancer-driver mutations (Roberts SA et al Nat Gen 2013 Sept 45(9):970-976; Sinkovics JG Acta Microbiol Immunol Hung 2010;57:253–347). Author’s com- ment. The archaic APOBECs induce point mutations “in the waiting” to blindly prepare single cells for survival in any future environmental changes? The AID/APOBEC enzymes are installed to provide antiviral immunity to the cell, but by mis-mutating ssDNAs bring about an eventually fatal outcome to the host by the overreproduction of immortalized cells? Or, is the initiation of immortalized cells an inherent faculty of the RNA/DNA complex carried out in this case by the AID/APOBEC protein?

Figure 48. Reed-Sternberg (RS) Cells of Hodgkin’s lymphoma (HL) are originally mononucleated, but eventually become bi- and multinucleated giant cells. Sinkovics and Shullengerger CC observed these cells in primary bone marrow or lymph node cultures at standstill for several weeks: no RS cells in mitosis could be seen and photographed. Sinkovics repeatedly proposed in lectures (Honolulu, Hawaii; Padua, Italy; M.D. Anderson Hospital, Houston, TX; ASCO, Los Angeles, CA) that RS cells were the products of cell fusions mediated by EBV and an endogenous retrovirus, and thus they were “natural hybridomas” (Sinkovics JG et al Blood 1964;24:389–401; Lancet 1970; 1 (7638):139–140; 1975;2(7933):506–7; Crit Rev Immunol 1991;11:33–63; Leukemia 1992; 6S3:495–535). The cell fusion theory of RS cells was cited by P. Mauch & J. O. Armitage in Holland & Frei “Cancer Medicine” 5th ed. B.C. Decker Inc. Hamilton London 2000 p 2014. However, the German literature forcefully opposed cell fusion in RS cells: “Cell fusion is not involved in the generation of … Reed-Sternberg cell line” (Re D et al Am J Hematol 2001;67:6–9). “Evidence that Reed-Sternberg cells do not represent cell fusions” (Küppers R et al Blood 2001;97:818–821). Endomitosis without cell divisions was suggested for the generation of giant multinucleated RS cells. Michels and Sinkovics independently argued that the cell fusion theory had experimental support (Michels KB Eur J Cancer Prev 1995;4:379–388; Sinkovics JG Acta Microbiol Immunol Hung 2005;52:1–40). Long term time-lapse microscopy recently revealed that fusion and re-fusion of the HL mononuclear cells are the main route of RS cell formation. Mononuclear RS cells separated by division re-unite by fusions (Rengstl B et al Proc Natl Acad Sci USA 2013; 110:20729–20734; Commun Integr Biol 2014;7:e38602). However, the viruses (EBV; endogenous retrovirus) suspected to induce these cell fusions (Sinkovics JG Crit Rev Immunol 1991;11:33–63) received no attention at all. The RS cell-rich syncytial variant HL cells were repeatedly described (Lee SG et al Int J Hematol 2015;101:107–108), but without adequate virological studies performed. The RS cells possess a malignantly transformed genome and the V(D)J immunoglobulin pathway (however defective, due to loss of normal B cell characteristics) of the original B cells. The expression of B cell receptor in RS cells is lost due to loss-of-function mutations in its promoter. These are the SPI/POU protein muta- tions (serine protease inhibitor SPI proto-oncogene; Pit-1, pituitary-specific; Oct-1 octamer-binding; Unc-86 uncoordinated protein, caenorhabditis) (Vockerodt M et al Chin J Cancer 2014;33:591–597). The classical hybridoma cells possess the 630 Appendix 2 Explanations to the Figures*) transformed genome of a malignantly transformed cell and the V(D)J hypersomatic mutation of a normal immunoglobulin-producer B cell. The RS cell possesses both criteria: a transformed genome and the basic B cell V(D)J pathway; thus, it qualifies to the pathognomonic position of a natural hybridoma. It frequently openly expresses EBV, and silently an endogenous retrovirus. Its endogenous retroviral expression is suppressed by acetylation of its inserted proviral genome, which can be activated by deacetylation to express the endogenous retrovirus (Kewitz S & Staege MS Front Oncol 2013;3:179).

Illustration: Thirty years old male patient (MR) at St. Joseph’s Hospital Tampa FL in mid-1990s with Reed-Sternberg cells of lymphocyte-rich mixed cellularity Hodgkin’s disease in lymph nodes and in the bone marrow. His RS cells expressed EBV antigens (no specifics available). History revealed clinically diagnosed infectious mononucleosis in young age with full recovery. Patient achieved uneventful complete remission on ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine) chemotherapy. Later, upon a fall at his home resulting in multiple leg fractures and moving about on crutches, he was found in relapse with bone marrow aspirate positive for many mononuclear and multinuclear RS cells. His circulating T cell population presumably contained EBV-reactive CD4/8+ memory cells. He was started on M.D. Anderson Hospital’s low dose paclitaxel chemotherapy (Younes A et al Ann Oncol 2001;12:923–927). He was infused with autologous CD4/8+ T cells (5x108 cells/mL x8). Bone marrow aspirates showed apoptotic RS cells and mononuclear RS cells dissolving upon contact with immune T cells (shown). Patient sustained good granulocyte count in afebrile state. He was considered to be in second complete remission. Later in 2001 he was admitted in the night through the Emergency Room to the Intensive Care Unit in Gram-negative septic and hemorrhagic shock; was attended immediately and in full. Expired a few hours later. No necropsy was performed (Sinkovics JG & Horvath JC Internat J Oncol 2001;19:473–488; Erratum 2005;27:5–47).

Illustration: Elongated double-nucleated large RS cell surrounded by small, compact lymphocytes (immune T cells); one lymphocyte overlying lower end of the RS cell (Sinkovics JG et al Br J Med 1970;1:172–173). Copyright Printer William Lewis Ltd, Cardiff, Great Britain). This is an example of emperipolesis; no cytoplasmic lysis or nuclear clumping (apoptosis) in the RS cell is evident. RS cells acquire resistance to immune T cells. Mononuclear RS cells are lysed by autologous cyto- toxic lymphocytes; multinucleated RS cells are resistant to, or are protected by Treg cells against, cytotoxic lymphocytes (shown) (Sinkovics JG et al Brit Med J Jan 17 1970;1:172–173; Int J Oncol 2012;40:305–349). RS cells harbor herpesviral (EBV) and endogenous retroviral particles (Sinkovics JG & Györkey F J Med 1973;4:283–317; Sinkovics JG & Horvath JC Int J Oncol 1999;14:615–646. Erratum idem 2005;27:5–47; Sinkovics JG “Cytolytic Immune Lymphocytes…” Schenk Buchverlag, Passau/Budapest, 2008). RS cells offer a wide array of antigenic targets for monoclonal antibodies, NK- and immune T cells. NK cells attack RS cells in the antibody-directed cell-mediated cytotoxicity reaction with the help of Appendix 2 Explanations to the Figures*) 631 lymphokines IL-2/IL-12 (Jahn T et al PLoS One 2012;7(9):e4448). The anti-CD30 moab conjugated to auristatin E was generated for therapy (Stein H, Diehl V Hematol Oncol Clin North Am 2014;28(1);1–11. doi:10.1016/j.hoc.2013.10.007).

Figure 49. G4 quadruplex DNA. The DNA-protein complex 6-base pair repeat telomeres are synthesized by the telomerase reverse transcriptase (TERT). Re-capped chromosomal ends are protected from end-to-end fusions. The ciliate, Stylonychia lemnae renews its telomeres of 36 nucleotides in its dividing macronucleus. The G-rich 3’-overhang is formed by the last 16 nucleotides. The overhang adopts a subtelomeric guanine-quadruplex DNA structure. The G-rich quadruplex DNA structures are both parallel- and antiparallel-stranded. Two overhangs mediate end-to-end association in four-stranded conformations. The formations are stabilized by -bonded guanine quartets. Specific single-chain fragments (scFv) recognize the parallel G-quadruplexes in millions of minichromosomes in the macronuclei. The telomeres receive their caps in the replication bands of the quadruplexes in the macronucleus at each cell division. Telomere capping is accomplished by t-loops, TEBP (telomere-binding protein), and by the G-quadruplex; TEBP and G-4 are interacting (Schaffitzel C et al Proc Natl Acad Sci USA 2001;98:8572–8577). Illustration: G-quadruplex DNA in the macronuclear telomeres of Stylonychia lemnae. Christiane Schaffitzel et al, Proc Natl Acad Sci USA. 2001 July 17;98(15):8572–8577.

Figure 50. PTEN. The tumor suppressor gene and gene product protein PTEN (phosphatase tensin homolog deleted on chromosome ten, human 10q23.3) (Table VIII), is the natural inhibitor of oncogenes PI3K/Akt (phosphatidyl inositol kinase 3; protein kinase 3; phosphatidylinositol 3 phosphate; Jacob Fürth’sAK mouse strain thymic lymphoma retroviral oncogene; phosphoinosite-dependent kinase). The PTEN protein inactivates PIP3 by dephosphorylation; PDK1 (phosphoinositol-dependent kinase) is not recruited to the plasma membrane to activate Akt by phosphorylation. Sarah M. Planchon et al, The nuclear affairs of PTEN. J Cell Sci 2008 121:249–253. doi:10.1242/jcs.022459

Highly malignant adenocarcinoma cells (prostate cancer; triple-negative breast cancer; colorectal cancer) with deleted PTEN (Carver BS et al Nat Genet 2009;41:619–624; Karseladze AI et al Arkh Pathol (Russian) 2010;72:20–23; Kato S et al Int J Cancer 2007;121:1771–1778; Perrone et al Ann Oncol 2009;20:84–90; Reid AH et al Mod Pathol 2012; 25:902–910; Sircar K et al J Pathol 2009;218:505–513; Yoshimoto M et al Genes Chromosomes Cancer 2012;51:149–160). MicroRNA-122 is a promoter of the PI3K/Akt oncogenic pathway (Lian JH et al Asian Pac J Cancer Prevent 2013;14:5017– 5021). The mRNA of the tumor suppressor gene GAS1 (growth arrest specific) is targeted for destruction by overexpressed miR-34a. The GAS1-blockade results in the overproduction of PI3K/Akt/Bad (Bcl-2 antagonist of cell death) with cancers (papillary carcinoma of thyroid) developing (Ma Y et al Biochem Biophys Res Commun 2013;441:958–963). The activated (phosphorylated) Akt oncoprotein targets intranu- clear DNA oncogenes (mammalian target of rapamycin mTOR; mitogen-activated 632 Appendix 2 Explanations to the Figures*) protein kinase MAPK; vascularendothelial growthfactor VEGF) (Shafee N et alCancer Lett 2009;282:109–115; Teng HF et al Mol Cell Endocrinol 2014;383:147–158). PI3K/Akt inhibitors in clinical trials are bortezomib, resveratrol, and small molecular inhibitors of oncogenes/oncoproteins (Ge J et al Biomed Environ Sci 2013;26:902–911; Lin L Int J Oncol 2014;44:557–561; Polivka J & Janku F Pharmacol Ther 2013; pii:50163–7258(13)992404; Qazi AK et al Anticancer Agents Mol Chem 2013;13:1552–1564).PI3K/AKT/mTORpatentedsmallmolecularinhibitors(LY2949; GDC-0980; NVR-BEZ-235 etc) are awaiting their clinical trials.

Figure 51. Ancient Chinese Yin (black) Yang (white). Forces (energies) in the Universe act and counteract, expand and contract, change hot to cold, light to dark and back in continuous movement. Immune T cells and regulatory T cells balance each other (Bluestone JA: The yin and yang of interleukin-2-mediated immunotherapy. N Engl J Med 2011;365:2129–2131).

Figure 52. Placental syncytins. Endogenous retroviral syncytin genes format the two-layered multinucleated murine placental syncytiotrophoblasts at the feto-maternal interface. Two distinct retroviral genes were retroinscribed into the ancestral rodent genome. These proviral genes are expressed in unison, but work independently in the fetus to format the fetal organ placenta. The mouse, rabbit and human syncytin genes are related. Anne Dupressoir A et al, Proc Natl Acad Sci USA 2011;108:E1164–1173 PNAS. doi:10.1073/pnas.1112304108

Figure 53. The Team of Ferenc Györkey†, Joseph (József) Sinkovics and Jeno (Jenő) Szakacs has engaged for several decades in the search of retroviral particles in human tissue specimens submitted to their laboratories. Illustration 1. Györkey and Sinkovics discovered endoplasmic tubuloreticular structures in lymphocytes and parenchymal cells of patients with systemic lupus erythematosus and pre-AIDS era classical Mediterranean Kaposi’s sarcoma cells (shown) (Gyorkey F & Sinkovics JG Lancet 1971;1(7690):131–132; Gyorkey F et al Am J Med 1972;53:148–158; Lancet 1982;2(8305):984–5). Cited in ref 147, fig 4.1: in kidney glomerular cell of patient with SLE. Mistakenly, they regarded the tubuloreticular structures to be incomplete retroviral particles developing in the endoplasmic reticulum. In association with these structures, budding retroviral particles were also observed. Dorothea Zucker-Franklin has also seen an association between the tubuloreticular structures and the retroviral particles in lupus and in KS cells (Zucker-Franklin D N Engl J Med 1983;300;837– 838). However, the tubuloreticular structures proved to be -free; they were formed in the presence of excessive type I IFN production. Once the tubu- loreticular structures proved to be not of retroviral origin, literature citations ceased for both the tubuloreticular structures and the co-existing, genuine retroviral particles (shown in SLE cells). A seemingly valid co-existence of the tubuloreticular structures and budding retroviral particles in human sarcoma cells remains present (shown). Illustrations 2/3/4: endogenous retroviral particles budding from kidney glomerular cells of patients with SLE. Cited in ref 147 page 48 Fig 4.3/4/5. Illustrations 5/6: human soft tissue sarcoma cells with budding retroviral particles. Cited in ref 147 Appendix 2 Explanations to the Figures*) 633 pages 251, 252, Fig 1212 and Fig 1213. The co-existence of HHV8/KSHV with endogenous retroviral particles in KS cells has been repeatedly documented (Sinkovics J G et al Orvosi Hetilap (Hungary) 2006;147:617–621; Sinkovics JG “Cytolytic Immune Lymphocytes…” Schenk Buchverlag Passau/Budapest) (Figures 29 and 30). Clarification: Szepesházi K Lapis K et al Orvosi Hetilap Budapest 1977;118:315–318.

Figure 54. The Naegleria. The life cycle of N. fowleri consists of three stages: flagellate (converting a trophozoite), amoeba, and cyst. Moving on highly mobile by lobodium pseudopodia, the amoeboid trophozoites infect the meninges. Mitochondria secure the aerobic metabolism of the trophozoites. The most versatile genome of the N. gruberi is able to re-format its entire microtubular cytoskeleton when it transforms from an amoeba into a flagellate. To form the flagella, it syn- chronizes some 82 genes. Not the flagellar, but its centriole gene cluster consists of 55 genes. Some of its centriol genes are conserved up to the human genome. Its centrosome-localized conserved centriole component contains genes orthologous with some of those expressed in HeLa cells (Fritz-Laylin KL & Cande WZ J Cell Sci 2010;123:4024–4031) http://jcs.biologists.org/cgi/content/full/123/23/4024/DC1.

Figure 55. Two Different Tumors with Fusion Oncoproteins: African Burkitt’s Lymhoma (BL) with, and Congenital Mesoblastic Nephroma (Fibrosarcoma) (CMN/IFS) without, a Host Immune Response. Epstein-Barr virus attacks a host immunologically overburdened by plasmodia and assorted pathogens. The endem- ically spreading external viral pathogen EBV induces the malignant transformation in African teenagers. Chromosomal breaks form the c-myc/IgH fusion oncogene/oncoprotein by the translocation t(8:12)(q24;q32). In the attacked B lymphocytes, class switching and V(D)J somatic hypermutations are not accom- plished. EBV EBNA1-6 and LMP1-2 immortalize the B lymphocytes in the viral latency III program. Additional oncogenes (NFκB; T cell leukemia 1 from chro- mosome 14q32.1) are recruited. Chemical inhibitor of c-Myc 10058-F inhibited the growth of BL cells. The “starry sky” (shown) histological pattern is that of mac- rophages phagocytosing antibody-coated lymphoma cells as reproduced as such in the mouse (Sinkovics JG et al J Inf Dis 1969;120:250–254). There are host immune reactions to BL cells. Combination chemotherapy induces remissions (with relap- ses). Natural measles virus infection may induce remission due to viral oncolysis. In non-endemic sporadic Western Hemisphere BL cells, the same translocation can occur without EBV. BL occurs in HIV-1 infected patients. Diffuse large B-cell lymphomas occur with or without EBV, but with t(8:12)(q24;q32. In this entity, c-Myc inhibits NFκB and IFN-response (Burmeister T et al Mol Oncol 2013;7:850– 858; Faumont N et al J Virol 2009;83:5014–5027; Kiss C et al Proc Natl Acad Sci USA 2003;100:4813–4818; J Virol Methods 2003;107:195–203). EBV is known to physiologically persist in memory B lymphocytes; the pathogenesis of BL involves the memory B lymphocytes. The EBV-encoded nuclear antigen (EBNA1) escapes recognition by immune T cells of the host. However, EBNA1 is associated with latent membrane protein antigens’ (LMP1/2) expression. BL cells constitu- tively express EBV oncoprotein LMP1 (Hochberg D et al Proc Natl Acad Sci USA 634 Appendix 2 Explanations to the Figures*)

2004;101:139–44). EBNA2 is responsible for the latent immortalization of EBV-infected BL cell by activating Notch signaling. The EBNA2 transcriptional transactivator TAT protein downregulates LMP1/2 production and induces cessation of BL cell proliferation (Farrell et al Proc Natl Acad Sci USA 2004;101:4625–30). In proliferating BL cells, the promoters of cell cycle suppressor genes p16INK4A and p14ARF are hypermethylated and thus inactivated (Nagy E et al Eur J Cancer 2003;39:2298–2300; Anticancer Res 2005;25:2153–2160). In contrast, the consti- tutively activated CDK4/6 is de-activated by its molecular inhibitor palbociclib.

The ETV6/NTRK3 fusion oncoprotein (ETS translocation variant of reticuloen- dotheliosis bird retrovirus E twenty-six; neurotrophin tyrosine receptor kinase) induces secretory basal cell breast cancers in premenarcheal teenager girls, or teenager boys (Yorozya K et al Jpn J Clin Oncol 2012;42:208–211; Szanto J et al Breast 2004;13:439–442). The congenital CMN/IFS kidney tumors express the ETV6/NTRK3 translocation-encoded t(12;15)(p13;q25) oncoprotein with or with- out trisomy of chromosome 11. Whether these two tumors are identical or different is still debated. The fusion of bands 12p13 of gene ETV6 and band 15p15 of gene NTRK3 is the hallmark of these tumors (they do not occur in adulthood fibrosar- comas). The tumor’s energy is carbohydrate-intake dependent with insulin-like growth factor and insulin receptor substrate (IGF2; IRS1) overexpression (Adem C et al Mod Pathol 2001;14:1246–1251; Argani P et al Mod Pathol 2000;13;29–36; Gisselsson D et al Mod Pathol 2001;14:1246–1251; Morrison et al Oncogene 2002;21:5684–5695; Watanabe N et al Cancer Genet Cytogenet 2002;136:10–16). Transmission electron microscopy so far revealed no viral particles (PCR, Immunohistochemistry for viral-encoded proteins; Y. Chang’s technology for the first isolation of KSHV and Merkel cell polyomavirus have not as yet been applied) (Knezevich SR et al Cancer Res 1998;58:5046–5048; Rubin BP et al Am J Pathol 1998;153:1451–1458; Ramachadran C et al Pediatr Dev Pathol 2001;4:402–411). The fetal innate and maternal passive immune faculties of the fetus and newborn apparently mount no immune reactions to these tumor cells: they appear to be accepted as self. Illustration: Sinkovics JG Pienta JR Trujillo J Ahearn MJ University of Texas MD Anderson Hospital, Houston, Texas. An immunological explanation for the starry sky histological pattern of a lymphoma. J Inf Dis 1969;120:250–254. Illustration: David Gisselsson, University Hospital, Lund, . FISH: G-banded chromosome 12 with ETV6 and KRAS2 probes.

Figure 56. The Life Cycle of Phytophthora infestans [2357]. P. infestans gains virulence and drug resistance by gene fusion. Fusion occurs between the disease resistant recombinase gene (DRR206) and β-glucoronidase (GUS). Cis-regulatory elements involved are the wound/pathogen inducible box genes (W/P box). Fusion with the Fusarium solani phaseolae DNAse gene (FsphDNase) provided resistance against Pseudomonas syringae (Choi JJ et al Phytopathology 2004;94:651–660). The class WRKY proteins, sometimes with GQK (trp, arg, lys, tyr; glyc, gln, lys), are segmentally duplicated DNA-binding transcription factors in plant cells (Arabidopsis thaliana; Solanum lycopersicum, the tomato; Petroselinum crispum, Appendix 2 Explanations to the Figures*) 635 the parsley; Vitis vinifera, the grape; Nicotiana benthamiana, the tobacco; Erysiphe necator, the mildew); appearing first in Chlamydomonas reinhardtii (but absent in animals). Occur in the amoeba: Dictyostelium discoideum. Act as first defensive signalers (Eulgem T et al EMBO J 1999;18:4689–4699; Guo C et al J Exp Bot 2014. doi:10.1093/jxb/eru007). WRKY proteins protect Phytophthora infestans against its pathogens. It is the mitogen-activated protein kinase (MAPK) pathway that activates WRKY proteins by phosphorylation (Ishihama N et al Plant Cell 2011;23:1153– 1170). The MAPK is a frequently used proto-oncogenic pathway in transformed eukaryotic cells. Large peripheral vesicle proteins transiently fused by dynamine interaction in some oomycetes in the Phytophthora genus. These proteins are secreted as an introductory act to host tissue invasion. Similarly, fibrosarcoma cells are known to practice cargo release (exocytosis) from superficial vesicles (Jaiswal Rivera Simon et al Cell 2009;137:1308–1319; Zhang W et al PeerJ 2013;1:e221).

Figure 57. Showing some of the first human NK cell pictures. Ewing sarcoma cells carry the EWS-FLI-1 translocation t(11;22)(q24;q12) at Friend leukemia insertion site (Fli), express cancer-testis antigens, and are attacked by host lymphocytes, both immune T cells and NK cells. The first human NK cells viewed in the late 1960s are shown; cited from Sinkovics JG et al Leukemia Lymphoma. Yearbook Medical Publisher Pp 53–92, 1970) (278). The first Ewing sarcoma cell line was established by author JGS and associates from 10 year old female patient (MDAH#79610) at the Section of Clinical Tumor Virology & Immunology of M.D. Anderson Hospital in 1970 (shown in its 50th in vitro passage). At that time it has just become known that patients’ small compact lymphocytes (later: immune T cells) reacted to autologous (and related allogeneic) tumors, and large granular lymphocytes (later: NK cells, red arrows) reacted to autologous and allogeneic tumors (shown in Figures 35 and 36) and that healthy tumor-free individuals also possessed these latter cells (Sinkovics JG Györkey F et al Methods Cancer Res Academic Press 1978;XIV:243–323; Sinkovics JG et al Leukemia-Lymphoma Year Book Medical Publishers 1970; 53–92; Management Bone & Soft Tissue Tumors. Year Book Medical Publishers 1977;361–410; Sinkovics JG, Plager C et al Canad J Surg 1977;20:542–546; Oncology 1980;37:114–119). Since then, the chemo-radiotherapy-resistant Ewing sarcomas have become targets of immunotherapy with anti-IGF-R or anti-CD99 monoclonal antibodies, and bio- logical interventions (EWS-FLI gene silencing; αTNF/TRAIL induction; TGFβ induction with rapamycin and mTOR inhibition; PARP-cleavage by the pan-cycline kinase inhibitor flavopiridol). Autologous immune T cells and/or allogeneic NK cells attack Ewing sarcoma cells. Type I IFNs induce apoptosis of EWS cells through the activation of TNFα-inducing ligand (TRAIL). Expression of ligand NKG2D (stimulated by histone deacetylase inhibitors, or by lentiviral transduction) renders EWS cells susceptible to native or activated NK cell therapy. Chondromodulin-, or enhancer of zeste-stimulated HLA-A0201+ dendritic cells rendered allo-restricted HLA-A201− CD8+ T lymphocytes cytotoxic to EWS cells. Anchor-residue reinforced EWS-FLI-1 peptides induced T lymphocytes to attack EWS xenografts (Berhuis D et al Clin Sarcoma Res 2012;2(1):8; Cho D et al Clin 636 Appendix 2 Explanations to the Figures*)

Cancer Res 2010;16:3901–3909; Evans CH et al Clin Cancer Res 2012;18:5341– 5351; Kelleher FC & Thomas DM Clin Sarcoma Res 2012;2(1):6; Lehner M et al PLoS One 2012;7(2):e31210; Mahlendorf DE & Staege MS Cancer Biol Ther 2013;14:254–261; Thiel U et al Br J Cancer 2011;104:948–956). FLI = Friend leukemia insertion site. Illustrations: 1, 2. Sarcoma cell attacked by autologous small compact lymphocytes (later: immune T cells) and large granular lymphocytes (later: NK cells) shown in 1969 at M.D. Anderson Hospital Symposium “Leukemia-Lymphoma” (Sinkovics JG et al Year Book Medical Publishers, Chicago, 1970 Pp 53–92) (278). Picture of medical historic value showing for the first time NK cells attacking a human cancer cell. 3. Ewing sarcoma cell line established from patient MDAH#79610) identified as that of a Ewing’s sarcoma cell with t(11;22) (24;q12) by pathologist Bruce McKay who prepared the trans- mission electron microscopic picture (Sinkovics JG, Plager C et al Immunotherapy of human sarcomas. In: “Management of Primary Bone & Soft Tissue Tumors”. Year Book Medical Publishers, Chicago, 1977 Pp 361–410.

Figure 58. BRAF mutations. The rat fibrosarcoma retrovirus incorporated in its genome the host cell proto-oncogenes rafABC: c-raf → v-raf (Rapp UR et al Proc Natl Acad Sci USA 1983;80:4218–4222). The raf (rat fibrosarcoma) proto- oncogenes are widely spread in vertebrate mammalian hosts. The Braf gene is sub- ject to gain-of-function point mutations in its nucleotide BRAF V600E (valine; glutamic acid in exon 11, codon 600). The mutated genome is constitutively active in many different human tumors: melanoma (60%), hairy cell leukemia (100%), splenic B cell lymphoma, histiocytic sarcoma, platelet-derived growth factor receptor PDGFR-negative gastrointestinal stromal tumors, some (40%), papillary thyroid carcinoma, some colon carcinoma (10%). Constitutively activated MEK and ERK pathways (MAPK/ERK kinase; mitogen-activated protein kinases; extracellular signal-regulated kinase) result in non-stop cell divisions. This mutation does not trans-speciate the cell in which it is active (morphologically different tumor cells carry the same mutations and retain their native morphology). Melanoma and hairy cell leukemia showed clinical response to type I IFNα. All BRAF-mutated tumor cells respond with cessation of growth and apoptotic death to the small molecular inhibitor vemurafenib. Patients with melanoma treated with vemurafenib may develop squa- mous cell carcinoma of the skin. These tumors commonly remain localized and are curable with surgical excision. On rare occasion, these tumors display eruptive fea- tures and malignant behavior. It is not yet clear what genomic mutations induce these tumors (Mays R et al J Cutan Med Surg 2013;17:419–422 Illustrations: Human melanoma cells with melanosome. EBV particles released from hairy leukemia cells (Sinkovics JG et al Methods Cancer Res 1978;XIV:243–323; Lancet 1975;1:749– 750; Ann Int Med 1976;85:532–533; N Engl J Med 1976;295:1016).

Figure 59.FasL→ FasR-Induced Mitosis. Short term (several months) in vitro established human melanoma cells deriving from patients with metastatic disease expressed the Fas receptor (R, fragment apoptosis signaling). These melanoma cells were exposed to highly purified Fas ligand (FasL). Figures shown were prepared by Appendix 2 Explanations to the Figures*) 637

Joseph C. Horvath for publication (vide infra). Instead of apoptotic cell death, as expected, FasL induced mitoses of FasR+ melanoma cells. Melanoma cells are known to undergo chromosomal breaks involving chromosome 1, with the locus of granulocyte colony stimulating factor receptor at 1p32-34 (Tweardy DJ et al Blood 1991;79:1148–54), and that of chromosome 10, with the locus of FasR (receptor, CD95) at 10q23-26 (Lichter P et al Genomics 1992;14:179–180). In order to explain how FasL-to-FasR could induce a mitotic response, it was postulated that the broken chromosomes 1 and 10 fused and generated a new fusion product gene of FasR and GCSF-R as t(1;10)(p32;q23-26). The signal conduction pathway of the gene product protein placed the FasR on the cell surface. Upon capturing FasL by FasR at the cell surface, signaling traveled through the cytoplasm into the G-CSF-R fragment of the fusion protein, that induced mitosis within the nucleus (Sinkovics JG & Horvath JC Int J Oncol 2001;19:473–488; Horvath JC et al Proc 89th Ann Meet Am Assoc Cancer Res 1998;38:2371 #584; Sinkovics JG Acta Microbiol Immunol Hung 1997;44:295–307. Erratum. In the MS FasR was correctly spelled CD95). The generation of this pathway in vivo as proposed receives support from experiments in which effective signals depended on the cytoplasmic region of chimeric FasR and G-CSF-R receptors: FasR cytoplasmic region induced apoptosis and G-CSF-R cytoplasmic region induced mitosis of leukocytes carrying the arti- ficially prepared chimeric receptors (Takahashi T et al J Biol Chem 1996;271:17555–17560). Karyotyping of the melanoma cells expressing patho- logically formed chimeric receptors with FasR on the cell surface and G-CSF-R in the cytoplasm would provide the final proof. Human B cell lymphoblasts release exosomes constitutively that induce apoptotic death in CD4+ T lymphocytes (Klinker MW et al Front Immunol 2014.doi:10.3389/fimmu.2014.00144). Illustrations: Published figure showing soluble FasL stimulating mitoses of FasR+ melanoma cells and anti-FasL antibody abrogating the effect (Sinkovics JG & Horvath JC Internat J Oncology 2001;19:473–488. Errata: Typographic error in the cartoon. Idem 2005;27:33). FasL-to-FasR. Ralph Budd, Vermont Center for immunobiology and Infectious Diseases. University of Vermont. Abbreviations: FLICE: Fas-associated death domain-like IL-1β-converting enzyme (caspase 8). TRAF: tumor necrosis factor receptor TNFR-associated factor. GCSF-R human granulocyte colony stimulating factor receptor (M Kimmel & S Corey in Frontiers in Oncology, 2013. doi:10.3389/fonc.2013.00089)

Figure 60. HHV6.*) History.The replication of human herpesvirus 6 is within the host cell nucleus. Immature viral particles bud out of the nucleus and become tegumented in the cytoplasm. Tegumented virions are taken up by the Golgi apparatus to receive their glycoprotein envelope. The egress of mature virus par- ticles is through the cell membrane. Infected children experience the skin rash of roseola (exanthema subitum) consequential of viremia, also involving the cerebrum and meninges. Thereafter the viral genome rests in infected cells (commonly in lymphocytes; some parenchymal cells) in a stage of life-long latency. In latency, the viral genome integrates itself into chromosomes and is passed to cellular progenies, germ cells included. Cells taken up HHV-6A genomes will not allow the integration 638 Appendix 2 Explanations to the Figures*) of HHV-6B genomes. During its integration via homologous recombination, the HHV-6 genome loses 79 of its nucleotides. The chromosomal subtelomeric region is the favored viral integration site. The viral gene U94 encodes protein RepH6; enzyme RepH6 functions as an endonuclease, helicase, or ATPase. HHV-6 RepH6 might have derived from an adenoassociated viral gene incorporated into an ancestral HHV-6 genome now recognized as HHV-6 gene U94. HHV-6-infected lymphocytes may form syncytia. The gene product protein of HHV-6 gene U24 share amino acid identity with the myelin basic protein. Immune T cells attacking HHV-6 may attack also cells expressing myelin basic protein and thus induce the clinical picture of multiple sclerosis. During HIV-1-induced AIDS, HHV-6 becomes reactivated and mature virions appear in the blood. The inherited famil- ial HHV-6 syndrome is a serious ailment (Arbuckle JH et al Proc Natl Acad Sci USA 2020;107:5563–5568; Virology 2013;442:3–11). Peter Medveczky con- siders familial HHV-6 syndrome to be a clinical form of the chronic fatigue syn- drome. Illustration: FISH documentation of subtelomeric HHV-6 genomic integrat. *) Isao Miyoshi’s group finds HHV6 in Burkitt’s lymphoma (Daibata M et al Br J Haematol 1998;102:1307–1313). Isao Miyoshi and this author served together in fellowship in 1959 at MD Anderson Hospital (cited in [147]).

Figure 61. H. H. Niller’s Presention at his inaugural honorary membership lecture at the 14th International Congress of the Hungarian Society of Microbiology in 2003 at Balatonfüred, Hungary. The topic was a particular genomic segment of the Epstein-Barr virus. This viral genomic segment located within the EBER1 promoter appeared to be co-linear with a part of a sequence in the human immunoglobulin locus V(D)J. The co-linear human genomic sequence is within the 5'-end of the human lambda light chain immunoglobulin locus. Niller proposed that these two genomic segments derive from a common ancestor and reached the human genome through herpesviral vectoring. The original acquisition of the sequence in question might have occurred horizontally at the era of the first gnathostomata, from where the genomic segment was passed vertically up to Homo. Niller’s idea fits into a scenario whereby protocells on one side of the ping-pong table evolved and acquired DNA replicons from viruses evolving on the opposite side of the ping-pong table. There, tRNAs evolved into , retroviruses and DNA viruses (without explaining how RNA has become DNA). In the possession of DNA replicons of viral derivation, the protocells separated their soma (cyto- plasm) from their germ line (nucleus) (Niller HH et al Acta Microbiol Immunol Hung 2004;51:469–484). The long ago formed separation of the RNA and retro- viral camp of virologists may argue with the DNA virus camp in proposing that retrotransposons provided the basic genomic elements to the gnathostomata sharks (Kapitonov W & Jurka J PLoS Biol 3(6):e181), and that herpesviral ancestors acquired their adaptive viral genomic elements more recently from hosts higher up on the evolutionary scale already being in the possession of these elements well established. The ancient herpesviral genomic segments inserted into the amphioxus genome (Savin KW et al Virol J 2010;7:308) may hold the trump card. Appendix 2 Explanations to the Figures*) 639

Figure 62. Class I Retrotransposons use RNA-mediated, Class II DNA transposons use DNA-mediated mechanisms for their transposition. Retrotransposons far out- number DNA transposons in the human genome. Non-LTR (long terminal repeats) short and long interspersed nuclear elements (SINE; LINE) are the most numerous transposons. The two ORFs of the 6 kbp LINEs encode an endonuclease and a reverse transcriptase. The endonuclease performs the nick on the ssDNA and the reverse transcriptase converts the RNA into DNA for insertion. The excised autonomous Class II DNA transposons encode the transposase that fits to their own inverted terminal repeats (ITR). The ITRs of a non-autonomous Class II DNA transposon depend on another transposon’s transposase for insertion (trans-supplementing the transposase protein). The first dormant transposase reconstructed from the fish gen- ome is the “Sleeping Beauty” (Z. Ivics, Zs Izsvák, R.H. Plasterk et al Cell 1997;901:501–510; Nat Methods 2009;6:415–422). Reconstructed natural Class II DNA transposons from insects, fish and amphibians are the Sleeping Beauty, Frog Prince, Hsmart, Mariner, Minos, Tol2, piggyBack (from the insect cabbage looper Trichoplusia ni) and piggyBat (from the little brown bat Myotis lucifugus), and a synthesized mammalian Class I non-LTR-retrotransposon (ORFeus for mice). Disregarding for practical purposes, in the evolutionary drive that transposons exerted since the generation of life (Dupeyron M et al Mob DNA 2014;29:5:4; Feschotte C & Pritham EJ Annu Rev Genet 2007;41:331–368; Pace JK II & Feschotte C Genome Res 2007;17:422–432; Skipper KA et al J Biomed Sci 2013;20:92), they may serve as vehicles of inserted genes and thus for gene therapy. In contrast to virally-vectored gene therapy, the gene-carrier transposons induce no neutralizing antibodies or immune reactions in the treated hosts, and their cargo capacity extend to large transgenes (Hong IS et al PLoS One 2014;9(1):e86324; Swierczek M, Izsvák Z, Ivics Z Expert Opin Biol Ther 2012;12(2):139–153; Human Gene Ther 2011;22(9):1043–1051). They may contribute to gene recombinations and mutations (known in the Daphnia; in crustaceans) (Schaack S et al Genome Biol 2010;1104):R46). They may spread horizontally (extensively, known in the droso- phila) (Bartolomé C et al Genome Biol 2009;20(2):R22; Dupeyron M et al MobDNA 2014;5(1):4; Schaack S et al Trends Ecol Evol 2010;25:537–546). Zoltán Ivics, Zsuzsanna Izsvák et al Max Delbrück Center for Molecular Medicine, Berlin, Germany. Nat Methods June 2009;6:415–422. SBTS3 http://commons.wikimediua. org/wiki/File:SBTS3.png by Perryhackett licensed under CC BY.

Figure 63. Neurospora crassa. Barbara McClintock identified first that the chro- mosomes in the fungal genome (Neurospora) were eukaryotic. E.T. Tatum and G.W. Beadle won the Nobel prize for showing in 1941 that the Neurospora haploid genome works by the “one gene one enzyme” basic rule. Neurospora cells harbor mitochondria. The mitochondrial genomic introns revealed the process of self-splicing, and that interfering RNA (iRNA) could eliminate mRNAs issued by DNA genes. Neurospora cells’ haploid genome contains approx 10,000 genes. Neurospora cells change their haploid genome to diploid at conjugation. The gen- ome returns to haploid state by methylating, thus silencing, the cytosines in both copies of duplicated sequences. Neurospora cells operate PARP (poly(ADP-ribose) 640 Appendix 2 Explanations to the Figures*) polymerase) (Table II) orthologs of the mammalian cells’ PARPs for ss/dsDNA break repairs and polyADP-ribozylation (Kothe GO et al Fungal Genet Biol 2010;47:297–309). In hyperosmotic stress (or due to mutations), the evolutionarily highly conserved PP2A class of phosphatases interact with the MAPK pathway; PP2A dephosphorylates and thus inactivates MAPK. Loss-of-function mutated phosphatases fail to stop MAPK. Hyperactive MAPKs induce excessive hyphal growth. The unregulated cell proliferation does not respond to inhibitors (the tert-butylhydroperoxide, t-BuOOH (Sigma), becomes ineffective). Inactivation by dephosphorylation of gene cdc-14 (cell division cycle) leads to unopposed activity of cdk-1 (cycle dependent kinase) resulting in incessant mitoses. In these cells the microtubule-attaching mitosis inhibitor benomyl becomes ineffective (Bennett LD et al Eukaryot Cell 2013;12:59–69; Ghosh A et al G3: Genes Genomes Genetics 2014;4:349–365). The Neurospora cell photoreceptors VIVID and White Collar (WC) activate the cells’ circadian rhythm, which is regulated by the clock genes/proteins ATF/CREB (activating transcription factor; cyclicAMP-responsive element-binding protein; adenosine monophosphate). These genes/proteins syn- chronize Neurospora cell divisions (Hong CI et al Proc Natl Acad Sci USA 2014;11: 1397–1402; Lamb TM et al Fungal Genet Biol 2012;49:180–188). The Neurospora clock gene frq (frequency) is shared with other fungi (Magnaporthe, Podospora). The frq and catp (clock ATPase) genes regulate histones in the nucleosome. The ccg2 (clock-controlled gene) encodes the spore surface rodlets. The bd (band) and fluffy genes induce high GTP (guanine triphosphate) levels and conidia (asexual spores) formation; they are activated by ROS (reactive oxygen species) and by receptor WC. Comment. The two Neurospora bd genes are ancestral to eukaryotic proto-oncogenes ras (rat sarcoma). Mutated Neurospora hyphal cells grow like chemotherapy-resistant human cancer cells. The descendants of Neurospora clock gene mRNAs and clock proteins respond to circadian rhythm in human cancer cells (naevus; cutaneous and uveal melanoma) (Lengyel Z et al Tumour Biol 2013;34: 811–819; Gamaleia NF et al Exp Oncol 2006;28;54–60; Otálora BB et al J Pineal Res 2008;44:307–315; Riabykh TP et al Vest Ross Akad Med Nauk 200;8:30–33). In the mammalian genome, target sites for the CREB proteins are proto-oncogenes AKT, Fos and Jun (AK mouse retroviral thymic lymphoma oncogene; Finkel murine osterosarcoma retroviral oncogene; bird reticuloendothelial retroviral oncogene 17; seventeen in Japanese is jun). Comment. Vertebrate mammalian (human) cells in the process of their malignant transformation regress to the level of the cell survival pathways of ancient eukaryotes. Ancient cry (circadian rhythm) genes may be dis- tant orthologs of vertebrate mammalian (human) genes. The human tumor pine- aloma possibly shares circadian rhythm genomic features with the ancestral genes operating in Neurospora crassa (in Appendix 1).

Figure 64. The Guardian of the Genome. The p53p63 genes underwent over one billion years of evolution from the sea anemone to the human genome. The caenorhabditis’ hybrid gene p53p73 (C. elegans p53, CEP-1) duplicated to produce the vertebrates’ p53 gene (Belyi VA et al Cold Spring Harb Perspect Biol 2010;2: a001 198). The p53 gene is a target of DNA-binding proteins that regulate its Appendix 2 Explanations to the Figures*) 641 activation or suppression. Anti-apoptotic microRNA-125b (oncomir miR-125b) (Table XXIII) by suppressing tumor suppressors CDKN2A/ink4a/14ARF (cyclin-dependent kinase; alternative reading frame), upregulates murine double minute (MDM) and its homologs (Amir S et al PLoS One 2013;8:e61064). The human gene product protein p53 is encoded from 17p13.1 and is synthesized in the ribosome. The p53 protein either succumbs to ubiquitination by MDM (or is guided into mitochondria by the MDM antagonist small molecule nutlin) (Lee S-Y et al Int J Oncol 2013; 10:1027–1035). Within mitochondria the p53 protein activates the intrinsic mitochondrial apoptotic death of the cell (The p53 protein may enter the nucleus in order to activate its numerous target genes (Vogelstein B et al Nature 2000;408:307–310), among them PUMA (p53-upregulated mediator of apoptosis), and pro-apoptotic BAX (Bcl2-associated X protein). The NADH-quinone oxi- doreductase translocates protons through membranes. It started its activity in prokaryotes and continued it in the mitochondria of eukaryota. In dysfunctional mitochondria, p53 activity is reversibly (by chloramphenicol) suppressed; apoptosis induction is stalled; and cells are protected against gamma-irradiation- (γIR-) induced death. Cancer cells gain survival advantage (Compton S et al J Biol Chem 2011;286:20297–20312). The ancient NDUFA gene encodes the MWFE protein (abbreviations explained in text) (Au HC et al Proc Natl Acad Sci USA 1999;96: 4354–4359) . Constitutively overproduced (due to such NDUFA promoters, resulting in MWFE mRNA overexpression), or mutated MWFE accelerate cell growth (Yadava N et al J Biol Chem 2002;277:21221–21230). Illustration: p53 protein reacts with its target DNA. Cho et al Science 1994;265:346. Springer ML et al Genes Dev 1992;6:346–355.

Figure 65. Aberrant Mitoses lead to Aneuploidy. The consequences may be apop- totic cell death, autophagy, or malignant transformation. Illustration: Kops GJPL, Weaver BAA, Cleveland DW. Nature Reviews Cancer 2005;5:773–786.

Figure 66. Pettenkoferien. Hugo von Preisz, professor & chairman of the Institute of Bacteriology at the Péter Pázmány University in Budapest, Hungary devoted two decades for the study to the phenomenon of “Pettenkoferien”, that was first observed by Ph. Kuhn and K. Sternberg. He then published a lavishly illustrated monumental article on his studies in 1937 in the Zentralblatt für Bakteriologie (Erste Abteilung / Originale Juli 12 1937; Band 139, Heft 5/6 Seiten 225–268 mit XIII Tafeln; Verlag von Gustav Fischer in Jena). What he believed he was observing was not a symbiotic relationship between bacteria and a protozoal parasite, the imaginary Pettenkoferia. It was the response of the bacterial genome to an attack by low dose LiCl put in the media. The living matter responded with the creation of an inexhaustible variety of morpho-biochemical life forms from “punktförmige Körperchen mit Wachstum”, “größere Keimlinge”, and the most spectacular “Riesenformen”. For this author, what Professor Preisz viewed with astonishment was the ancient scenario of pri- mordial spheroplasts surviving “at the edge” in the hostile environment of the ancient Earth, as replayed in his culture vessels (Table XIV). 642 Appendix 2 Explanations to the Figures*)

Figure 67. Vascular Mimicry. Tumor cells recruit host vascular endothelial cells in the form of primitive blood vessels by secreting the VEGFs to be captured by VEGF-Rs on the neighboring endothelial cells. Tumor-friendly M2 Mϕs may be producing the VEGFs. The bone marrow upon receiving appropriate signals from tumor cells releases immature vascular endothelial cells, which travel to the tumor bed and line up into vascular channels. Certain tumor cells are able to genetically transspeciate themselves into vascular endothelial-like cells, which form primitive channels, that can circulate blood into the tumor bed. Gene activations and silencing include EphA2 receptors, cadherin VE, focal adhesion kinase (FAK), extracellular regulated kinase ERK1/2, and PI3K (Döme et al Am J Pathol 2007;170:1–15; Hess AR et al Dev Dyn 2007;236:3283–3296; Sharma N et al Prostate 2002;50:189–201). Uveal melanoma cells in the process of transformation into vasculogenic morphology, expressed the stem cell marker CD271 (NGFR, p45NTR nerve growth factor neurotrophin receptor) (Valyi-Nagy K et al Mol Vis 2012;18:588–592). In the placenta of the fetus, syncytiotrophoblasts are known to transspeciate themselves into artery-like blood vessels. In choriocarcinoma, an abundance of endotheial cell-like syncytiotrophoblasts provide the tumor’s major blood supply (Shih I-M Mod Pathol 2011;24:646–652). Illustration: Uveal mela- noma cells in culture display vasculogenic mimicry pattern and express CD271 (shown in Fig 2 of the cited article) (Valyi-Nagy K et al Mol Vis 2012;18:588–592)

Figure 68. Autophagy. Under lymphocyte attack, human sarcoma cells extensively vacuolized their cytoplasm, but remained metabolically alive. These unusual cells were viewed and photographed in the late 1960s. Then the phenomenon of autophagy was not recognized as such. Some sort of tumor cell dormancy was considered (Sinkovics JG J Med edited by Julian Ambrus Sr 1970;1:15–25; 313– 326; reproduced in Sinkovics JG “Cytolytic Immune Lymphocytes…” Schenk Buchverlag, Passau/Budapest, 2008) (147).

Figure 69. Neuroblastoma (NB). Undifferentiated high grade tumor cells (showing ganglioneuromatous features; or rosette-formation elsewhere) are shown. The tumor cells express chromogranin, synaptophysin, vimentin, neurofilament and neuron-specific enolase. In the genome there is N-myc amplification; deletion of subtelomeric region at 1p36.33; low expression of maturation factor TrkA (tropomyosin receptor kinase). In sporadic (not the familial) NB tumors the NBPF gene (neuroblastoma breakpoint-family member) undergoes copy number variations in 1q21.1 deletion, or in 1q21.1 duplication. The entire NBPF gene underwent duplication during primate evolution. A human endogenous retroviral LTR has been inserted in one of the introns of the NBPF3 gene. On occasion, gene NBPF1 fuses with gene ACCN: t(1;17)(p36.2;q11.2) (ACCN = ASIC, acid sensing proton-gated ion channel) (Diskin SJ et al Nature 2009;459:987–991; Vandepoele K et al Mol Biol Evol 2005;22:2265–2274; PLoS One 3(5):e2207; Virology 2007;362:1–5). The LMO1 gene is duplicated. The homeobox LMO proteins (LIM Only) (Table XVI) are evolutionarily conserved (schistosoma; caenorhabditis; drosophila). LMO2 is a human leukemia oncogene/oncoprotein (El Appendix 2 Explanations to the Figures*) 643

Omari K Blood 2001;117:2145–2154; Matthews JM et al Nat Rev Cancer 2013;13: 111–122; Smith S et al PLoS One 9(1):e85883). The amoeba and the amoeboid cancer cells use LIM domain proteins for their locomotion (Guetta D et al PLoS One 2010;5(12):e15249). Additional information in the Appendix 1.

Figure 70. Pediatric Rhabdomyosarcoma of the orbit in the 1960s at M.D. Anderson Hospital’s Sarcoma Service (Author’s material). Treated with surgery (enucleation; orbital exenteration), radiotherapy and chemotherapy (actinomycin D, cyclophosphamide, vincristine); later, doxorubicin (Adriamycin), ifosfamide (Ifex), with prolongation of life with without cure. One eye lost, life saved in the 2010s. Intergroup Rhabdomyosarcoma Study Group / Children’s Oncology Group report: sarcoma-free survival 92% at median 7 years; survival 82% at 5 years after relapse from remission(s) (Ranet B Pediatric Blood Cancer 2013;60:371–376). For relapses intensive chemoradiotherapy is recommended still with “curative intent”. Late general health adverse side effects of chemoradiotherapy are significant (Hudson MM et al JAMA 2013;309:2371–81; Hofman MC et al J Clin Oncol 2013;31:2799–2805; St. Jude’s Pediatric Oncology Hospital annual reports). Possible targeted epigenetic therapy emerges. The BMP2 (bone morphogenetic protein) promoter is silenced, especially in a-rhabdomyosarcoma. Demethylation by 5-Aza-2'-deoxycytidine (Decitabine) released BMP production with reduced via- bility of rhabdomyosarcoma cells resulting (Wolf S et al Int J Oncol 2014 Feb 27. doi:10.3892/ijo.2014/2312). Osteo-, rhabdomyo-, and Ewing-sarcoma cells treated with 5-Aza-2'dc overexpressed their MHC and NY-ESO-1 antigens (MAGE-A1/3) and become susceptible to the hosts’ cytotoxic immune T lymphocytes (Krishnadas DK et al Tumour Biol 2014;35:5753–5762). Sirtuin (silent information regulators) histone deacetylases and ADP-ribosyl transferases prolong cellular life and are highly upregulated in synovial and rhabdomyosarcoma cells (and in several other malignantly transformed, such as leukemia and glioblastoma, cells). Tenovin-6- and anti-Sirt siRNA-treated sarcoma cells ceased proliferating due to increased levels of cell cycle inhibitors, inhibited autophagic flux, and restored p53-mediated apop- tosis, but did not interact with the fusion oncoprotein FOXO/PAX (Ma L et al Cell Death Dis 2014;5(10):e1483). For cytotoxicity of NK and immune T lymphocytes to autologous sarcoma cells discovered in the late 1960s, see Sinkovics JG “Cytolytic Immune Lymphocytes…” 2008 Schenk Buchverlag, Passau/Budapest. Illustration: Sinkovics JG, Pp 417–488 in Monograph on Recent Trends in Cancer Chemotherapy. JR Chowdhury S Mitra. Chittaranjan National Cancer Research Centre, Calcutta, . Terese Winslow. All rights reserved.

Figure 71. The Cancer Stem Cell is a mutated normal progenitor cell, or stem cell. The mutation constitutively turns on the stem cell genes (FAK, Nanog, c-Myc, Oct, Sox, Kfl, etc) (Table IX). The mutated stem cell will not differentiate. It may stop its asymmetric divisions (a self renewed stem cell, and a differentiating somatic daughter cell), and instead produces two undifferentiated stem cells. It has reacti- vated the genetically encoded ancient “cell survival pathways”, which have been encoded by proto-oncogenes. The process is dominated by the constitutive 644 Appendix 2 Explanations to the Figures*) expression of faculties for resistance to apoptosis, and to chemical and radiation exposure. The transforming cell assumes the locomotion of an amoeba by remodeling its cytoskeleton in the process of epithelial-to-mesenchymal transition. It hides its MHC-expressed antigens like a parasitic unicellular pathogen (Entamoeba, Giardia; Trichomonas; Naegleria; Plasmodia; Theileria; Trypanosoma; Neurospora; Phytophthora). It demands blood supply like a syncytiotro- phoblast by inducing host fibroblasts and macrophages for its exocrine supply; or trans-speciates itself in imitating vascular endothelial cells in lining up into a primitive tubular structure with red blood cells inside (vasculogenic mimicry). Mutated cancer stem cells were generated in therapeutically γ-irradiated human breast cancer tissue. No indication for abandoning cancer radiotherapy (Pajonk F Dept Radiology Oncology David Geffen School of Medicine University of California Los Angeles CA). Terese Winslow. All rights reserved.

Figure 72. A Murine Hybridoma. In the 1960s at the Section of Clinical Tumor Virology & Immunology of The University of Texas M.D. Anderson Hospital, the leukemogenic retrovirus-producer murine lymphoma cell line #620 was maintained by cell passages in vivo and in tissue cultures in vitro. In the mid-1960s in the in vitro cultures large round lymphoid cells appeared spontaneously and grew in suspension cultures (cell line #818). The large round cells were tetra-, or polyploid. In mice these cells grew in large haemorrhagic ascitic and invasive lymphomas. It was determined that these large round cells were the fusion products of the diploid #620 cells and normal plasma cells, which secreted immunoglobulins specific to the retroviral particles budding from the surface of #620 cells. In the fusion product #818 cell, its immune plasma cell component secreted the immunoglobulins, which neutralized the retrovirus released from the #620 cells (Sinkovics JG et al In: Leukemia-Lymphoma. YearBook Medical Publisher 1970; pp 53–92; J Inf Dis 1969;119:19–38; Lancet 1970;1:139–140; Cancer Res 1981;41:1246–1247; Rev Inf Dis 1983;5:9–34; Bull Mol Med 2005;26:61–80; Acta Microbiol Immunol Hung 2005;52:1–40). The virus-neutralizing antibodies were precipitated by Roman Pienta, who also confirmed the validity of the virus neutralization experi- ments (M.D. Anderson Hospital Research Report, vide infra). Eiichi Shirato found these antibodies weakly effective in inhibiting the growth of #620 cells (Shirato E et al Oncology 1972;26:80–86). The tetra- or polyploid #818 cells formed a per- manent suspension culture cell line in vitro, which was maintained in the Author’s Lab and also by M.D. Anderson’s chief pathologist Jose Trujillo (Cancer Res 1970;30:540–545). Macrophages attacked and lysed the antibody-coated tetra- or polyploid #818 cells, thus portraying the “starry sky” phenomenon (Butler J et al Am J Pathol 1967;51:629–637; Sinkovics JG et al J Inf Dis 1969;120:250–254). The actual fusion of #620 diploid lymphoma cells with antibody-secreting immune plasma cells could be reproduced in the peritoneal cavity of mice inoculated sep- arately but simultaneously with #620 lymphoma cells and immune plasma cells (see Illustration). This was independently confirmed by H. David Kay (Research Report of M.D. Anderson Hospital 1970; pp 331–336; 1972; pp 473–476; 1974 pp 447– 455). Milton Wainwright (University Sheffield, Sheffield, UK) after interviewing H. Appendix 2 Explanations to the Figures*) 645

D. Kay, Jose Trujillo and this author (JGS), studying laboratory note books, and contemporary laboratory photographs, declared that the first natural hybridoma and the hybridoma principle (continuous antibody secretion by immune plasma cells fused with lymphoma cells) was discovered by J.G. Sinkovics and first presented in lectures in 1969 (Wainright M Perspect Biol Med 1992;35:372–379). Similar credit Sinkovics received from plenary session speaker M. D. Scharff at the 18th Annual Conference of the Infectious Diseases Society of America in 1980 in New Orleans (Yelton DE & Scharff MD Annu Rev Biochem 1981;50:657–680), and through the invitation of Jerome Vaeth for a comprehensive presentation on natural hybridomas at the 24th San Francisco Cancer Symposium (Sinkovics JG Front Rad Ther Oncol “The earliest concept of the hybridoma principle…” 1990;24:18–31.*) *) The editors of the Cancer Research accepted documentation of the discovery and existence of a murine natural hybridoma in 1960–70s (Sinkovics JG Cancer Research 1981;41:1296–1. The Iuliu Haţieganu University of Cluj Napoca (Kolozsvár) Romania gave Sinkovics the “Out-Nobel Award, 2005” for the dis- covery of the first “natural hybridoma” in the mid-1960s (Bull Mol Med 2005;26:61–80). In ten years of its availability in culture, neither Sinkovics nor Trujillo have ever received a request for the #620/#818 cell lines for independent studies, and the work with these cell lines was not cited in the literature.

Figure 73. Combined Chemoimmunotherapy. The first report on this initially discouraged modality of treatment for metastatic sarcomas was generated at the Department of Medicine, The University of Texas M.D. Anderson Hospital, as first reported by Sinkovics JG, Plager C, Romero J, in Neoplasm Immunity: Solid Tumor Therapy. A University of Chicago Symposium, February 24/25 1977. Crispen RG editor. Franklin Institute Press, Philadelphia Pp 211–219, 1977 (Library of Congress Catalog Card Number 77-777-79. International Standard Book Number 0-89168-000-4). This article is cited in Sinkovics JG & Horvath JC Internat J Oncol 2006;29:765–777. Patients (odd numbers reporting for treatment) in the third group receiving cyclophosphamide/doxorubicin-based chemotherapy, BCG and viral oncolysate (VO) immunotherapy were directly compared with patients in the second group (even numbers reporting for treatment) receiving identical chemotherapy with BCG (without VO). Patients in the first group received standard cyclophosphamide/doxorubicin-based chemotherapy only (no VO; no BCG) at the same Institution preceding and during the administration of the chemoimmunotherapy protocol to the alternatingly registered patients of the second and third groups (cohorts). Patients in the first group could be considered to be contemporaneous historical controls of the second and third groups of patients. This clinical trial was supported by private donations raised by the Head of the Department of Medicine, Clifton Dexter Howe, who supervised/supported this clinical trial. C D Howe originally intended the publication of this clinical trial in the N Engl J Med with his co-authorship. The first author (JGS) was discouraged: for a clinical trial not supported and funded by the NCI, he expected adverse criticism and humiliating rejection. A preliminary presentation in the volume of a distinguished Chicago conference was a guarantee for a publication. That 646 Appendix 2 Explanations to the Figures*) publication could have served as a platform for a NCI-approved second randomized clinical trial. C D Howe agreed; he did not oppose the presentation of the material at the Chicago symposium, reserved his co-authorship and offered his support in a NCI-approved future randomized clinical trial, but declined his co-authorship for the current publication as a book chapter. The patients enlisted in this clinical trial were co-attended by assistant internist-medical oncologist Nicholas Papadopoulos.

Figure 74. The Front Cover of the Volume containing the presentations given at the 14th Annual Clinical Conference on Cancer in 1969 at The University of Texas M. D. Anderson Hospital and Tumor Institute at Houston, Texas. The illustration was taken from the printed presentation entitled Relationship between Lymphoid Neoplasms and Immunologic Functions, by J.G. Sinkovics, E. Shirato, F. Gyorkey, J.R. Cabiness and C.D. Howe, Pp 53–92 (278). This article contains the first view of a murine natural hybridoma and the first photographs of human large granular lymphoid cells (later: NK cells) attacking human tumor cells. Published by Year Book Medical Publishers, Inc, Chicago, 1970 (Library of Congress Catalog Card Number 74–119578. International Standard Book Number 0-8151-0207-0). Cited in Sinkovics JG Bulletin Molecular Medicine 2005;26:61–80; Sinkovics JG Cytolytic Immune Lymphocytes.Schenk BuchVerlag, Passau/Budapest, 2008. View similar illustration of hybridoma formation on the cover of the volume “The 24th San Francisco Cancer Symposium” (cited in Figure 71). *) *) The Author’s two invited presentations at The San Francisco Cancer Symposia were 1, on cytotoxic large granular human lymphocytes; and 2, on natural hybridomas (Front Rad Therap Oncol 1972;7:141–154; 1990;24:18–31).

Figure 75. Of the Staff, Department of Medicine, The University of Texas M.D. Anderson Hospital and Tumor Institute, mid-1970s. From left to right, Sebron Culpepper Dale, associate internist, internal medicine, staff health care. Clifton Dexter Howe, board-certified internist, professor of medicine, medical oncologist, Head, Department of Medicine. Joseph Géza Sinkovics, professor of medicine; board-certified specialist in clinical pathology, laboratory medical virology, public health, internal medicine, infectious diseases, and medical oncology; medical oncologist, board eligible hematologist; Chief, Section (Laboratories) Clinical Tumor Virology & Immunology; Chief, Melanoma/Sarcoma Clinics and in-Patient Services. C. Charles Shullenberger, professor of medicine, Mayo Clinics-trained board-certified internist, hematologist; Chief, Section of Hematology (Laboratories; Clinics; in-Patient Services). References

1. Bushman F. Lateral DNA Transfer. Mechanisms and Consequences. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, i-xiv pp. 1–448, 2002. 2. Sinkovics J. Vírusok az élő anyag körforgásában. Viruses in the cyclorama of the living matter. In: Hungarian with English summary and 600 references. Budapest: Studia Physiologica Scientia Publisher 2001;9:5–151. 3. Leach S, Smith IW, Cockell CS. Introduction: conditions for the emergence of life on the . Philos Trans R Soc London B Biol Sci. 2006;361:1675–9. 4a. Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan MP, Aubrey A, Lazcano A, Bada R. Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci USA. 2011;108:5526–31. 4b. Parker ET, Cleaves HJ, Callahan MP, Dworkin JP, Glavin DP, Lazcano A, Bada JL. Enhanced synthesis of alkyl amino acids in Miller’s 1958 H2S experiment. Orig Life Evol Biosph. 2011;41:569–74. 5a. Eigen M, Schuster P. The hypercycle. Berlin: Springer; 1979. 5b. Eigen M. Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA. 2002;99:13374–6. 5c. Eigen M, Schuster P. The hypercycle. A principle of natural self-organization. Emerg Hypercycle Naturwissenschaften. 1977;64:541–65. 6. Lee DH, Granja JAR, Martinez JA, Severin K, Ghadiri MR. A self-replicating peptide. Nature. 1996;382:525–8. 7. Lee DH, Severin K, Yokobayashi Y, Ghadiri MR. Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature. 1997;390:591–4. 8. Saghatelian A, Yokobayashi Y, Soltani K, Ghadiri MR. A chiroselective peptide replicator. Nature. 2001;409:797–801. 9. Cech TR. Crawling out of the RNA world. Cell. 2009;136:599–603. 10. Darnell J. RNA and the beginning of life. In: RNA life’s indispensable molecule. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2011. p. 351–396. 11. Diener TO. Circular RNAs: relics of precellular evolution. Proc Natl Acad Sci USA. 1989;86:9370–4. 12. Flügel RM. The precellular scenario of genovirions. Virus Genes. 2010;40:151–4. 13a. Koonin EV. On the origin of cells and viruses: primordial virus world scenario. Ann NY Acad Sci. 2009;1178:47–64. 13b. Dolja VV, Koonin EV. Common origin and host-dependent diversity of plant and animal viruses. Curr Opin Virol. 2011;1:322–31. 14a. Raoult D, Forterre P. Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol. 2008;6:3125–9. 14b. Raoult D. The post-Darwinist rhizome of life. Lancet. 2010;375(9709):104–5. 15. Oparin AI. Evolution of the concepts of the origin of life. 1924–1974. Orig Life. 1976;7:3–8.

© Springer International Publishing Switzerland 2016 647 J.G. Sinkovics, RNA/DNA and Cancer, DOI 10.1007/978-3-319-22279-0 648 References

16. Gánti T. The priciples of life. New York: Oxford University Press; 2003. 17. Szathmáry E. The origin of replicators and reproducers. Philos Trans R Soc London B Biol Sci. 2006;361:1761–76. 18. Koonin VE, Senkevich TG, Dolja VV. The ancient virus world and evolution of cells. Biol Direct. 2006;1:29. doi:10.1186/1745-6150-1-29. 19. Wahba L, Amon JD, Koshland D, Vuica-Ross M. RNase and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol Cell. 2011;44:978–88. 20. Nakamura H, Oda Y, Iwai S, Inoue H, Ohtsuka E, Kanaya S, Kimura S, Katsuda C. How does RNase H recognize a DNA.RNA hybrid? Proc Natl Acad Sci USA. 1991;88:11535–9. 21. Woese CR. The universal ancestor. Proc Natl Acad Sci USA. 1998;95:6854–9. 22. Woese CR. On the evolution of cells. Proc Natl Acad Sci USA. 2002;99:8742–7. 23. Forterre P, Philippe H. Where is the root of the universal tree of life? Bioessays. 1999;21:871–9. 24. Glansdorff N, Xu Y, Labedan B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct. 2008;3:29. doi:10. 1186/1745-6150-3-29. 25. Glansdorff N, Xu Y, Labedan B. The origin of life and the last universal common ancestor: do we need a change of perspective? Res Microbiol. 2009;160:522–8. 26. Sinkovics JG. Horizontal gene transfers and cell fusions in microbiology, immunology and oncology. Int J Oncol. 2009;35:441–65. 27. Sinkovics JG. Horizontal gene transfers with or without cell fusions in all categories of the living matter. In: Cell fusion in health and disease. II. Cell fusion in disease. Springer. Adv Exper Med Biol. 2011;714:5–89. doi:10.1007/978-94-007-0782-5_2. 28. Takemura M. Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol. 2001;52:419–25. 29a. Villarreal LP. Viruses and the evolution of life. Herndon, VA, USA: American Society Microbiology Press; 2005. 29b. Villarreal LP, Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol. 2010;262:698–710. 30a. Sinkovics JG, Horvath JC. Human natural killer cells: a comprehensive review. Int J Oncol. 2005;27:5–47. 30b. Sinkovics JG, Tebbi K, Cabiness JR. Cytotoxicity of lymphocytes to established cultures of human tumors: evidences for specificity. Natl Cancer Inst Monograph “Conference and Workshop on Cellular Immune Reactions to Human Tumor-Associated Antigens” 1973;37:9–18. 30c. Sinkovics JG. Adoptive immunotherapy of human cancers. Flagmen signal first “open road” then “road blocks”. A narrative synopsis. In: Kiselevsky MV, editor. Atlas. Effectors of antitumor immunity. Springer; 2008. p. 1–23 31. Ferguson AL, Falkowska E, Walker LM, Seaman MS, Burton DR, Chakraborty A. Computational prediction of broadly neutralizing HIV-1 antibody epitopes from neutralization activity data. PLoS One. 2013;8(12):e80562. 32. Temin HM, Baltimore D. RNA-directed DNA synthesis and RNA tumor viruses. Adv Virus Res. 1972;17:129–86. 33. El Kharroubi A, Piras G, Zensen R, Martin MA. Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol Cell Biol. 1998;18:2535–44. 34. Lemasson I, Polakowski NJ, Laybourn PJ, Nyborg JK. Transcription factor binding and histone modifications on the integrated proviral promoter in human T-cell leukemia virus-I-infected T-cell. J Biol Chem. 2002;277:49459–65. References 649

35. Easley R, Carpio L, Guendel I, Klase Z, Choi S, Kahn-Hall K, Brady JN, Kashanchi F. Human T-lymphotrophic virus type 1 transcription and chromatin-remodeling com- plexes. J Virol. 2010;84:4755–68. 36a. Sinkovics J. Pleuropneumonie-ähnliche Eigenheiten in alten E. coli Kulturen. Acta Microbiologica Hungarica. 1957;4:59–75. 36b. Sinkovics J. A bakteriológia új fejezete. A new chapter in bacteriology: Pleuropneumonia-like growth (In Hungarian). Orvosi Hetilap (Budapest) Wkly Med J. 1955;96:1401–8. 36c. Sinkovics J. Die Grundlagen der Virusforschung. Budapest: Verlag der Ungarischen Akademie der Wissenschaften; 1956. 37. Sinkovics J. Occurrence and filterability of protoplast-like elements in aged bacterial cultures. Nature. 1958;181:566–7. 38. Sinkovics JG. Up-dating the monograph “Cytolytic Immune Lymphocytes”. Part I. Basic science. Magyar Epidemiológia (Hungarian Epidemiology, in English). 2008;5:237–255. Addendum. Idem, 2009;6:60. 39. Sinkovics JG. The place of viruses in the “Tree of Life”. Acta Microbiol Immunol Hung. 2001;48:115–27. 40. Klenk H-P, Meier T-D, Durovic P, Schwass V, Lottspeich F, Dennis PP, Zillig W. RNA polymerase of Aquifex pyrophilus: implications for the evolution of the bacterial rpoBC operons and extremely thermophilic bacteria. J Mol Evol. 1999;48:528–41. 41. Av Kukekova, Malinin AY, Ayala JA, Borkhsenius SN. Characterization of Acholeplasma laidlawii ftsZ gene and its gene product. Biochem Biophys Res Commun. 1999;282:44–9. 42. Lindås A-C, Karlsson EA, Lindren MT, Ettema TJG, Bernander R. A unique cell division machinery in Archaea. Proc Natl Acad Sci USA. 2008;105:18942–6. 43. Cox CJ, Foster PG, Hirt RP, Harris SR, Embley TM. The archaebacterial origin of eukaryotes. Proc Natl Acad Sci USA. 2008;105:20356–61. 44. Woese CR, Maniloff J, Zablen LB. Phylogenetic analysis of the . Proc Natl Acad Sci USA. 1980;77:494–8. 45. Miller S, Lazcano A. The origin of life—Did it occur at high temperatures. J Mol Evol. 1995;41:689–92. 46. Forterre P. A hot topic: the origin of hyperthermophiles. Cell. 1996;65:789–92. 47. Korolev S, Nayal M, Barnes WM, Di Cerca E, Waksman G. Crystal structure of a large fragment of Thermus aquaticus DNA polymerase at 2.5Å resolution: structural basis for thermostability. Proc Natl Acad Sci USA. 1995;92:9264–8. 48. Wei W, Davis RE, Jomantiene R, Zhao Y. Ancient, recurrent phage attacks and recombinations shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proc Natl Acad Sci USA. 2008;105:11827–32. 49. Koui T, Natsuaki T, Okuda S. Antiserum raised against gyrase A of Acholeplasma laidlawii reacts with phytoplasma proteins. FEMS Microbiol Lett. 2002;206:169–74. 50. Maniloff J. Evolution of wall-less prokaryotes. Ann Rev Microbiol. 1983;37:477–99. 51. Lazarev VN, Levitskii SA, Basovskii YI, Chukin MM, Akopian TA, Vereshchagin VV, Kostrjukova ES, Kovaleva GY, Kazanov MD, Malko DB, Vitreschak AG, Sernova NV, Gelfand MS, Demina IA, Serebryakova MV, Galyamina MA, Vyturin NN, Rogov SI, Alexeev DG, Ladygina VG, Govorun VM. Complete genome and proteome of Acholeplasma laidlawii. J Bacteriol. 2011;193:4943–53. 52. Tarshis M, Salman M, Rottem S. Fusion of mycoplasmas: the formation of cell hybrids. FEMS Microbiol Lett. 1991;66:67–71. 53. Brunner H, Schaar H, Krauss H. Giant cell formation in Acholeplasma laidlawii strain JA1. Zentralbl Bakteriol A. 1980;248:120–8. 54. Haberer K, Frösch D. Lateral mobility of membrane-bound antibodies on the surface of Acholeplasma laidlawii: evidence for virus-induced cell fusion in a . J Bacteriol. 1982;152:471–8. 650 References

55. Sladek TL, Nowak JA, Maniloff J. Mycoplasma restriction: identification of a new type of restriction specify for DNA containing 5-methylcytosine. J Bacteriol. 1986;165:219–25. 56. Gourlay RN. Isolation of a new virus infecting strain of Mycoplasma laidlawii. Nature. 1970;225:1165. 57. Gourlay RN. Mycoplasmatales virus laidlawii 2, a new virus isolated from Acholeplasma laidlawii. J Gen Virol. 1971;12:65–7. 58. Gourlay RN, Wyld SG. Isolation of mycoplasmatales virus-laidlawii 3, a new virus infecting Acholeplasma laidlawii. J Gen Virol. 1973;19:279–83. 59. Dybwig K, Maniloff J. Integration and lysogeny by an enveloped mycoplasma virus. J Gen Virol. 1983;64:1781–5. 60. Dybwig K, Sladek TL, Maniloff J. Isolation of mycoplama virus L2 insertion variants and miniviruses. J Virol. 1986;59:584–90. 61. Maniloff J, Kampo GJ, Dascher CC. Sequence analysis of a unique temperature phage: mycoplasma virus L2. Gene. 1994;141:1–8. 62. Just W, de Silva Cardoso M, Lorenz A, Klotz G. Release of mycoplasmavirus L1 upon transfection of Acholeplasma laidlawii with homologous and heterologous viral DNA. Arch Virol. 1989;107:1–13. 63. Sladek TL, Maniloff J. Polyethylene glycol-dependent transfection of Acholeplasma laidlawii with mycoplasma virus L2 DNA. J Bacteriol. 1983;155:734–41. 64. Just W, Klotz G. Terminal redundancy and circular permeation of mycoplasma virus L3 DNA. J Gen Virol. 1990;71:2157–62. 65. Lorenz A, Just W, de Silva Cardoso M, Klotz G. Electroporation-mediated transfection of Acholeplasma laidlawii with mycoplasma virus L1 and L3 DNA. J Virol. 1988;62:30503052. 66. Haberer K, Klotz G, Maniloff J, Kleinschmidt AK. Structural and biological properties of Mycoplasmavirus MLV3: an unusual virus-procaryote interaction. J Virol. 1979;32:268–75. 67. Haberer K, Haberer AI, Cadden SP, Maniloff J. Isolation and characterization of mycoplasma virus L3 temperature-sensitive mutants. Microbios. 1990;64:111–25. 68. Congdon AL, Kenny GE. Alteration of colonial morphology of Acholeplasma laidlawii and Acholeplasma modicum by infection with mycoplasmatales viruses. J Bacteriol. 1979;138:962–8. 69. Franzoso G, Dimitrov DS, Blumenthal R, Barile MF, Rottem S. Fusion of Mycoplasma fermentans strain incognitus with T lymphocytes. FEBS Lett. 1992;303:251–4. 70a. Sinkovics JG. Immunology of tumors in experimental animals. In: The Immunology of Malignant Disease. 2nd ed. In: Harris JE, Sinkovics JG, editors. St. Louis: C.V. Mosby; 1978. p. 93–282. 70b. Sinkovics JG, Harris JE. Immunology and immunotherapy of human tumors. In: The Immunology of Malignant Disease. 2nd ed. In: Harris JE, Sinkovics JG, editors. St. Louis: C.V. Mosby; 1976. p. 410–579. 71. Sinkovics JG, Horvath JC. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch Immunol Ther Exp. 2006;56:3s–50s. 72. Tsai S, Wear DJ, Shih JW, O SC. Mycoplasmas and oncogenesis: persistent infection and multistage malignant transformation. Proc Natl Acad Sci USA. 1995;92:10197–201. 73. Sinkovics JG. Molecular biology of oncogenic inflammatory processes. I. Non-oncogenic and oncogenic pathogens, intrinsic inflammatory reactions without pathogens, and microRNA/DNA interactions. Int J Oncol. 2012;40:305–49. 74. Wiedenheft B, Stedman K, Roberto F, Willits D, Gleske A-K, Zoeller L, Snyder J, Douglas T, Young M. Comparative genomic analysis of hyperthermophilic archaeal viruses. J Virol. 2004;78:1954–61. 75. Prangishvili D, Garrett RA, Koonin EV. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life. Virus Res. 2006;117:52–7. References 651

76. Pina M, Bize A, Forterre P, Prangishvili D. The archaeoviruses. FEMS Microbiol Rev. 2011;35:1035–54. 77. Brodt A. Lune-Weinberger MN, Gophna U. CRISPR loci reveal networks of gene exchange in archaea. Biol Direct. 2011;21.6(1):65. 78. Lintner NG, Kerou M, Brumfield SK, Graham S, Liu H, Naismith JH, Sdano M, Peng N, She Q, Copié V, Young MJ, White M, Lawrence CM. Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defence (CASCADE). J Biol Chem. 2011;286:21643–56. 79. Makarova KS, Wolf YI, Snir S, Koonin EV. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol. 2011;193:6039–56. 80. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482:331–8. 81. Takeuchi N, Wolf YI, Makarova KS, Koonin E. Nature and intensity of selection pressure on CRISPR-associated genes. J Bacteriol. 2012;194:1216–25. 82. Forterre P. A new fusion hypothesis for the origin of Eukarya: better than previous ones, but probably also wrong. Res Microbiol. 2011;162:77–91. 83. Sinkovics JG, Horvath JC. Kaposi’s sarcoma: breeding ground of —A tour de force over viral evolution. Int J Oncol. 1999;14:615–646. Errata: Idem 2005;27:5–47. 84. Al-Attar S, Westra ER, van der Oost J, Brouns SJ. Clustered regularly interspersed short palindromic repeats (CISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem. 2011;392:277–89. 85. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167–70. 86. Makarova KS, Wolf YI, van der Oost J, Koonin EV. Prokaryotic homologs of argonaute proteins are predicted to function as key components of a novel system of defense against . Biol Direct. 2009;4:29. doi:10.1186/1745-6150-4-29. 87. Portillo MC, Gonzalez JM. CRISPR elements in the Thermococcales: evidence for associated in Pyrococcus furiosus. J Appl Genet. 2009;50:421–30. 88a. Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci USA. 1980;77:1496–500. 88b. Blobel G. Protein targeting. Chembiochem. 2000;1:86–102. 89a. Margulis L. Recombination of non-chromosomal genes in Chlamydomonas: assortment of mitochondria and chloroplasts? J Theor Biol. 1970;26:337–42. 89b. Schaechter M. Lynn Margulis (1938–2011). Science. 2012;335:302. 90a. Palmer CS, Osellame LD, Stojanovski D, Ryan MT. The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal. 2011;23:1534–45. 90b. Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26:711–23. 91. Matthaei JH, Nirenberg MW. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli cell extracts. Proc Natl Acad Sci USA. 1961;47:1580–6. 92. Nirenberg MW, Matthaei JH. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA. 1961;47:1588–602. 93. Taylor WR. Transcription and translation in an RNA world. Philos Trans R Soc London B Biol Soc. 2006;361:1751–60. 94. Taylor WR. A molecular model for the origin of protein translation in an RNA world. J Theor Biol. 2006;243:393–406. 95. Bernhardt HS, Tate WP. The transition from noncoded to coded protein synthesis and coding mRNAs arise from stability-enhancing binding partners to tRNAs. Biol Direct 2010;5:16. doi:10.1186/1745-6150-5-16. 652 References

96. Catania F, Lynch M. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium. BMC Evol Biol. 2010;10:229. doi:10.1186/ 1471-2148-10-129. 97. Chen XS, Collins LJ, Biggs PJ, Penny D. High thoroughput genome-wide survey of small RNA from the parasitic Giardia intestinalis and Trichomonas vaginalis. Genome Biol Evol. 2009;1:165–75. doi:10.1093/gbe/evp017. 98. Garlapati S, Saraiya AA, Wang CC. A La autoantigen homologue is required for the internal ribosome entry site mediated translation of giardiavirus. PLoS One. 2001;6(3): e18263. doi:10.1971/journal.pone.0018263. 99. Wei L, Saraiya AA, Wang CC. Gene regulation in Giardia lamblia involves a putative microRNA derived from a small nucleolar RNA. PLoS Negl Trop Dis. 2011;5(10): e1338. doi:10.1371/journal.pntg.0001338. 100. Prucca CG, Lujan MD. Antigen variation in Giardia lamblia. Cell Microbiol. 2009;11:1706–15. 101. Molnár A, Schwach F, Studholme DJ, Thuenermann EC, Baulcombe DC. mRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature. 2007;477:1126–9. 102. Godman JE, Molnár A, Baulcombe DC, Balk J. RNA silencing of hydrogenase(-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii. Biochem J. 2010;431:345–51. 103. Boyd JB, Lamb MR, Dieckmann CL. Miniature- and multiple-eyespot loci in Chlamydomonas reinhardtii define new modulators of eyespot photoreception and assembly. Genes Genomes Genetics. 2011;1:489–98. 104. Förstemann K, Horwich MD, Wee LM, Tomari Y, Zamore PD. Drosophila microRNAs are sorted into functionally distinct Argonaute protein complexes after their production by Dicer-1. Cell. 2007;130:287–97. 105. Miura S, Nozawa M, Nei M. Evolutionary changes of the target sites of two microRNAs encoded in the Hox gene cluster of Drosophila and other insect species. Genome Biol Evol. 2011;3:129–39. 106. Siu RWC, Fragkoudis R, Simmonds P, Donald CL, Chase-Topping ME, Barry G, Attarzadeh-Yazdi G, Rodrigues-Andres J, Nash AA, Merits A, Fazakerley JK, Kohl A. Antiviral RNA interference responses induced by Semliki forest virus infection of mosquito cells: characterization, origin, and frequency-dependent functions of virus-derived interfering RNAs. J Virol. 2011;85:2907–17. 107. Félix M-A, Ashe A, Piffaretti J, Wu G, Nuez I, Bélicard T, Jiang Y, Zhao G, Franz CJ, Goldstein LD, Sanroman M, Miska EA, Wang D. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 2011;9(1): e1000586. doi:10.1371/journal.pbio.1000586. 108. Rechavi O, Minevich G, Hobert O. Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell. 2011;147:1248–56. 109. Iskra S, Kalla M, Delecluse H-J, Hammerschmidt W, Moosmann A. Toll-like receptor agonists synergically increase proliferation and activation of B cells by Epstein-Barr virus. J Virol. 2010;8:3612–23. 110. Gottwein E, Cullen BR. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe. 2008;3:375–87. 111. Hasnoot J, Berkhout B. RNAi and cellular miRNAs in infections by mammalian viruses. Methods Mol Biol. 2011;721:23–41. 112. Sachdeva M, Liu Q, Cao J, Lu Z, Mo Y-Y. Negative regulation of miR-145 by C/EBP-beta through the Akt pathway in cancer cells. Nucleic Acid Res. 2012. doi:10. 1093/nar/gks324. References 653

113. Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang S, Hafner M, Nusbaum JD, Feederle R, Delecluse H-J, Luftig MA, Tuschl T, Ohier U, Cullen BR. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 2012;8(1): e1002484. doi:10.1371/journal.ppat1002484. 114. Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV, Renne R. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog. 2007;3(5):e65. doi:10.1371/journal.ppat.0030065. 115. Hinas A, Reimegård J, Wagner EGH, Nellen W, Ambros VR, Söderbom F. The small RNA repertoire of Dictyostelium discoideum and its regulation by components of the RNAi pathway. Nucleic Acids Res. 2007;35:6714–26. 116. Kapitonov VV, Jurka J. The esterase and PHD domains in CR1-like non-LTR retrotransposons. Mol Biol Evol. 2003;20:38–46. 117. Goodwin TJD, Poulter RTM. A new group of tyrosine recombinase-encoding retrotransposons. Mol Biol Evol. 2004;21:746–59. 118. Gimenez G, Bertelli, Moliner C, Robert C, Raoult D, Fournier P-E, Greub G. Insight into cross-talk between intra-amoebal pathogens. BMC Genomics. 2011;12:542. doi:10.1186/ 1471-2164-12-542. 119. Boyer M, Azza S, Barrassi L, Klose T, Campocasso A, Pagnier I, Fournous C, Borg A, Robert C, Zhang X, Desnues C, Henrissat B, Rossmann MG, La Scola B, Raoult D. Mimivirus shows dramatic genome reduction after intraamoebal culture. Proc Natl Acad Sci USA. 2011;108:10296–301. 120. Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, Robert C, Azza S, Sun S, Rossmann M, Suzan-Monti M, La Scola B, Koonin EV, Raoult D. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci USA. 2009;106:21848–53. 121. Arsian D, Legendre M, Seltzer V, Abergel C, Claverie JM. Distant Mimivirus relative with larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci USA. 2011;108:17486–91. 122. Moliner C, Raoult D, Fournier P-E. Evidence that the intra-amoebal Legionella drancourtii acquired a strerol reductase from eukaryotes. BMC Res Notes. 2009;2:51. doi:10.1186/1756-0500-2-51. 123. MacFarlane RC, Shah PH, Singh U. Transcriptional profiling of Entamoeba histolytica trophozoites. Int J Parasitol. 2005;35:533–42. 124. Fritsch T, Horn M, Wagner M, Herwig RP, Schleifer K-H, Gautom RK. Phylogenetic diversity among geographically dispersed Chlamydiales recovered from clinical and environmental isolates. Appl Environ Microbiol. 2000;66:2613–9. 125a. Couvillion MT, Lee SR, Hogstad B, Malone CD, Tonkin LA, Sachidanandam R, Hannon GJ, Collins K. Sequence, biogenesis, and function of diverse small RNA classes bound to the Piwi family proteins of Tetrahymena thermophila. Genes Dev. 2009;23:2016–32. 125b. Couvillion MT, Sachidanandam R, Collins K. A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo. Genes Dev. 2010;24:2742–7. 126. Yu L, Gorovsky MA. Constitutive expression, not a particular primary sequence, is the important feature of the H3 replacement variant hv2 in Tetrahymena thermophila. Mol Cell Biol. 1997;17:6303–10. 127. Wilusz JE, Whipple JM, Phizicky EM, Sharp PA. tRNAs marked with CCACCA are targeted for degradation. Science. 2011;334:817–21. 128. Kawaji H, Nakamura M, Takahashi Y, Sandelin A, Katayama S, Fukuda S, Daub CO, Kai C, Kawai J, Carninci P, Hayashikazi Y. Hidden layers of human small RNAs. BMC Genomics. 2008;9:157. doi:10.1186/1471-2164-9-157. 129. Jenkins VK, Trentin JJ, Speirs RS, McGarry MP. Hemopoietic colony studies. J Cell Physiol. 1972;79:413–22. 654 References

129a. Trentin JJ, Curry JL, Wolf N, Cheng V. Factors controlling stem cell differentiation and proliferation: the hematopoietic inductive microenvironment (HIM). In: The proliferation and spread of neoplastic cells. Baltimore: The Williams and Wilkins Company; 1968, p. 713–727. Discussion 727–731. 130. Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009;25:395–376. 131. Szakmary A, Reedy M, Qi H, Lin H. The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. J Cell Biol. 2009;185:613–27. 132. Smulders-Srinivasan TK, Szakmary A, Lin H. A drosophila chromatin factor interacts with the piwi-interacting RNA mechanism in niche cells to regulate germline stem cell self-renewal. Genetics. 2019;186:573–83. 133. Juliano C, Wang J, Lin H. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet. 2011;45:447–69. 134. Kowalczykiewicz D, Wrzesinski J. The role of piRNA and Piwi proteins in regulation of germline development. Postepy Biochem (Poland). 2011;57:249–356. 135. Woolley AG, Algie M, Samuel W, Harfoot R, Wiles A, Hung NA, Tan P-H, Hains P, Valova VA, Huschtscha L, Royds JA, Perez D, Yoon H-S, Cohen SB, Robinson PJ, Bay B-H, Lasham A, Braithwaite AW. Prognostic association of YB-1 expression in breast cancers: a matter of antibody. PLoS One. 2011;6(6):e20603. doi:10.1371/journal.pone. 0020603. 136. Ye Y, Yin D-T, Chen L, Zhou Q, Shen R, He G, Yan G, Tong Z, Issekutz A, Shapiro CL, Barsky SH, Lin H, Li J-J, Gao J-X. Identification of Piwil2-like (PL2L) proteins that promote tumorigenesis. PLoS. 2010;5(10):e13406. doi:10.1371/journal. pone,0013406. 137. Lee JH, Schütte D, Wulf G, Füzesi L, Radzun HJ, Schweyer S, Engel, Nayernia K. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum Mol Genet. 2006;15:201–11. 138. Lu Y, Zhang K, Li C, Yao Y, Tao D, Liu Y, Zhang S, Ma Y. Piwi2 suppresses p53 by inducing phosphorylation of signal transducer and activator of transcription 3 in tumor cells. PLoS One. 2012;7(1):e30999. doi:10.1371/journal.ponr.0030999. 139. He W, Wang Z, Wang Q, Fan Q, Shiu C, Wang J, Giercksky KE, Nesland JM, Suo Z. Expression of HIWI in human esophageal squamous cell carcinomas is significantly associated with poorer prognosis. BMC Cancer. 2009;89:426. doi:10.1186/1471-2407- 9-426. 140. Taubert H, Würl P, Greither T, Kappler M, Bache M, Bartel F, Kehlen A, Lautenschläger C, Harris LC, Kaushal D, Füssel S, Meye A, Böhnke A, Schmidt H, Holzhausen HJ. Stem cell-associated genes are extremely poor prognostic factors for soft-tissue sarcoma patients. Oncogene. 2007;26:7170–4. 141. Zeng Y, L-k Qu, Meng L, Liu C-Y, Dong B, Xing X-F, Wu J, Shou C-C. HIWI \expression profile in cancer cells and its prognostic value for patients with colorectal cancer. Chinese Med J. 2011;124:2144–9. 142. Lacerda I, Pusztai L, Woodward WA. The role of tumor-initiating cells in drug resistance of breast cancer: implications for future therapeutic approaches. Drug Resist Updat. 2010;13:99–108. 143. Smith HA, Cronk RJ, Lang JM, McNeel DG. Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. Cancer Res. 2011;71:6785–95. 144. Liu W, Zhai M, Wu Z, Qi Y, Wu Y, Dai C, Sun M, Li L, Gao Y. Identification of a novel HLA-A2-restricted cytotoxic T lymphocyte epitope from cancer-testis antigen PLAC1 in breast cancer. Amino Acids. 2011;PMID:21710262. References 655

145. Yuan J, Adamov M, Ginsberg BA, Rasaian TS, Ritter E, Gallardo HF, Xu Y, Pogonier E, Terzulli SL, Kuk D, Panageas KS, Riter G, Sznol M, Halanban R, Jungbluth AA, Allison JP, Old LJ, Wolchok JD, Gnjatic S. Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci USA. 2011;108:16723–8. 146. Robbins OPF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JAR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Highes MS, Restifo NP, Raffeld M, Lee C-CR, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA. Tumor regression in patients with metastatic synovial sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917–24. 147. Sinkovics JG. Cytolytic immune lymphocytes in the armamentarium of the human host. Passau and Budapest: Schenk Buchverlag; 2008. 148. Noon KR, Guymon R, Crain PF, McCloskey JA, Thomm M, Lim J, Cavicchioli R. Influence of temperature on tRNA modification in archaea: Metanococcides burtonii optimum growth temperature (Topt 23°C) and Stetteria hydrogenophila (Topt 95°C). J Bacteriol. 2003;5483–5490. 149. Guymon R, Pomerantz SC, Crain PF, McCloskey JA. Influence of phylogeny on posttranscriptional modification of rRNA in thermophilic prokaryotes: the complete modification map of 16S rRNA of Thermus thermophilus. Biochemistry. 2006;45:4888–99. 150. Du S, Pal D, Ghosh SK. Entamoeba histolytica: computational identification of putative microRNA candidates. Exp Parasitol. 2006;113:239–43. 151. Huang PJ, Lin WC, Chen SC, Lin YH, Sun CH, Lyu PC, Tang P. Identification of putative miRNAs from the deep-branching unicellular flagellates. Genomics. 2012;99:101–7. 152. Wei FY, Tomizawa K. Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of type 2 diabetes. Endocr J. 2011;58:819–25. 153. Wei KF, Wu LJ, Chen J, Chen YF, Xie DX. Structural evolution and functional diversification analyses of argonaute protein. J Cell Biochem. 2012;113:2576–85. 154. Zhang H, Ehrenkaufer GM, Pompey JM, Hackney JA, Singh U. Small RNA with 5’- polyphosphate termini associate a Piwi-related protein and regulate gene expression in the single-celled eukaryote Entamoeba histolytica. PLoS Pathog. 2008;4(11):e1000219. 155. Bouhouche K, Gout J-F, Kapusta A, Bétermier M, Meyer E. Functional specialization of Piwi proteins in Paramecium tetraaurelia from posttranscriptional gene silencing to genome remodeling. Nucleic Acid Res. 2011;39:4249–84. 156. Mallick B, Ghosh Z. Chakrabarti J. MicroRNA switches in Trypanosoma brucei. Biochem Biophys Res Commun. 2008;372:459–63. 157. Shi H, Chamond N, Djikeng A, Tschudi C, Ullu E. RNA interference in Trypanosoma brucei. Role of the terminal RGG domain and the polyribosome association of Argonaute. J Biol Chem. 2009;284:36511–20. 158. Garcia-Silva MR, Frugier M, Tosar JP, Correa-Dominguez A, Ronalte-Alves L, Parodi-Talice A, Rovira C, Robello C, Goldenberg S, Cayota A. A population of tRNA-derived small RNAs is actively produced in Trypanosoma cruzi and recruited to specific granules. Mol Biochem Parasitol. 2010;171:64–73. 159. Kolev NG, Tschudi C, Ullu E. RNA interference in protozoan parasites: achievements and challenges. Eukaryot Cell. 2011;10:1156–63. 160. Heimberg AM, Sempere LF, Moy VN, Donoghue PCJ, Peterson KHJ. MicroRNAs and their advent of vertebrate morphological complexity. Proc Natl Acad Sci USA. 2008;105:2946–50. 161. Li Y, Liu X, Huang L, Guo H, Wang XJ. Potential coexistence of both bacterial and eukaryotic small DNA biogenesis and functional related protein homologs in Archaea. J Genet Genomics. 2010;37:493–503. 656 References

162. Medina M. Genomes, phylogeny, and evolutionary systems. Proc Natl Acad Sci USA. 2005;102:6630–5. 163. Cerutti H, Casas-Moliano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006;50:81–99158. 164. Tucker RP, Beckman J, Leachman NT, Schöler J, Chiquet-Ehrisman R. Phylogenetic analysis of the teneurins: conserved features and premetazoan ancestry. Mol Biol Evol. 2012;29:1019–29. 165. Kenzelmann D, Chiquet-Ehrismann R, Leachman NT, Tucker RP. Teneurin-1 is expressed in interconnected regions of the developing brain and is processed in vivo. BMC Dev Biol. 2008;8:30. doi:10.1186/1471-213X-8-30. 166. Abedin M, King N. The premetazoan ancestry of cadherins. Science. 2008;319:946–8. 167. van ‘T Veer LJ, van Kessel AG, van Heerikhuizen H, van Ooyen A, Nusse R. Molecular cloning and chromosomal assignment of the human homolog of int-1, a mouse gene implicated in mammary tumorigenesis. Mol Cell Biol 1984;4:2532–2534. 168. Chien AJ, Conrad WH, Moon RT. A Wnt survival guide: from flies to human disease. J Invest Dermatol. 2009;129:1614–27. 169. Philipp I, Aufschnaiter R, Özbek S, Pontasch S, Jenewein M, Watanaba H, Rentzsch F, Holstein TW, Hobmayer B. Wnt/ß-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proc Natl Acad Sci USA. 2009;106:4290–5. 170. Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of ß-catenin. Proc Natl Acad Sci USA. 2008;105:8032–7. 171. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1998;391:357–62. 172. Liao G, Tao Q, Kofron M, Chen J-S, Schloemer A, Davis RJ, Hsieh J-C, Wylie C, Heasman J, Kuan C-Y. Jun NH2-terminal kinase (JNK) prevents nuclear ß-catenin accumulation and regulates axis formation in Xenopus embryos. Proc Natl Acad Sci USA. 2006;103:16313–8. 173. Takadera T, Nakajima Y, Kanai Y. Colchicine-induced apoptosis was prevented by glycogen synthase kinase-3 inhibitors in PC12 cells. Cell Mol Neurobiol. 2010;30:863–8. 174. Arce L, Pate KT, Waterman ML. Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer. 2009;9:159. doi:10.1186/1471-2407-9-159. 175. Guder C, Pinho S, Nacak TG, Schmidt HA, Hobmayer B, Niehrs C, Holstein TW. An ancient Wnt-Dickkopf antagonism in Hydra. Development. 2006;133:901–11. 176. Yang X-D, Huang S, Lo M-CV, Mizumoto K, Sawa H, Xu W, Robertson S, Lin R. Distinct and mutually inhibitory binding by two divergent ß-catenins coordinates TCF levels and activity in C. elegans. Development. 2011;138:4255–65. 177. Broun M, Gee L, Reinhardt B, Bode HR. Formation of the head organizer in hydra involves the canonical Wnt pathway. Development. 2005;132:2907–16. 178. Stanczak A, Stec R, Bodnar I, Olszewski W, Cichowicz M, Kozlowski W, Szczylik C, Pietrucha T, Wieczorek M, Lamparska-Przybysz M. Prognostic significance of Wnt-1. ß- catenin and E-cadherin expression in advanced colorectal carcinoma. Pathol Oncol Res. 2011;17:955–63. 179. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivdasani RA. Small molecule antagonists of the oncogenic Tcf/ß-catenin protein complex. Cancer Cell. 2004;5:91–102. 180. Hallett RM, Kondratyev MK, Giaconelli AO, Nixon AML, Girgis-Gabardo A, Ilieva D, Hassell JA. Small molecule antagonists of the Wnt/beta-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One. 2012;7(3):e33976. doi:10.1371/journal.pone.0033976. References 657

181. Choi HY, Lim JE, Hong JH. Curcumin interrupts the interaction between the androgen receptor and Wnt/ß-catenin signaling pathway in LNCaP prostate cancer cells. Prostate Cancer Prostatic Dis. 2010;13:3493–349. 182. Lu W, Tinsley HN, Keeton A, Qu Z, Piazza GA, Li Y. Suppression of Wnt/ß-catenin signaling inhibits prostate cancer cell proliferation. Eur J Pharmacol. 2009;602:8–14. 183. Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, Liu Y, Ly D, Liu CH, Tan X, Xiang R, Li N. SOX2 promotes tumorigenesis and increases the apoptotic property of human prostate cancer cell. J Mol Cell Biol. 2011;3:230–8. 184. Hutchison DA, Hanson MI, Moore KB, Le TT, Brown NL, Vetter ML. HLH-dependent and independent modes of Ath5 gene regulation during retinal development. Development. 2005;132:829–39. 185. Burns CJ, Vetter ML. Xath5 regulates neurogenesis in the Xenopus olfactory placode. Dev Dyn. 2002;225:536–43. 186. Agathocleous M, Iordanova I, Willardson MI, Xue XY, Vetter ML, Harris WA, Mootre KB. A directional Wnt/ß-catenin Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development. 2009;136:3289–99. 187. Sun Y, Kanekar SL, Vetter ML, Gorski S, Jan Y-N, Glaser T, Brown NL. Conserved and divergent functions of Drosophila, amphibian and mammalian Ath5 genes. Evol Dev. 2003;5:532–41. 188. Fire A, Xu Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11. 189. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294:862–4. 190. Massirer KS, Perez SG, Mondol V, Pasquinelli AE. The miR-35-41 family of microRNAs regulates RNAi sensitivity in Caenorhabditis elegans. PLoS. 2012;8(3): e1002536. doi:10.1371/journal.pgen.1002536. 191. Jérôme T, Laurie P, Louis B, Pierre C. Enjoy the silence: the story of let-7 microRNA and cancer. Curr Genomics. 2007;8:220–33. 192. Resnick TD, McCulloch KA, Rougvie AE. miRNAs give worms the time of their lives: small RNAs and temporal control in Caenorhabditis elegans. Dev Dyn. 2010;239:1477–89. 193. Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA, Shirayama M, Mello CC. Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2010;107:3588–93. 194a. Amaral PP, Neyt C, Wilkins SJ, Akarian-Amin ME, Sunkin SM, Perkins AC, Mattick JS. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA. 2009;15:2013–27. 194b. Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryocytic genome as an RNA machine. Science. 2008;319:1787–9. 195a. Zhong X, Li N, Liang S, Huang G, Coukos G, Zhang L. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem. 2010;285:41961–71. 195b. Godshalk SE, Melnik-Martinez KV, Pasquinelli AE, Slack NFJ. MicroRNAS and cancer. Epigenetics. 2010;5:164–8. 196. Félix MA, Asho A, Piffaretti J, Wu G, Nuez I, Bélicard T, Jiang Y, Zhao G, Franz CJ, Goldstein LD, Sanroman M, Miska EA, Wang D. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLos Biol. 2011;9(1): e1000586. 197. Lu R, Yigit E, Li WX, Dong AW. An RIG-I-like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans. PLoS Pathog. 2009;5 (2):e1000286. 658 References

198. Rizki G, Iwata TN, Li J, Riedel CG, Picard CL, Jan M, Murphy CT, Lee SS. The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF16/FOXO. PLoS Genet. 2011;7(9):e12002235. doi:10.1371/journal. pgen.1002235. 199. Knapp P, Chabowski A, Blachnio-Zabielska A, Jarzabek K, Wolczynski S. Altered peroxisome-proliferator activated receptors expression in human endometrial cancer. PPAR Res. 2012; doi:10.1155/2012/471524. 200. Peters JM, Foreman JF, Gonzalez FJ. Dissecting the role of peroxisome proliferator-activated receptor-ßδ (PPARßδ) in colon, breast, and lung carcinogenesis. Cancer Metastasis Rev. 2011;30:619–40. 201. Spanier B, Rubio-Aliaga I, Hu H, Daniel H. Altered signaling from germline to intestine pushes daf-2;pept-1 Caenorhabditis elegans into extreme longevity. Aging Cell. 2010;9:636–46. 202. Honnen SJ, Büchter C, Schröder V, Hoffmann M, Kohara Y, Kampkötter A, Bossinger OC. C. elegans VANG-1 modulates life span via insulin/lGF-1-like signaling. PLoS One. 2012;7(2):e32183. doi:10.137/journal.pone.0032183. 203. Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA. The tumor suppressor Brat and Numb regulate trans-amplifying neuroblast lineages in Drosophila. Dev Cell. 2008;14:535–46. 204. Kurth P, Preiss A, Kovall RA, Maier D. Molecular analysis of the Notch repressor-complex in Drosophila: characterization of potential hairless binding sites on suppressor of hairless. PLoS One. 2011;6(11):e27986. doi:10.1371/journal.pone.0027986. 205. Dang TP. Notch, apoptosis and cancer. Adv Exp Med Biol. 2012;727:199–209. 206. Hu YY, Zheng MH, Zhang R, Liang YM, Han HJ. Notch signaling pathway and cancer metastasis. Adv Exp Med Biol. 2012;727:186–98. 207a. Huang Y. A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. Wiley Interdiscip Rev RNA. 2012;3:483–94. doi:10.1002/wrna.1112. 207b. Huang B, Zhaon J, Unkeless JC, Feng ZH, Xiong H. TLR signaling by tumor and immune cells: a double-edged sword. Oncogene. 2008;27:218–24. 208. Shi W, Hendrix D, Levine M, Haley B. A distinct class of small RNAs arises from pre-miRNA-proximal region in a simple cordate. Nat Struct Mol Biol. 2009;16:183–9. 209. Zeller RW. Computational analysis of Ciona intestinalis. Integr Comp Biol. 2010;50:75–85. 210. Chen JS, Pedro MS, Zeller RW. miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway. Development. 2011;138:49343–4953. 211. Sureban SM, May R, Lightfoot SA, Hoskins AB, Lerner M, Brackett DJ, Postier RG, Ramanujam R, Mohammed A, Rao CV, Wyche JH, Anant S, Houchen CW. DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism. Cancer Res. 2011;71:2328–38. 212a. Wang Z, Banerjee S, Ahmad A, Li Y, Azmi AS, Gunn JAR, Kong D, Bao B, Ali S, Gao J, Mohammed RM, Miele L, Korc M, Sarkar FH. Activated K-ras and INK4a/Arf deficiency cooperate during the development of pancreatic cancer by activation of Notch and NFκB signaling pathways. PLoS One. 2011;6(6):e20537. 212b. Wang Z, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer Res. 2011;31:1105–13. 213. Santra M, Santra S, Buller B, Santra KL, Nallani A, Chopp M. Effect of doublecortin on self-renewal and differentiation in brain tumor stem cells. Cancer Sci. 2011;102:1350–7. 214. Liu N, Zhang S, Liu Z, Gaowa S, Wang Y. Characterization and expression of gamma-interferon-inducible lysosomal thiol reductase (GILT) gene in amphioxus Branchiostoma belcheri with implications for GILT in innate response. Mol Immunol. 2007;2631–2637. References 659

215. Srinivasan P, Maric M. Signal transducer and activator of transcription negatively regulates constitutive gamma interferon-inducible lysosomal thiol reductase expression. Immunology. 2011;132:209–16. 216. O’Donnell PW, Hague A, Klemsz MJ, Kaplan MH, Blum JS. Cutting edge: induction of the antigen-processing enzyme IFN-gamma-inducible lysosomal thiol reductase in melanoma cells is STAT1-dependent but CIITA-independent. J Immunol. 2004;173:731–5. 217. Cui XW, Xiao W, Ke Z, Liu X, Xu XZ, Zhang SQ. Cloning and expression analysis of interferon-γ-inducible-lysosomal thiol reductase gene in South African clawed frog (Xenopus laevis). Int Immunopharmacol. 2011;11:2091–7. 218. Yang M, Yuan S, Huang S, Li J, Xu L, Huang H, Tao X, Peng J, Xu A. Characterization of btTICAM from amphioxus suggests the emergence of MyD88-independent pathway in basal chordates. Cell Res. 2011;21:1410–23. 219. Chen X, Li Q, Wang J, Guo X, Jiang X, Ren Z, Weng C, Sun G, Wang X, Liu Y, Ma L, Chen JY, Wang J, Zen K, Zhang J, Zhang CY. Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol. 2009;10:R78. 220. Dai Z, Chen Z, Ye H, Zhou L, Cao L, Wang Y, Peng S, Chen L. Characterization of microRNAs in cephalochordates reveals a correlation between microRNA repertoire homology and morphological similarity in chordate evolution. Evol Dev. 2009;11:41–9. 221. Li G, Zhang J, Sun Y, Wang H, Wang Y. The evolutionary dynamic IFN-inducible GTPase proteins play conserved immune functions in vertebrates and cephalochordates. Mol Biol Evol. 2009;26:1619–30. 222. Robertsen B. The interferon system of teleost fish. Fish Shelfish Immunol. 2006;20:172–91. 223. Hemming OJ, Lutfalla G, Levraud JP, Hartmann R. Crystal structure of zebrafish interferons I and II reveals conservation of type I interferon structure in vertebrates. J Virol. 2011;85:8181–7. 224. Zou X, Xiang X, Chen Y, Peng T, Luo X, Pan Z. Understanding inhibition of viral proteins on types I IFN signaling pathways with modeling and optimization. J Theor Biol. 2010;265:691–703. 225. Bell DM, Roberts NJ Jr, Hall CB. Different antiviral spectra of human macrophage interferon activities. Nature. 1983;305:319–21. 226. Gallwitz M, Reimer JM, Hellman L. Expansion of the mast cell chymase locus over the past 200 million years of mammalian evolution. Immunogenetics. 2006;58:655–69. 227. Wang S-Z, Roberts RM. The evolution of the gene product, a little known protein implicated in stress responses and type I interferon signaling in vertebrates. BMC Evol Biol. 2005;v.5. doi:10.1186/1471-2148-5-13. 228. Icardi L, Lievens S, Mori R, Piessevaux J, De Cauwer L, De Bosscher K, Tavernier J. Opposed regulation of type I IFN-induced STAT3 and ISGF3 transcriptional activities by histone deacetylases (HDACs) 1 and 2. FASEB. 2012;26:240–9. 229. Xiong H, Du W, Zhang YJ, Hong J, Su WY, Tang JT, Wang YC, Lu R, Fang JY. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer. Mol Carcinog. 2012;51:174–84. 230. Banu SK, Lee J, Stephen SD, Nithy TK, Arosh JA. Interferon tau regulates PGF2α release from the ovine endometrial epithelial cells via activation of novel JAK/EGFR/ERK/EGR-1 pathways. Mol Endocrinol. 2010;24:23125–2330. 231. Kim J, Villadsen R, Sørlie T, Fogh L, Grenlund SZ, Fridriksdottir AJ, Kuhn I, Rank F, Wielenga VT, Solvang H, Edwards PA, Børresen-Dale AL, Rønnov-Jessen L, Bissel MJ, Petersen OW. Tumor initiating but differenciated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Soc Natl Acad Sci USA. 2012;109:6124–9. 660 References

232. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM. A luminal epithelial stem cell that is the origin of prostate cancer. Nature. 2009;461:495–500. 233. Wagner K-U, Schmidt JW. The two faces of Janus kinases and their respective STATs in mammary gland development and cancer. J Carcinog. 2011;10:32. doi:10.4103/1477- 3163-90677. 234. Xu H, Yang YJ, Qian HY, Wang YD, Wang H, Zhang Q. Rosuvastatin treatment activates JAK-STAT pathway and increases efficacy of allogeneic mesenchymal stem cell transplantation in infarcted heart. Circ J. 2011;75:1476–85. 235. Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou J, Zhang J, Jin Z, Yin D. The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol. 2011;107:1–12. 236. Houssain S, Singh N, Salam Bandil K, Yuvaraj M, Akbar Bhat M, Muzaffar Mir M, Siddiqi MA, Sobti RC, Bharadwaj M, Das BC. Methylation-mediated gene-silencing of suppressor of cytokine signaling-1 (SOCS-1) gene in esophageal squamous cell carcinoma patients of Kasmir valley. J Recept Signal Transduct Res. 2011;31:147–56. 237. Souma Y, Nishida T, Serada S, Iwahon K, Takahashi T, Fujimoto M, Ripley B, Nakajima K, Miyazaki Y, Mori M, Dokin Y, Sawa Y, Naka T. Antiproliferative effect of SOCS-1 through the suppression of STAT3 and p38 MAPK activation in gastric cancer cells. Int J Cancer. 2012;131:1287–1296. doi:10.1002/ijc.27350. 238. Qin J, Xin H, Nickoloff BJ. Specifically targeting ERK1 or ERK2 kills melanoma cells. J Transl Med. 2012;10:15. doi:10.1186/1479-5876-10-15. 239. Xiong H, Zhang Z-G, Tian X-Q, Sun D-F, Liang Q-C, Zhang Y-J, Lu R, Chen Y-X, Fang J-Y. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia. 2006;10:287–97. 240. Huang C, Yang G, Jiang T, Huang K, Gao J, Qiu Z. Effects of IL-6 and AG490 on regulation of Stat3 signaling pathway and invasion of human pancreatic cancer cells in vitro. J Exp Clin Cancer Res. 2010;29(1):51. doi:10.1186/1756-9966-29-51. 241. Mohanty S, Jermyn KA, Early A, Kawata T, Aubry L, Ceccarelli A, Scaap P, Williams JG, Firtel RA. Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk differentiation and is required for efficient chemotaxis. Development. 1999;126:3391–405. 242. Copf T, Goguel V, Lampin-Saint-Amaux A, Scaplehorn N, Preat T. Cytokine signaling through the JAK/STAT pathway is required for long-term memory in Drosophila. Proc Natl Acad Sci USA. 2011;108:8059–64. 243. Bina S, Wright VM, Fisher KH, Milo M, Zeidler MP. Transcriptional targets of Drosophila JAK/STAT pathway signaling as effectors of haematopoietic tumour formation. EMBO Rep. 2010;11:201–7. 244. González I, Simón R, Busturia A. The polyhomeotic protein induces hyperplastic tissue overgrowth through the activation of the JAK/STAT pathway. Cell Cycle. 2009;8:4103–11. 245. Karsten P, Häder S, Zeidler MP. Cloning and expression of Drosophila SOCS36E and its potential regulation by the JAK/STAT pathway. Mech Dev. 2002;117:343–6. 246. Callus BA, Mathey-Prevot B. SOCS36E, a novel Drosophila SOCS protein, suppresses JAK/STAT and EGF-R signaling in the imaginal wing disc. Oncogene. 2002;21:4812–21. 247. Silver DL, Montell DJ. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell. 2001;107:831–41. 248. Van de Bor V, Zimniak G, Cérézo D, Schaub S, Noselli S. Asymmetric localization of cytokine mRNA is essential for JAK/STAT activation during cell invasiveness. Development. 2011;138:1383–93. References 661

249. Migita K, Komori A, Torigoshi T, Maeda Y, Izumi Y, Jiuchi Y, Miyashita T, Nakamura M, Motokawa S, Ishibashi H. CP690,550 inhibits oncostatin M-induced JAK/STAT signaling pathway in rheumatoid synoviocytes. Arthritis Res Ther. 2011;13 (3):R72. doi:10.1186/ar3333. 250. Gavasso S, Gjertsen B, Anderssen E, Myhr K, Vedeler C. Immunogenic effects of recombinant interferon-beta therapy disrupt the JAK/STAT pathway in primary immune cells from patients with multiple sclerosis. Mult Scler. 2012;18:1116–24. 251. Kim MO, Si Q, Zhou JN, Pestell RG, Brosnan CF, Locker J, Lee SC. Interferon-beta activates multiple signaling cascades in primary human microglia. J Neurochem. 2002;81:1361–71. 252. Qin H, Yeh WI, De Sarno P, Holdbrooks AT, Liu Y, Muldowney MT, Reynolds SKL, Yanagissawa LL, Fox TH 3rd, Park K, Harrington LE, Raman C, Benveniste EN. Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc Natl Acad Sci USA. 2012;109:5004–9. 253. Ramgolam VS, Markovic-Plese S. Regulation of suppressors of cytokine signaling as a therapeutic approach in autoimmune diseases, with an emphasis on multiple sclerosis. J Signal Transduct. 2011: 635721. doi:10.1155/2011/635721. 254. Eghtedar A, Verstovsek S, Estrov Z, Burger J, Cotes J, Bivins C, Faderl S, Ferrajoli A, Borthakur G, George S, Scherle PA, Newton RC, Kantarjian HM, Ravandi F. Phase II study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including post myeloproliferative neoplasms (MPN) acute myeloid leukemia (AML). Blood. 2012;119:4614–8. 255a. Harrison C, Verstovsek S, McMullin MF, Mesa R. Janus kinase inhibition and its effect upon the therapeutic landscape for myelofibrosis: from palliation to cure? Brit J Haematol. 2012;157:426–37. doi:10.1111/j.1365-2141.2012.09108.x. 255b. Harrison C, Kiladjian J-J, Al-Ali HK, Gisslinger H, Waltzman R, Stablovskaya V, Mc Quitty M, Hunter DS, Levy R, Knoops L, Cervantes F, Vannucchi AM, Barbui T, Barosi G. Jak inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98. 256. Iványi JL, Marton E, Plander M. Significance of the JAK2V617F mutation in patients with chronic myeloproliferative neoplasia. Orvosi Hetilap (Budapest). 2011;152:1795– 1780. 257. Tefferi A. Challenges facing JAK inhibitor therapy for myeloproliferative neoplasms. N Engl J Med. 2012;366:844–6. 258. Oh SJ, Ahn JY, Chung DH. Comparison of invariant NKT cells with conventional T cells by using gene set enrichment analysis (GSEA). Immune New. 2011;11:406–11. 259. Inakufu M, Li C, Kanda Y, Kaewamura T, Takeda K, Oku H, Watanabe H. Beta-glucosylceramide administration (i.p.) activates natural killer T cells in vivo and prevents tumor metastasis in mice. Lipids. 2012 Epub March 20. 260. Alvarez-Breckenridge CA, Yu J, Price R, Wei M, Wang Y, Nowicki ND, Ha YP, Bergin S, Hwang C, Fernandez SA, Kaur B, Caliguri MA, Chiocca EA. The HDAC inhibitor valproic acid lessens NK cell action against virus-infected glioblastoma cells with inhibition of STAT5/T-BET signaling and IFNγ generation. J Virol. 2012: 702839. doi:10.1155/2012/702839. 261a. Sinkovics JG. The graft-versus-leukemia (GvL) reaction: Its early history, value in human bone marrow transplantation and recent developments concerning its mechanism and induction. In: Dicke KA, Keating A, authors/editors. Autologous Marrow and Blood Transplantation. Proceedings Seventh International Symposium. Arlington, TX: The Cancer Treatment Research and Educational Institute; 1994. p. 305–318. 261b. Sinkovics JG. Antileukemia and antitumor effects of the graft-versus host disease: a new immunovirological approach. Acta Microbiol Immunol Hung. 2010;57:253–347. 662 References

262a. Chaidos A, Patterson S, Szydlo R, Chaudhry MS, Dazi F, Kanfer E, MacDonald D, Marin D, Milojkovic D, Pavlu J, Davis J, Rahemlulla A, Rezvani K, Goldman J, Roberts L, Apperley J, Karadimitris A. Graft invariant natural killer T cell dose predicts risk of acute graft-versus-host disease in allogeneic hematopoietic stem cell transplan- tation. Blood. 2012;119:5030–6. 262b. Detre C, Keszei M, Barrido-Mesa N, Kis-Toth K, Castro W, Agyermang AF, Veerapen N, Besra G, Garrott MC, Tsokos GC, Wang N, Leadbetter EA, Terhorst C. SAP expression in invariant NKT cells is required for cognate help to support B-cell responses. Blood. 2012;120:122–9. 263. Kawasaki M, Fujishiro M, Yamaguchi A, Nozawa K, Kaneko H, Takasaki Y, Takamori K, Ogawa H, Sekigawa I. Possible role of the JAK/STAT pathways in the regulation of T cell-interferon related genes in systemic lupus erythematosus. Lupus. 2011;20:1231–9. 264. Tanaka Y, Maeshima Y, Yamaoka K. In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis. Ann Rheum Dis. 2012;71S2:i70–4. 265. Sørensen PS. Effects of neutralizing antibodies to interferon beta in multiple sclerosis: a logical paradox. Mult Scler. 2012;18:131–2. 266. Baker BJ, Park KW, Qin H, Ma XC, Benveniste EN. IL-27 inhibits OSM-mediated TNF-alpha and iNOS gene expression in microglia. Glia. 2010;58:1082–93. 267. Oliver-Martos B, Órpez T, Pinto-Medel MJ, Mayorga C, Garcia-León JA, Maldonado-Sanchez R, Suardiaz M, Guerrero M, Luque G, Leyva L, Fernández O. Gene expression in IFN-beta signaling pathway differs between monocytes, CD4 and CD8 T cells from MS patients. J Neuroimmunol. 2011;230:153–9. 268. Ping L, Ogawa N, Zhang Y, Sugai S, Masuki Y, Weiguo X. p38 Mitogen-activated protein kinase and nuclear factor-kB facilitate CD40-mediated salivary epithelial cell death. Rheumatol 2012;39:1256–64. 269. Koch L, Hofer S, Weigand MA, Frommhold D, Poeschl J, Ruef P. Inhibition of LPS-induced activation of coagulation by p38 MAPK inhibitor. ISRN Hematol. 2012:762614. doi:10.5402/2012/76614. 270. Pauls E, Shpiro N, Peggie M, Young ER, Sorcek RJ, Tan L, Choi HG, Cohen P. An essential role for IKKbeta in the production of type 1 inteferons by plasmacytoid dendritic cells. J Biol Chem. 2012;287:19216–28. doi:10.1074/jbc.M112.345405. 271. Koprowski H, Love R, Koprowska I. Enhancement of susceptibility to viruses in neoplastic tissues. Texas Rep Biol Med. 1957;15:111–28. 272. Isaacs A, Lindenmann J. Virus interference. I. The interferon. By A. Isaacs and J. Lindenmann, 1957. J Interferon Res. 1987; 7:429–438. 273. Lindenmann J, Klein PA. Immunological Aspects of Viral Oncolysis. Berlin-Heidelberg, New York: Springer Verlag; 1967. p. 1–84. 274. Cassel WA, Murray DR, Olkowski ZL. Newcastle disease virus oncolysate in the management of stage III malignant melanoma. In: Sinkovics JG, Horvath JC, editors. Viral therapy of human cancers. Marcel Dekker, New York. 2005; 677–689. 275. Sinkovics JG. New biological therapeutics: competitors or collaborators of viral therapy for human cancers. In: Viral Therapy of Human Cancers. In: Sinkovics JG, Horvath JC, editors. New York: Marcel Dekker; 2005. p. 149–453. 276. Sinkovics JG, Plager C, McMurtrey M, Papadopoulos NE, Waldinger R, Combs S, Romero J, Romsdahl MM. Adjuvant chemoimmunotherapy for malignant melanoma. In: Crispen RG, editor. Neoplasm immunity: experimental and clinical. New York, Amsterdam, Oxford: Elsevier/North-Holland; 1980. p. 481–519. 277. Sinkovics JG, Horvath JC. Evidence accumulating in support of cancer vaccines combined with chemotherapy: a pragmatic review of past and present efforts. Int J Oncol. 2006;29:765–77. References 663

278. Sinkovics JG, Shirato E, Gyorkey F, Cabiness J, Howe CD. Relationship between lymphoid neoplasms and immunologic functions. In: Leukemia-Lymphoma. Fourteenth Annual Clinical Conference on Cancer, 1969 at the University of Texas M.D. Anderson Hospital and Tumor Institute, Houston, Texas. Year Book Medical Publishers, Chicago. 1970; 53–92. 279. Sinkovics JG. Chondrosarcoma cell differentiation. Pathol Oncol Res. 2004;10:174–87. 280. Lichtman MA. Historical landmarks in the understanding of the lymphomas. In: Neoplastic Diseases of the Blood. In: Wiernik PH, Goldman JH, Dutcher JM, Kyle RA, editors. New York: Springer; 2013. p. 789–833. 281. Savage HE, Rossen RD, Hersh EM, Freedman RS, Bowen JM, Plager C. Antibody development to viral and allogeneic tumor cell-associated antigens in patients with malignant melanoma and ovarian carcinoma treated with lysates of virus-infected tumor cells. Cancer Res. 1986;46:2127–33. 282a. Chen W, Masterman K-A, Basta S, Haeryfar SM, Dimopoulos N, Knowles B, Bennink JAR, Yewdell JW. Cross-priming of CD8+ T cells by viral and tumor antigens is a robust phenomenon. Eur J Immunol. 2004;34:194–9. 282b. Chen W, Pang K, Masterman K-A, Kennedy G, Basta S, Dimopoulos N, Hornung F, Smyth M, Bennink JR, Yewdell JW. Reversal in the immunodominance hierarchy in secondary CD8+ T cell responses to influenza A virus: roles for cross-presentation and lysis-independent immunodomination. J Immunol. 2004;173:5021–7. 283. Hiss DC, Fiedling BC. Optimization and preclinical design of genetically engineered viruses for human oncolytic therapy. Exp Opin Biol Ther. 2012;12:1427–47. 284. Johnson TJ, Höti N, Liu C, Chowdhury WH, Li Y, Zhang Y, Lupold SE, Deweese SE, Rodriguez R. Bicalutamide-activated oncolytic adenovirus for the adjuvant therapy of high-risk prostate cancer. Cancer Gene Ther. 2013; doi:10.1038/cgt.2013.34. 285. Basta S, Bennink JAR. A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol. 2003;16:231–42. 286. Endo Y, Sakai R, Ouchi M, Onimatsu H, Hioki M, Kagawa S, Uno F, Watanabe Y, Uratya Yanaja N, Fujuwara T. Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation. Oncogene. 2008;27:2375–81. 287. Kaur B, Chiocca EA, Cripe TP. Oncolytic HSV-1 virotherapy: clinical experience and opportunities for progress. Curr Pharm Biotechnol. 2012;13:1842–51. 288. Li Q-X, Liu G, Zhang X. Fusogenic oncolytic herpes simplex viruses as a potent and personalized cancer vaccine. Curr Pharmaceut Biotech. 2010;123:1773–85. 289. Terwilliger DP, Buckley KM, Mehta D, Moorjani PG, Smith LC. Unexpected diversity displayed in cDNAs expressed by the immune cells of the purple sea urchin, Strongylocentrotus purpuratus. Physiol Genomics. 2006;26:134–44. 290a. Dhelly NM, Birch D, Nair SV, Raftos DA. Ultrastructural localization of highly variable 185/333 immune response proteins in the coelomocytes of the sea urchin, Heliocidaris erythrogramma. Immunol Cell Biol. 2011;89:861–9. 290b. Dheilly NM, Haynes PA, Raftos DA, Nair SV. Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythro- gramma. Dev Comp Immunol. 2012;37:243–56. 291. Haire RN, Miracle AL, Rast JP, Litman GW. Members of the Ikaros gene family are present in early representative vertebrate. J Immunol. 2000;165:306–12. 292. Mayer WR, O’Huigin C, Tichy H, Terzic J, Saraga-Babic M. Identification of two Ikaros-like transcription factors in lamprey. Scand J Immunol. 2002;55:162–70. 293. Herrin BR, Cooper MD. Alternative adaptive immunity in jawless vertebrates. J Immunol. 2010;185:1367–74. 294. Khalturin K, Becker M, Rinkevich B, Bosch TC. Urochordates and the origin of natural killer cells: identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus. Proc Natl Acad Sci USA. 2003;100:622–7. 664 References

295. Morales HDF, Robert J. Characterization of primary and memory CD8 T-cell responses against ranavirus (FV3) in Xenopus laevis. J Virol. 2007;81:2240–8. 296. Morales H, Robert JK. In vivo and in vitro techniques for comparative study of antiviral T cell responses in the amphibian Xenopus. Biol Proced Online. 2008;10:1–8. 297. Goyos A, Robert J. Tumorigenesis and anti-tumor immune responses in Xenopus. Front Biosci. 2009;14:167–76. 298. McKinnell RG, Carlson DL. Lucké renal adenocarcinoma, anuran neoplasm, studies at the interface of pathology, virology, and differentiation. J Cell Physiol. 1997;173:115–8. 299. Gantress J, Maniero GD, Cohen N, Robert J. Development and characterization of a model system to study amphibian immune responses to iridoviruses. Virology. 2003;311:254–62. 300. Campo-Paysaa F, Sémon M, Cameron RA, Peterson KJ, Schubert M. microRNA complements in deuterostomes: origin and evolution in microRNAs. Evol Dev. 2011;13:15–27. 301. Janvier P. microRNAs revive old views about jawless vertebrate divergence and evolution. Proc Natl Acad Sci USA. 2010;107:19137–8. 302. Heimberg AM, Cowper-Sal-lari R, Sémon M, Donoghue PC, Peterson KJ. microRNAs reveal the interrelationship of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci USA. 2010;107:19379–83. 303a. Hertel J, Stadler PF. Hairpins in a haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics. 2006;22:197–202. 303b. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler P. the Students. The expansion of the metazoan microRNA repertoire. BMC Genomics v.7; 2006;7:25. 304. Moran Y, Fredman D, Prasher D, Li XZ, Wee LM, Rentzsch FG, Zamore PD, Technau U, Seitz H. Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res. 2014;24:651–63. 305. Saha NR, Smith J, Amemiya CT. Evolution of adaptive immune recognition in jawless vertebrates. Semin Immunol. 2010;22:25–33. 306. Lada AG, Iyer LM, Rogozin IB, Aravind L, Pavlov YI. Vertebrate immunity, mutator proteins and their evolution. Genetika. 2007;43:1311–27. 307. Rogozin IB, Iyer LM, Liang L, Glazko GV, Liston VG, Pavlov YI. Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID APOBEC family cytosine deaminase. Nat Immunol. 2007;8:647–56. 308. Falkner S, Emdin SO, Ostberg Y, Mattisson A, Sjöbeck ML, Fänge R. Tumor pathology of hagfish, Myxine glutinosa, and the river lamprey, Lampetra fluviatilis. A light microscopal study with particular reference to the occurrence of primary liver carcinoma, islet cell tumors, and epidermal cysts of the skin. Prog Exp Tumor Res. 1976;20:217– 2550. 309. Falkner S, Marklund S, Mattisson PE, Rappe C. Hepatomas and other neoplasms in the atlantic hagfish (Myxine glutinosa): a histopathologic and chemical study. Ann N Y Acad Sci. 1978;298:342–55. 310a. Mechtcheriakova D, Svoboda M, Meshcheryakova A, Jensen-Jarolim E. Activation- induced cytidine deaminase (AID) linking immunity, chronic inflammation, and cancer. Cancer Immunol Immunother. 2012;61:1591–8. doi:10.1007/s00262-012-1255-z. 310b. Mechtcheriakova D, Sobanov Y, Holtappels G, Bajna E, Svoboda M, Jaritz M, Bachert C, Jensen-Jarolim E. Activation-induced cytidine deaminase (AID)-associated multigene signature to assess impact of AID in etiology of diseases with inflammatory component. PLoS One. 2011;6(10):e25611. 311. Kapitonov VV, Jurka J. Rag1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 2005;3(6):e181. References 665

312. Dreyfus DH. Paleo-immunology: evidence consistent with insertion of a primordial herpes virus-like element in the origins of acquired immunity. PLoS One. 2009;4(6): e5778. 313a. Fugmann SD, Messier C, Novack LA, Cameron RA, Rast JP. An ancient evolutionary origin of the Rag1/2 gene locus. Proc Natl Acad Sci. 2006;103:3728–33. 313b. Fugmann SD. The origin of the RAG genes—from transposition to V(D)J recombina- tion. Semin Immunol. 2010;22:10–6. 314. Baughn LB, Kalis SL, MacCarthyT Wei L, Fan M, Bergman A, Scharff MD. Recombinase-mediated cassette exchange as a novel method to study somatic hypermu- tation in Ramos cells. MBio. 2011;2(5):E00186–11. doi:10.1128/mBio.00186-11. 315. Chowdhury M, Forouhi O, Dayal S, McCloskey N, Gould HJ, Felsenfeld G, Fear DJ. Analysis of intergenic transcription and histone modification across the human immunoglobulin heavy chain locus. Proc Natl Acad Sci USA. 2008;105:15872–7. 316. Pham P, Bransteitter R, Goodman MF. Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry. 2005;44:2703–15. 317. Fugmann SD. Rag-2 unleashed: lymphocytes beware. Immunity. 2011;34:137–9. 318. Raghavan SC, Swanson PC, Ma Y, Lieber MR. Double-strand break formation by the RAG complex at the BCL-2 major breakpoint region is cleaved by the RAG complex. Nature. 2004;428:88–93. 319. Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen DJ, Corcoran AE, Nussenzweig A, Nussenzweig MC. Activation induced deaminase is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocation. Cell. 2008;135:1028–38. 320. Zhang L, Reynolds TL, Shan X. Coupling of V(D)J recombination to the cell cycle suppresses genome instability and lymphoid tumorigenesis. Immunity. 2011;34:163–74. 321. Jing YZ, Wang Y, Jia YP, Luo B. Polymorphisms of Epstein-Barr virus BHRF1 gene, a homologue of bcl-2. Chin J Cancer. 2010;29:1000–5. 322. Seitz V, Butzhammer P, Hirsch B, Hecht J, Gütgemann I, Ehlers A, Lenze D, Oker E, Sommerfeld A, von der Wall E, König C, Zinser C, Spang R, Hummel M. Deep sequencing of Myc DNA-binding sites in Burkitt lymphoma. PLoS One. 2011;6(11): e26837. doi:10.1371/journal.pone.0026837. 323. Knezevich S, Ludkovski O, Salski C, Lestou V, Chhanabhai M, Lam W, Klasa R, Connors JM, Dyer MJ, Gascoyne RD, Horsman DE. Concurrent translocation of BCL2 and MYC with a single immunoglobulin locus in high-grade B-cell lymphomas. Leukemia. 2005;19:659–63. 324. Martin-Subero JI, Odero MD, Hernandez R, Ciqudosa JC, Agirre X, Saez B, Sanz-García E, Ardanaz MT, Novo FJ, Gascoyne RD, Calasanz MJ, Siebert R. Amplificatiion of IGH/MYC fusion in clinically aggressive IGH/BCL2-positive germinal center B-cell lymphomas. Genes Chromosomes Cancer. 2005;43:414–23. 325. Koduru S, Wong E, Strowig T, Sunaram R, Zhang L, Strout MP, Flavell RA, Schatz DG, Dhodapkar KM, Dhodapkar MV. Dendritic cell-mediated activation-induced cytidine deaminase (AID)-dependent induction of genomic instability in human myeloma. Blood. 2012;119:2302–9. 326. Roux S, Meignin V, Quillard J, Meduri G, Guiochon-Mantel A, Fermand JP, Milgrom E, Mariette X. RANK (receptor activator of nuclear factor-kappa B) and RANKL expression in multiple myeloma. Br J Haematol. 2002;117:86–92. 327. Santini D, Schiavon G, Vincenzi B, Gaeta L, Pantano F, Russo A, Ortega C, Porta C, Galluzzo S, Armento G, La Verde N, Caroti C, Treilleux I, Ruggiero A, Perrone G, Addeo R, Clezardin P, Netti Muda A, Tonini G. Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLoS One. 2011;6(4):e19234. doi:10.1371/journal.pone.0019234. 328. Kothapalli NR, Fugmann SD. Targeting of AID-mediated sequence diversification to immunoglobulin genes. Curr Opin Immunol. 2011;23:184–9. 666 References

329. Deriano L, Caumeil J, Coussens M, Mullanin A, Chou Y, Alekseyenko AV, Chang S, Skok JA, Roth DB. The RAG2 C terminus suppresses genomic instability and lymphomagenesis. Nature. 2011;471:119–23. 330. Roa S, Li Z, Peled JU, Zhao C, Edelmann W, Scharff MD. MSH2/MSH6 complex promotes error-free repair of AID-induced dU: G mispairs as well as error-prone hypermutations of A: T sites. PLoS One. 2010;5(6):e11182. doi:10.1371/journal.pone. 0011182. 331. Hasham MG, Donghia NM, Cofey E, Maynard J, Snow KJ, Ames J, Wilpan RY, He Y, King BL, Mills KD. Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombinations. Nat Immunol. 2010;11:820–6. 332. Jankovic M, Robbiani DF, Dorsett Y, Eisenreich T, Xun Y, Tarakhovsky A, Nussenzweig A, Nussenzweig MC. Role of the translocation partner in protection against AID-dependent chromosomal translocations. Proc Natl Acad Sci USA. 2010;107:187–12. 333. McBride KM, Gazumyan A, Woo EM, Schwickert TA, Chait BT, Nussenzweig NC. Regulation of class switch recombination and somatic mutation by AID phosphorylation. J Exp Med. 2008;205:2585–94. 334. de Yébenes VG, Belver L, Pisano DG, González S, Villasante A, Croce C, He L, Ramiro AR. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J Exp Med. 2008;205:2199–206. 335. Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF, Di Virgilio M, Reina San-Martin B, Heidkamp G, Schwickert TA, Eisenreich TA, Rajewsky K, Nussenzweig MC. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-IgH translocation. Immunity. 2008;28:630–8. 336. Teng G, Hakimpour P, Landgraf P, Rice A, Tischl T, Casellas R, Papavasilou FN. microRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 2008;28:621–9. 337. Wong KY, So CC, Loong F, Chung LP, Lam WWL, Liang R, L GKH, Jin D-Y, Chim CS. Epigenetic inactivation of the miR-124-1 in haematologic malignancies. PLoS One. 2011;6(4):e19027. doi:10.1371/journal.ponr.0019027. 338. Borchert GM, Holton NW, Larson ED. Repression of human activation-induced cytidine deaminase by miR-93 and miR-155. BMC Cancer. 2011;11:347. doi:10.1186/1471- 2407-11-347. 339. Kawamata T, Lu J, Sato T, Tanaka M, Nagaoka H, Agata Y, Yoyoshima T, Yokoyama K, Oyaizu N, Nakamura N, Ando K, Tojo A, Kotani A. Imatinib mesylate directly impairs class switch recombination through down-regulation of AID: its potential efficacy as an AID suppressor. Blood. 2012;119:3123–7. 340a. Sinkovics JG. Adult human sarcomas. I. Basic science. Expert Rev Anticancer Ther. 2007;7:31–56. 340b. Gonzalez F, Tzobari S, Sinkovics JG, Campos LT, Howe CD. Immunological evidence for the viral etiology of human mesenchymal neoplasms. 65th Annual Meeting Am Assoc Cancer Res 10th Annual Meeting Am Soc Clinical Oncol March 27-30 1974 Houston TX. Proceedings Am Assoc Cancer Res 1974;15:62 #247. 340c. Sinkovics JG, Szakacs JE. Kaposi’s sarcoma. In: Lapis K, Eckhardt S, editors. Lectures & Symposia 14th Internatinal Cancer Congress Budapest. Cancer Research and Treatment Today: Results, Trends, Frontiers. Akadémiai Kiadó, Budapest, 1986;1:223–244. 341a. Sinkovics JG. Adult human sarcomas. II. Medical oncology. Expert Rev Anticancer Ther. 2007;7:183–210. 341b. Sinkovics JG, Györkey F, Melnick JL, Gyorkey P. Acquired immune deficiency syndrome: speculations about its etiology and comparative immunology. Rev Infect Dis. 1984;6:745–60. References 667

342. Busch K, Keller T, Fuchs U, Yeh RF, Harbott J, Klose I, Wiemels J, Novosel A, Reiter A, Burkhardt A. Identification of two distinct MYC breakpoint clusters and their association with various IGH breakpoint regions in the t(8;14) translocation in sporadic Burkitt lymphoma. Leukemia. 2007;21:1789–1751. 343. Szymanowska N, Klapper W, Gesk S, Küppers R, Martin-Subero JI, Siebert R. BCL2 and BCL3 are recurrent translocation partners of the IGH locus. Cancer Genet Cytogenet. 2008;186:110–4. 344. Slovak ML, Bedell V, Hsu YH, Estrine DB, Nowak NJ, Delioukina ML, Weiss LM, Smith DD, Forman SJ. Molecular karyotypes of Hodgkin and Reed-Sternberg cells at disease onset reveal distinct copy number alterations in chemosensitive versus refractory Hodgkin lymphoma. Clin Cancer Res. 2011;17:3443–54. 345. Re D, Benenson E, Beyer M, Gresch O, Draube A, Diehl V, Wolf J. Cell fusion is not involved in the generation of giant cells in the Hodgkin-Reed Sternberg cell line L1236. Am J Hematol. 2001;67:6–9. 346. Küppers R, Bräuninger A, Müschen M, Distler V, Hansmann M-L, Rajewsky K. Evidence that Hodgkin and Reed-Sternberg cells in Hodgkin disease do not represent cell fusions. Blood. 2001;97:818–21. 347. Drexler HG, Gignac SM, Hoffbrand AV, Leber BF, Norton J, Lok MS, Minowada J. Characterization of Hodgkin’s disease derived cell line HDLM-2. Recent Res Cancer Res. 1989;117:75–82. 348a. Sinkovics JG. Hodgkin’s disease revisited: Reed-Sternberg cells as natural hybridomas. Crit Rev Immunol. 1991;11:33–63. 348b. Sinkovics JG, Gonzalez F, Gyorkey F. Viral expressions in Reed-Sternberg cells. Leukemia. 1992;6S:49–53. 349. Michels KB. The origin of Hodgkin’s disease. Eur J Cancer Prev. 1995;4:379–88. 350. Gupta RK, Norton AJ, Thompson IW, Lister TA, Bodmer JG. P53 expression in Reed-Sternberg cells in Hodgkin’s disease. Br J Cancer. 1992;66:649–52. 351. Gupta RK, Patel K, Bodmer WF, Bodmer JG. Mutation of p53 in primary biopsy material and cell lines from Hodgkin disease. Proc Natl Acad Sci USA. 1993;90:2817–21. 352. Sinkovics JG. A notable phenomenon recapitulated. A fusion product of a murine lymphoma cell and a leukemia virus-neutralizing antibody-producer host plasma cell formed spontaneously and secreting the specific antibody continuously. Acta Microbiol Immunol Hung. 2005;52:1–40. 353. Sinkovics JG, Györkey F. Hodgkin’s disease: involvement of viral agents in the etiology. J Med. 1973;4:282–317. 354. Sinkovics JG, Shullenberger CC. Hodgkin’s disease. Lancet. 1975;2:506–7. 355. Ushmorov A, Ritz O, Hummel N, Leithäuser F, Möller P, Stein H, Wirth T. Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. Blood. 2004;104:3326–34. 356. Pedrazzoli F, Chrysantzas I, Dezzani L, Rosti V, Vinctorio M, Sitar G. Cell fusion in tumor progression: the isolation of cell fusion products by physical methods. Cancer Cell Int. 2011;11:32. doi:10.1186/1475-2867-11-32. 357. Martinez-Climent JA, Fontan L, Gascoyne RD, Siebert R, Prosper F. Lymphoma stem cells: enough evidence to support their existence? Haematologica. 2010;95:293–302. 358. Schmitt C, Balogh B, Grundt A, Buchholtz C, Leo A, Benner A, Hensel M, Ho AD, Leo E. The bcl-2/IgH rearrangement in a population of 204 healthy individuals: occurrence, age and gender distribution, breakpoints, and detection method validity. Leuk Res. 2006;30745–750. 359. Marusawa H, Takal A, Chiba T. Role of activation-induced cytidine deaminase in inflammation-associated cancer development. Adv Immunol. 2011;111:109–41. 360. Endo Y, Marusawa H, Chiba T. Involvement of activation-induced cytidine deaminase in the development of colitis-associated colorectal cancers. J Gastroenterol. 2011;46S1:6–10. 668 References

361. Shimizu T, Marusawa H, Endo Y, Chiba T: Inflammation-mediated genomic instability: role of activation-induced cytidine deaminase in carcinogenesis. Cancer Sci. 2012; doi:10.1111/j.1349-7006.2012.02293.x. 362. Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B, Spencer J, Pitzolis C. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 2009;6:56–75. doi:10.1371/journal. pmed.0060001. 363a. Baker-Austin C, Dopson M, Wexler M, Sawers RG, Stemmler A, Rosen BP, Bond PL. Extreme arsenic resistance by the acidophilic archaeon Ferroplasma acidarmanus. Extremophils. 2007;11:425–34. 363b. Baker-Austin C, Potrykus J, Wexler M, Bond PL, Dopson M. Biofilm development in the extremely acidophilic Ferroplasma acidarmanus Fer1. Extremophils. 2010;14:485–91. 364a. Baumler DJ, Hung KF, Jeong KC, Kaspar CW. Production of metanethiol and volatile sulfur compounds by the archaeon “Ferroplasma acidarmanus”. Extremophils. 2007;11:841–51. 364b. Sato D, Nozaki T. Methionine gamma-lyase: The unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancer. IUBMB Life 2009;61:1018–28. 365. DeLong EF. Life on the thermodynamic edge. Science. 2007;317:327–8. 366. Mouttaki H, Nanny MA, McInerney MJ. Metabolism of hydroxylated and fluorinated benzoates by Syntrophus aciditrophicus and detection of fluorodiene metabolite. Appl Environ Microbiol. 2009;75:998–1004. 367. Schmier B, Seetharaman J, Deutscher MP, Hunt JF, Malhorta A. The structure and enzymatic properties of a novel RNAase II family enzyme from Deinococcus radiodurans. J Mol Biol. 2012;415:547–59. 368. Abreyava XC, Paulino-Lima IG, Galante D, Rodriguez F, Mauas PJ, Lage A. Comparative survival of Deinococcus radiodurans and the Haloarchaea natrialba magadii and Halofex volcanii exposed to vacuum ultraviolet irradiation. Astrobiology. 2001;11:1034–49. 369. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N. The real-time polymerase chain reaction. Mol Aspects Med. 2006;27:95–125. 370. Williams KR, Doak TG, Herrick G. Telomere formation on macronuclear chromosomes of Oxytricha trifallax and O. fallax: alternatively processed regions have multiple telomere addition sites. BMC Genet > v.3; 2002. doi:10.1186/1471-2156-3-16. 371. McClintock B. The fusion of broken ends of sister half chromatids following chromatid breakage at meiotic anaphases. Missouri Agric Exp Station Res Bulletin. 1938;290:1–48. 372. Zhuang XY, Tang J, Hao YH, Tan Z. Fast detection of quadruplex structure in DNA by the intrinsic fluorescence of a single-stranded DNA binding protein. J Mol Recognit. 2007;20:386–91. 373. Du Z, Zhao Y, Li N. Genome-wide colonization of gene regulatory elements by G4 DNA motifs. Nucleic Acids Res. 2009;37:6784–98. 374. Zheng K-w, Chen Z, Y-h Hao, Tan Z. Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA. Nucleic Acids Res. 2010;38:327–38. 375. Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S. QuadBase: Genome-wide database of G4 DNA—occurrence in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res. 2008;36:D381–5. 376. Giraldo R, Suzuki M, Chapman L, Rhodes D. Promotion and parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichronism study. Proc Natl Acad Sci USA. 1994;91:7658–62. 377. Frantz JD, Gilbert W. A novel yeast gene product, G4p1, with a specificaffinity for quadruplex nucleic acids. J Biol Chem. 1995;270:20692–7. References 669

378. Capra JA, Paeschke K, Singh M, Zakian VA. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput Biol. 1000;6(7):e1000891. doi:10.1371/journal.pcb.861. 379. Smith JA, Chen Q, Yatsunyk LA, Nicoludis KM, Garcia MS, Kranaster R, Balasubramanian S, Monchaud D, Teulade-Fichou M-P, Abramowitz L, Schultz DC, Johnson FB. Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat Struct Mol Biol. 2011;18:478–85. 380. Cavalcanti AR, Dunn DM, Weiss R, Herrick G, Landweber LF, Doak TG. Sequence features of Oxytricha trifallax (class Spirotrichea) macromolecular telometric and subtelometric sequences. . 2004;155:311–22. 381. Vondrusková J, Kypr J, Kejnovská I, Fialová M, Vorlickiová M. Guanine quadruplex formation by RNA/DNA hybrid analogs of Oxytricha telomere G(4)T(4)G(4) fragment. Biopolymers. 2008;89:797–806. 382. Swart EC, Nowacki M, Shum J, Stiles H, Higgins BP, Doak TC, Schotanus K, Magrini VJ, Minx P, Mardis ER, Landweber LF. The Oxytricha trifallax mitochondrial genome. Genome Biol Evol. 2012;4:136–54. 383. Prescott JD, DuBois ML, Prescott DM. Evolution of the scrambled germline gene encoding alpha-telomere binding protein in three hypertrichous ciliates. Chromosoma. 1998;107:293–303. 384. Witherspoon DJ, Doak TG, Williams KR, Seegmiller A, Seger J, Herrick G. Selection on the protein-coding genes of the TBE1 family of transposable elements in the ciliates Oxytricha fallax and O. trifallax. Mol Biol Evol. 14:696–706. 385. Akhmanova A, Voncken F, van Alen T, van Hoek A, Boxma B, Vogels G, Veenhuis M, Hackstein JH. A with a genome. Nature. 1998;396:527–8. 386. Sedwick C. Anna Akhmanova: great tips on microtubules. J Cell Biol. 2011;195:168–9. 387. Bryan TM, Sperger JM, Chapman KB, Cech TR. Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax. Proc Natl Acad Sci USA. 1996;95:8479–84. 388. Hu L, Lim K, Bouaziz S, Phan AT. Giardia telomeric sequence d(TAGGG)4 forms two intramolecular G-quadruplexes in K+ solution: effect of loop length and sequence on the folding topology. J Am Chem Soc. 2009;131:16824–31. 389. Burke WD, Malik HS, Rich SM, Eickbush TH. Ancient lineages of non-LTR retrotransposons in the primitive eukaryote, Giardia lamblia. Mol Biol Evol. 2002;19:619–30. 390. Pardue M-L, DeBaryshe PG, Lowenhaupt K. Another protozoan contributes to the understanding telomeres and transposable elements. Proc Natl Acad Sci USA. 2001;98:14195–7. 391. Vanacova S, Liston D, Tachezy J, Johnson PJ. Molecular biology of the amitochondriate parasites, Giardia intestinalis, Entamoeba histolytica, and Trichomomas vaginalis. Int J Parasitol. 2003;33:235–55. 392. Müller M. The hydrogenosome. J Gen Microbiol. 1993;139:2879–89. 393. Vellai T, Takács K, Vida G. A new aspect to the origin and evolution of eukaryotes. J Mol Evol. 1998;46:499–507. 394. Embley TM. Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc London B Biol Sci. 2006;36:1055–67. 395. Wu G, Müller M. Glycogen phosphorylase sequences from the amitochondriate protists, Trichomonas vaginalis, Mastigamoeba balamuthi, Entamoeba histolytica and Giardia intestinalis. J Eukaryot Microbiol. 2003;50:366–72. 396. Henze K, Horner DS, Suguri S, Moore DV, Sánchez LB, Müller M, Embley TM. Unique phylogenetic relationship of glucokinases and glucosephosphate isomerase of the amitochondriate eukaryotes Giardia intestinalis, Spironucleus barkhanus and Trichomonas vaginalis. Gene. 2001;281:123–31. 670 References

397. Mitra S, Cui J, Robbins PW, Samuelson J. A deeply divergent phosphoglucomutase (PGM) of Giardia lamblia has both PGM and phosphomannomutase activities. Glycobiology. 2010;20:1233–124061. 398. Gladyshev EA, Meselson M, Arkhipova IR. A deep-branching clade of retrovirus-like retrotransposons in bdelloid rotifers. Gene. 2007;390:136–45. 399. Gorinšek B, Gubenšek F, Kordiš D. Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol. 2004;21:781–98. 400. Bittencourt-Silvestre J, Lemgruber L, de Souza W. Encystation process of Giardia lamblia; morphological and regulatory aspects. Arch Microbiol. 2010;192:259–65. 401. Cox SS, van der Giezen M, Tarr SJ, Crompton MFR, Tovar J. Evidence from bioinformatics, expression and inhibition studies of phosphoinositide-3 kinase signaling Giardia intestinalis. BMC Microbiol. 2006;18(6):45. 402. Kamda JD, Singer SM. Phosphoinositide-3 kinase-dependent inhibition of dendritic cell interleukin-12 production by giardia lamblia. Infect Immun. 2009;77:685–93. 403. Stiles BL. Phosphatase and tensin homologue deleted on chromosome 10 extending its PTENtacles. Int J Biochem Cell Biol. 2009;41:757–61. 404. Zhao H, Cui Y, Dupont J, Sun H, Henninghausen L, Yakar S. Overexpression of the gene tumor suppressor gene phosphatase and tensin homologue partially inhibits Wnt-1-induced mammary tumorigenesis. Cancer Res. 2005;65:6864–73. 405. Whelan JT, Kellogg A, Shewchuk BM, Hewan-Lowe K, Bertrand FE. Notch-1 signaling is lost in prostate adenocarcinoma and promotes PTEN gene expression. J Cell Biochem. 2009;107:992–1001. 406. Hart JR, Liao L, Yates JR 3rd, Vogt PK. Essential role of Stat3 in PI3K-induced oncogene transformation. Proc Natl Acad Sci USA. 2011;108:13247–53. 407. Vogt PK, Hart JR. PI3K and STAT3: a new alliance. Cancer Discov. 2011;1:481–6. 408. Ortutay C, Nore BF, Vihinen M, Smith CI. Phylogeny of Tec family kinases identification of a premetazoan origin of Btk, Bmx, Itk, Tec, Txk, and the Btk regulator SH3BP5. Adv Genet. 2008;64:51–80. 409. Alegado RA, Ferriera S, Nussbaum C, Young SK, Zeng Q, Imamovic A, Fairclough SR, King N. Complete genome sequence of Algoriphagus sp. PR1, bacterial prey of a colony-forming choanoflagellate. J Bacteriol. 2911;193:1485–1486. 410. Kutach AK, Villaseñor AG, Lam D, Belunis C, Janson C, Lok S, Hong LN, Liu CM, Deval J, Novak TJ, Barnett JW, Chu W, Shaw D, Kuglstatter A. Crystal structures of IL-2-inducible T cell kinase complexed with inhibitors: insights into rational drug design and activity regulation. Chem Biol Drug Des. 2010;76:154–83. 411. Iyer AS, Morales JL, Huang W, Ojo F, Ning G, Wills E, Baines JD, August A. Absence of Tec family kinases interleukin-2 inducible T cell kinase (ltk) and Bruton’s tyrosine kinase (Btk) severely impairs Fc epsilonRI-dependent mast cell responses. J Biol Chem. 2011;286:9503–13. 412. Sahu N, August A. ITK inhibitors in inflammation and immune-mediated disorders. Curr Top Med Chem. 2009;9:690–703. 413. Young SL, Diolaiti D, Conacci-Sorrell M, Ruiz-Trillo I, Eisenman RN, King N. Premetazon ancestry of the Myc-Max network. Mol Biol Evol. 2011;28:2961–1971. 414. van Leeuwen F, Taylor MC, Mondragon A, Moreau H, Gibson W, Kieft R, Borst P. Beta-D-glucosyl-hydroxymethyluracil is a conserved DNA modification in kinetoplastid protozoans and is abundant in telomeres. Proc Natl Acad Sci USA. 1996;95:2366–71. 415. Sandhu R, L B. Examination of the telomere G-overhang structure in Trypanosoma brucei. J Vis Exp 2011;(47).PII.1959. doi:10.3791/1959. 416a. Dreesen O, Cross GAM. Telomere length in Trypanosoma brucei. Exp Parasitol. 2008;118:103–10. 416b. Dreesen O, Cross GAM. Telomerase-independent stabilization of short telomeres in Trypanosoma brucei. Mol Cell Biol. 2006;26:4911–9. References 671

417a. Van Reet N, Pyana PP, Debourggraeve S, Büscher P, Claes F. Trypanosoma brucei gambiense: HMI-9 medium containing methylcellulose and human serum supports the continuous axenic in vitro propagation of the bloodstream form. Exp Parasitol. 2011;128:285–90. 417b. Van Reet N, Pyuana P, Rogé S, Claes F, Büscher P. Luminescent multiplex viability assay for Trypanosoma brucei gambiense. Parasit Vectors. 2013;6:207. doi:10.1186/ 1756-3306-6-207. 418. RawaL P, Kummarasetti VBR, Ravindran J, Kumar Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S. Genome-wide prediction of G4 DNA as regulatory motifs: role in global regulation. Genome Res. 2006;16:644–55. 419. Shum KT, Lui EL, Wong SC, Yeung P, Sam L, Wang Y, Watt RM, Tanner JA. Aptamer-mediated inhibition of Mycobacterium tuberculosis polyphosphate kinase 2. Biochemistry. 2011;50:3261–71. 420. Gaubler P, Wu HJ, Laudié M, Delseny M, Grellet E. A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet. 1995;249:58–64. 421. Naydov IA, Mubarakshina MM, Ivanov BN. Formation kinetics and H2O2 distribution in chloroplasts and protoplasts of photosynthetic leaf cells of higher plants under illumination. Biochemistry (Moscow). 2012;77:143–51. 422. Niessen M, Krause K, Horst I, Staebler N, Klaus S, Gaertner S, Kebeish R, Araujo WL, Fernie AR, Peterhansel C. Two alanine aminotransferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice. J Exp Biol. 2012;63:2705–16. 423. Zhou W, Zhou T, Li MX, Zhao CL, Jia N, Wang XX, Sun YZ, Li GL, Xu M, Zhou RG, Li B. The Arabidopsis J-protein AtDjB1 facilitates thermoresistance by protecting cells against heat-induced oxidative damage. New Phytol. 2012 Feb 22. doi:10.1111/j.1469- 8137.2012.04070.x. 424. Flanary BE, Kletetschka G. Analysis of telomere length and telomerase activity in tree species of various lifespans, and with age in the bristlecone pine Pinus longaeva. Rejuvenation Res. 2005;9:61–63; Biogerontology. 2005;6:101–111. 425. Bingham MA, Simard SW. Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conespecfic trees and seedlings. Mycorrhiza. 2012;22:317–26. 426. Gellert M, Lipsett MN, Davies DR. Helix formation by guanylic acid. Proc Natl Acad Sci USA. 1962;48:2013–8. 427. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res. 2006;34:2723–35. 428. Phan AT. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J. 2010;277:1107–17. 429. Qin Y, Hurley LH. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie. 2008;90:1149–71. 430. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–15. 431. De S, Michor F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nt Struct Mol Biol. 2011;18:950–5. 432. Patel DJ, Phan AT, Kuryavy V. Human telomere, oncogenic promoter and 5’-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res. 2007;35:7429–55. 433. Tsai YC, Qi H, Lin COP, Lin RK, Kerrigan JE, Rzuczek SG, laVoie EJ, Rice JE, Pilch DS, Lyu YL, Liu LF. A G-quadruplex stabilizer induces M-phase cell cycle rest. J Biol Chem. 2009;284:22536–43. 434. Nielsen MC, Ulven T. Macrocyclic G-quadruplex ligands. Curr Med Chem. 2010;17:3438–4348. 672 References

435. Linder J, Garner TP, Williams HE, Searle MS, Moody CJ. Telomestatin: formal total synthesis and cation-mediated interaction of its seco-derivatives with G-quadruplexes. J Am Chem Soc. 2011;133:1044–51. 436. Huang W, Smaldino PJ, Zhang Q, Miller LD, Cao P, Stadelman K, Wan M, Giri B, Lei M, Nagamina Y. Yin Yang 1 contains G-quadruplex structures in its promoter and 5-UTR and its expression is modulated by G4 resolvase 1. Nucleic Acids Res. 2012;40:1033–49. 437. Moriuchi M, Moriuchi H, Margolis DM, Fauci AS. USF/c-Myc enhances, while Yin-Yang suppresses, the promoter activity of CXCR4, a coreceptor for HIV-1 entry. J Immunol. 1999;162:5986–92. 438. Moriuchi M, Moriuchi H. YY1 transcription factor down-regulates expression of CCR5, a major coreceptor for HIV-1. J Biol Chem. 2003;278:13003–7. 439. He G, Margolis DM. Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol. 2002;22:2965–73. 440. Yliastigui L, Kaur R, Johnson H, Volker J, He G, Hansen U, Margolis D. Mitogen-activated protein-kinases regulate LSF occupancy at the human immunodefi- ciency virus type 1 promoter. J Virol. 2005;79:5952–62. 441. Inayoshi Y, Okino Y, Miyake K, Mizutani A, Yamamoto-Kishikawa J, Kinoshita Y, Morimoto Y, Imamura K, Morshed M, Kono K, Itoh T, Nishijima K-I, Iijima S. Transition factor YY1 interacts with retroviral integrases and facilitates integration of Moloney murine leukemia virus cDNA into the host chromosome. J Virol. 2010;84:8250–61. 442. Zalani S, Coppage A, Holley-Guthrie E, Kenney S. The cellular YY1 transcription factor binds a cis-acting, negatively regulating element in the Epstein-Barr virus BRLF1 promoter. J Virol. 1997;71:3268–74. 443. Chang PJ, Chen LW, Shih YC, Tsai PH, Liu AC, Hung CH, Liou JY, Wang SS. Role of the cellular transcription factor YY1 in the latent-lytic switch of Kaposi’s sarcoma-associated herpesvirus. Virology. 2011;41:194–204. 444. Daigle D, Gradoville L, Tuck D, Schultz V, Wand’ondu R, Ye J, Gorres K, Miller G. Valproic acid antagonizes the capacity of other histone deacetylase inhibitors to activate Epstein-Barr virus lytic cycle. J Virol. 2011;85:5626–5643. 445. Paul AG, Sharma-Walia N, Kerur N, White C, Chandran B. Piracy of PGE2EP receptor mediated signaling by Kaposi’s sarcoma associated herpes virus (KSHV/HHv-8) for latency expression: Strategy of a successful pathogen. Cancer Res. 2010;70:3697–708. 446. Du C, Wen B, Li D, Lin Y, Zheng Y, Peng X, Hong C, Chen J, Lin W, Hong X, Xie L, Wu M. Downregulation of Epstein-Barr virus-encoded latent membrane protein-1 by arsenic trioxide in nasopharyngeal carcinoma. Tumori. 2006;92:140–8. 447. He G, Wang Q, Zhou Y, Wu X, Wang L, Duru L, Kong X, Zhang P, Wan B, Sui L, Guo Q, Li JJ, Yu L. YY1 is a novel potential therapeutic target for the treatment of HPV infection-induced cervical cancer by arsenic trioxide. Int J Gynecol Cancer. 2011;21:1097–104. 448. Bheda A, Creek KE, Pirisi L. Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes. Oncogene. 2008;27:4315–23. 449. Darnell GA, Antalis TM, Rose BR, Suhrbier A. Silencing of integrated human papillomavirus type 18 oncogene transcription in cell expressing serpin B2. J Virol. 2005;79:4246–56. 450. Kadeppagari R-K, Sankar N, Thimmapaya B. Adenovirus transforming protein E1A induces c-Myc in quiescent cell by a novel mechanism. J Virol. 2009;83:4810–22. 451. Lackner DF, Muzyczka N. Studies of the mechanism of transactivation of the adeno-associated virus p129 promoter by Rep protein. J Virol. 2002;76:8225–35. References 673

452. Grönroos E, Terentiev AA, Punga T, Ericsson J. YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc Natl Acad Sci USA. 2004;101:12165–70. 453. Erkeland SJ, Valkhof M, Hejams-Antoissen C, Delwel R, Valk PJ, Hermans MH, Touw IP. The gene encoding the transcriptional regulator Yin Yang 1 (YY1) is a myeloid transforming gene interfering with neutrophilic differentiation. Blood. 2003;101:1111–7. 454. Voronina EN, Kolokol’tsova TD, Slyn’ko NM, Nechaev EA, Filipenko ML. Transcription factor YY1 participates in activation transcription of the human ribosomal protein L11 gene. Mol Biol (Moskva). 2006;42:110–6. 455. Ferreira AO, Myers CR, Gordon JS, Vencato M, Collmer A, Wehling MD, Alfano JAR, Moreno-Hagelsieb G, Lamboy WF, DeClerck G, Schneider DJ, Cartinhour SW. Whole-genome expression profiling defines the HrpL regulon of Pseudomonas syringae pv. Tomato DC3000, allows de novo reconstruction of the Hrp cis element, and identifies novel coregulated genes. Mol Plant Microbe Interact. 2006;19:1167–79. 456. Chen L, Shioda T, Coser KR, Lynch MC, Yang C, Schmidt EV. Genome-wide analysis of YY2 versus YY1 target genes. Nucleic Acids Res. 2010;38:4011–26. 457. Chen QR, Yu LR, Tsang P, Wei JS, Sing YK, Cheuk A, Chung JY, Hewitt SM, Veenstra TD, Khan J. Systematic protein analysis identifies transcription factor YY1 as a direct target of miR-34a. J Proteome Res. 2011;10:479–87. 458. Jiang L, Huang Q, Chang J, Wang E, Qiu X. MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in lung cancers. Exp Lung Res. 2011;37:387–98. 459. Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S, Barbarotto E, Cimmino A, Adair B, Wojcik SE, Valeri N, Calore F, Sampath D, Fanini F, Vannini I, Musuraca G, Dell’Aquila M, Alder H, Davuluri RV, Rassenti LZ, Negrini M, Nakamura T, Amadori D, Kay NE, Rai KR, Keating MJ, Kipps TJ, Calin GA, Croce CM. Association of microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011;305:59–67. 460. Joshi B, Rastogi S, Morris M, Carastro LM, Decook C, Seto E, Chellappan SP. Differential regulation of human YY1 and caspase 7 promoters by prohibitin through E2F1 and p53 binding sites. Biochem J. 2007;401:155–66. 461. Rizkallah R, Alexander KE, Kassardjian A, Luscher B, Hurt MM. The transcription factor YY1 is a substrate for Polo-like kinase 1 at the G2/M transition of the cell cycle. PLoS One. 2011;6(1):e15928. doi:10.1371/journal.pone.0015928. 462. O’Brien SJ. The platypus genome unraveled. Cell. 2008;133:953–5. 463. Casey A, Daish T, Grützner F. Platypus chain reaction: directional and ordered meiotic pairing of the multiple sex chromosome chain in Ornithorhynchus anatinus. Reprod Fertil Dev. 2009;21:976–84. 464. Veyrunes F, Waters PD, Miethke OP, Rens W, McMillan D, Alsop AE, Grützner F, Deakin JE, Whittington CM, Schatzkamer K, Kreinitzky CL, Graves T, Ferguson-Smith MA, Warren W. Marshall Graves JA. Bird-like sex chromosomes of platypus imply recent origin of mammalian sex chromosomes. Genome Res. 2008;18:965–73. 465. Edwards CA, Rens W, Carke O, Mungall AJ, Hore T, Graves JA, Dunham I, Ferguson-Smith AC, Ferguson-Smith MA. The evolution of imprinting: chromosomal mapping of orthologues of mammalian domains in monotreme and marsupial mammals. BMC Evol Biol. 2007;6(7):157. 466. Killian JK, Nolan CM, Stewart N, Munday BK, Andersen NA, Nicol S, Jirtle RL. Monotreme IGF2 expression and ancestral origin of genomic imprinting. J Exp Zool. 2001;29:205–12. 467. Killian JK, Nolan CM, Wylie AA, Li KT, Vu TH, Hoffman AR, Jirtle RL. Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet. 2001;10:1721–8. 674 References

468. Pask AJ, Papenfuss AT, Ager EI, McColl KA, Speed TP, Renfree MB. Analysis of the platypus genome suggests a transposons origin for mammalian imprints. Genome Biol 2009; 10(1):R1. doi:10.1186/gb-2009-10-1-r1. 469. Lux H, Flammann H, Lux A. Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation. PLoS One. 2010;5(1): e8686. doi:10.1371/journal.pone.000868. 470. Cornelis G, Heidmann O, Bernard-Stoecklin S, Reynaud K, Véron G, Mulot B, Dupressoir A, Heidmann T. Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral gene involved in placentation and conserved in Carnivora. Proc Natl Acad Sci USA. 2012;109:432–41. 471. Vernochet C, Heidmann O, Dupressoir A, Corneliad O, Dessen P, Catzefkis F, Heidmann T. A syncytin-like endogenous retrovirus envelope gene of the guinea pig specifically expressed in the placenta junctional zone and conserved in Cavimorpha. Placenta. 2011;32:885–92. 472. Suzuki S, Shaw G, Kaneko-Ishino T, Ishino F, Renfree MB. The evolution of mammalian genomic imprinting was accompanied by the acquisition of novel CpG islands. Genome Biol Evol. 2011;3:1276–8. 473. Zeh JA, Zeh DW. Viviparity-driven conflict: more to speciation than meets the fly. Ann N Y Acad Sci. 2008;1133:126–48. 474. Zhang XY, Loflin PT, Gehrke CW, Andrewes P, Ehrlich M. Hypermethylation of human DNA sequences in embryonal carcinoma cells, and somatic tissues, but not in sperm. Nucleic Acids Res. 1987;15:9429–49. 475. Harris LK, Crocker IP, Baker PN, Aplin JD, Westwood M. IGF2 actions on trophoblast in human placenta are regulated by the insulin-like growth factor 2 receptor, which can function as both a signaling and clearance receptor. Biol Reprod. 2011;84:440–6. 476. Koukoura O, Sifakis S, Soufla G, Zaravinos A, Apostolidou S, Jones A, Widschwendter M, Spandidos DA. Loss of imprinting and aberrant methylation of IGF2 in placentas from pregnancies complicated with fetal growth restriction. Int J Mol Med. 2011;28:481–7. 477. Sun XM, Shao Y, Wang XL, Wu WZ. Expression and clinical significance of constitutive androstane receptor in placental syntrophoblast of intrahepatic cholestasis of pregnancy. Zsionghua Fu Chan Ke Za Zhi. 2011;46:338–41. 478. Ala-Honkola O, Friman E, Lindström K. Costs and benefits of polyandry in a placental poeciliid fish Heterandria formosa are in accordance with the parent-offspring conflict theory of placentation. J Evol Biol. 2011;24:2600–10. 479. Meredith RW, Mn Pires, Reznik DN, Springer MS. Molecular phylogenetic relationships and the coevolution of placentotrophy and superfetation in Poecilla (Poecilliidae: Cyprinodontiformes). Mol Phylogenet Evol. 2011;59:148–57. 480. Murphy BF, Thompson MB. A review of the evolution of viviparity in squamous reptiles: the past, present and future role of molecular biology and genomics. J Comp Physiol. 2011;181:575–94. 481. Avise JC, Liu JX. Multiple mating and its relationship to brood size in pregnant fishes versus pregnant mammals and other viviparous vertebrates. Proc Natl Acad Sci USA. 2011;108:7091–5. 482. Rengaraj D, Lee BR, Lee SI, Seo HW, Han JY. Expression patterns and miRNA regulation of DNA methyltransferases in chicken primordial germ cells. PLoS One. 2011;6(5):e19524. 483. Green AE, O’Neil S, Swan KE, Bohm RP, Ratterree MS, Henson MC. Leptin receptor transcripts are constitutively expressed in placenta and adipose tissue with advancing baboon pregnancy. Proc Soc Exp Biol Med. 2000;223:362–6. 484. Carranza PG, Luján HD. New insights regarding the biology of Giardia lamblia. Microbes Infect. 2010;12:71–80. References 675

485. Csaba G, Gaál A, Kovács P, Simon G, Kőhidai L. Prolonged elevation of insulin content in the unicellular tetrahymena after insulin treatment: induction of insulin production or storage? Cell Biochem Funct. 1999;17:165–73. 486. Christopher GK, Sundermann CA. Intracellular insulin binding in Tetrahymena pyriformis. Tissue Cell. 1996;28:427–37. 487. Olinski RP, Dahlberg C, Thorndyke M, Hallbook F. Three insulin-relaxin-like genes in Ciona intestinalis. Peptides. 2006;27:2535–46. 488. Somorjai IM, Somorjai RL, Garcia-Fernández J, Escrivá H. Vertebrate-like regeneration in the invertebrate chordate amphioxus. Proc Natl Acad Sci USA. 2012;109:517–22. 489. Pashmforoush M, Chan SJ, Steiner DF. Structure and expression of the insulin-like peptide receptor from amphioxus. Mol Endocrinol. 1996;10:857–66. 490. Guo ZY, Shen L, Gu W, Wu AZ, Ma JG, Feng YM. In vitro evolution of amphioxus insulin-like peptide-to-mammalian insulin. Biochemistry. 2002;41:10603–10507. 491. Zhang W, Thompson BJ, Hietakangas V, Cohen SM. MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila. PLoS Genet 2011. 2011;7(12):e1002429. 492. Sandmann T, Girardot C, Brehme M, Tongprasil W, Stolc V, Furlong EE. A core transcriptional network for early mesoderm development in Drososphila melanogaster. Genes Dev. 2007;21:436–49. 493. Liu J, Uygur B, Zhang Z, Shao L, Romero D, Vary C, Ding Q, Wu WS. Slug inhibits proliferation of human prostate cancer cells via downregulation of cyclin d1 expression. Prostate. 2010;70:1768–77. 494. Yee DS, Tang Y, Li X, Liu Z, Guo Y, Ghaffar S, McQueen P, Atreya D, Xie J, Simoneau AR, Hoang BH, Zi X. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer. 2010;23(9):162. 495. Uygur B, Wu WS. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis. Mol Cancer. 2011;10(10):139. 496a. Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, Yi M, Stephens RM, Seng V, Sheppard-Tillman H, Martin P, Kelly K. Mir-1 and miR-209 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 2012 Feb 17. doi:10.1038/onc.2012.58. 496b. Liu YN, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O, Hu D, Wan Y, Seng V, Sheppard-Tillman H, Martin P, Kelly K. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor β-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol. 2012;32:941–53. 497a. Park SK, Link CD, Johnson TE. Life span extension by dietary restriction is mediated by NLP-Z signaling and coelomocyte endocytosis in C. elegans. FASEB J. 2010;24:383–92. 497b. Park D, Jones KL, Lee H, Snutch TP, Tabrt S, Riddle DL. Repression of a potassium channel by nuclear hormone receptor and TGF-β signaling modulates insulin signaling in Caenorhabditis elegans. PLoS Genet. 2012;8(2):e1002519. 498a. Narasimhan SD, Am Mukhopadhyay, Issenbaum HA. Inactivation of insulin/IGF-1 signaling by dephosphorylation. Cell Cycle. 2009;8:3878–84. 498b. Narasimham SD, Yen K, Bansal A, Kwon ES, Padmanabban S, Tissenbaum HAS. PDP-links the TGF-β and IIS pathways to regulate longevity, development, and metabolism. PLoS Genet. 2011;7(4):e1001377. 499. Crozatier M, Vincent A. Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias. Dis Model Mech. 2011;4:439–45. 500. Pinkston-Gosse J, Kenyon C. DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nat Gen. 2007;39:1403–9. 676 References

501. Witte K, Schuh AL, Hegermann J, Sarkeshik A, Mayers JR, Schwarze K, Yates JR 3rd, Eimer S, Audhya A. TGF-1 function in protein secretion and oncogenesis. Nat Cell Biol. 2011;13:550–8. 502. Breckenridge DG, Kang BH, Xue D. Bcl-2 proteins EGL-1 and CED-9 do not regulate mitochondrial fission or fusion in Caenorhabditis elegans. Curr Biol. 2009;19:768–73. 503. Shirinian M, Varshney G, Lorén CE, Grabbe C, Palmer RH. Drosophila anaplastic lymphoma kinase regulates Dpp signaling in the developing embryonic gut. Differentiation. 2007;75:418–26. 504. Yang HL, Eriksson T, Vernersson E, Vigny M, Hallberg B, Palmer RH. The ligand jelly belly (jeb) activates the Drosophila Alk RTK to drive PC12 cell differentiation, but is unable to activate the mouse ALK RTK. J Exp Zool B Mol Dev Evol. 2007;308:269–82. 505. Weiss JB, Xue C, Benice T, Xue L, Morris SW, Raber J. Anaplastic lymphoma kinase and leukocyte tyrosine kinase: functions and genetic interactions in learning, memory and adult neurogenesis. Pharmacol Biochem Behav. 2012;100:566–74. 506. Gouzi JY, Moresis A, Walker JA, Apostolopoulou AA, Palmer RH, Bernards A, Skoulakis EM. The receptor tyrosine kinase Alk controls neurofibromin functions in Drosophila growth and learning. PLoS Genet. 2011;7(9):e1002281. 507. Galietta A, Gunby RH, Redaelli S, Stanom P, Carniti C, Bachi A, Tucker PW, Tartari CJ, Huang CJ, Colombo E, Pulford K, Puttini M, Piazza RG, Ruchatz H, Villa A, Donella-Deana A, Marin O, Perotti D, Gambacorti-Passerini C. NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large cell lymphoma. Blood. 2007;119:2600–9. 508. Paznekas WA, Okajima K, Schertzer M, Wood S, Jabs EW. Genomic organization, expression, and chromosome location of the human snail gene (SNAI1) and a related processed pseudogene (SNAI1P). Genomics. 1999;15:62-42-49. 509. Emadi Baygi M, Soheili ZS, Essmann F, Deezagi A, Engers R, Goering W, Schulz WA. Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines. Tumor Biol. 2010;31:297–307. 510. Wainszelbaum MJ, Charon AJ, Kong C, Kirkpatrick DS, Srikanth P, Barbieri MA, Gygi SP, Stahl PD. The hominoid-specific oncogene TBC1D3 activates Ras and modulates epidermal growth factor receptor signaling and trafficking. J Biol Chem. 2008;283:13233–42. 511. Wainszelbaum MJ, Liu J, Kong C, Srikanth P, Samovski S, Su X, Stahl PD. TBC1D3, a hominoid-specific gene delays IRS-1 degradation and promotes insulin-signaling by modulating p70 S6 kinase activity. PLoS One. 2012;7(2):e31225. 512. Pei L, Peng Y, Yang Y, Ling XB, Van Eyndhoven WG, Nguyen KC, Rubin M, Hoey T, Powers S, Li J. PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer. Cancer Res. 2002;62:5420–4. 513. Paulding CA, Ruvolo M, Haber DA. The Tre (USP6) oncogene is a hominoid-specific gene. Proc Natl Acad Sci USA. 2003;100:2507–11. 514. Lumb JH, Field MC. Rab23 is a flagellar protein in Trypanosoma brucei. BMC Res Notes. 2011;4:190. 515. Lumb JH, Leung KF, Dubois KN, Field MC. Rab28 function in trypanosomes: interactions with retromer and ESCRT pathways. J Cell Sci. 2011;124:3771–83. 516. Leung KF, Dacks JB, Field MC. Evolution of the multivesicular body ESCRT machinery: retention across the eukaryotic lineage. Traffic. 2008;9:1698–716. 517. Chen MC, Hong MC, Huang YS, Liu MC, Cheng YM, Fang LS. ApRab11, a cnidarian homologue of the recycling regulatory protein Rab11, is involved in the establishment and maintenance of the Aiptasia-Symbodium endosymbiosis. Biochem Biophys Res Commun. 1995;338:1607–16. 518. Kim J, Jang SS, Song K. Different levels of Bfa1/Bub2/ GAP activity are required to prevent mitotic exit of budding yeast depending on the type of perturbation. Mol Biol Cell. 2008;19:4328–40. References 677

519. Fraschini R, D’Ambrosio C, Venturetti M, Lucchini G, Piatt S. Disappearance of the budding yeast Bub2-Bfa1 complex from the mother-bound spindle pole contributes to mitotic exit. J Cell Biol. 2006;172:335–46. 520. Kim J, Luo G, Bahk YY, Song K. Cdc5-dependent asymmetric localization of Bfa1 fine tunes timely mitotic exit. PLoS Genet January 2012;8(1):e1002450. doi:10.1371/journal. pgen.1002450. 521. Wang Y, Ng T-Y. Phosphatase 2A negatively regulates mitotic exit in Saccharomyces cerevisiae. Mol Biol Cell. 2006;17:89–89. 522. Conner SD, Wessel GM. Syntaxin, VAMP, and Rab3 are selectively expressed during sea urchin embryogenesis. Mol Reprod Dev. 2001;58:22–9. 523. Shi A, Chen CC, Banerjee R, Glodowski D, Audhya A, Rongo C, Grant BD. EHBP-1 functions with RAB-10 during endocytic recycling in Caenorhabditis elegans. Mol Biol Cell. 2010;21:2930–43. 524. Pei L, Peng Y, Yang Y, Ling XB, van Eyndhoven W, Nguyen KCQ, Rubin M, Hoey T, Powers S, Li J. PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer. Cancer Res. 2002;62:5420–33. 525. Masuda-Robens JM, Kutney SN, Qi H, Chou MM. The TRE17 oncogene encodes a component of a novel effector pathway for Rho GTPase Cdc42 and Rac 1 and stimulates actin remodeling. Mol Cell Biol. 2003;23:2151–61. 526. Chen S, Murphy J, Toth R, Campbell DG, Morrice NA, MacKintosh C. Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators. Biochem J. 2008;409:449–59. 527. Albalat R, Marti-Solans J, Cañestro C. DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates. Brief Funct Genomics. 2012;11:142–55. 528. Banki K, Maceda J, Hurley E, Ablonczy E, Mattson DH, Szegedy L, Hung C, Perl A. Human T cell lymphotropic virus (HTLV)-related endogenous sequence, HRES-1, encodes a 28-kD protein: a possible autoantigen for HTLV-1 gag-reactive antibodies. Proc Natl Acad Sci USA. 1992;89:1939–43. 529. Sinkovics JG. Viral induction of autoimmune disease and neoplasia. Lancet. 1966;2:229–30. 530. Sinkovics JG. Working hypothesis. Viral etiology of autoimmune diseases. N Engl J Med. 1969;280:903–4. 531. Gyorkey F, Sinkovics JG, Min KW, Gyorkey PA. A morphological study on the occurrence and distribution of structures resembling viral nucleocapsids in collagen diseases. Am J Med. 1972;53:148–58. 532. Gyorkey F, Sinkovics JG, Gyorkey P. Tubuloreticular structures in Kaposi’s sarcoma. Lancet. 1982;2:984–5. 533. Zucker-Franklin D. “Looking” for the cause of AIDS. N Engl J Med. 1983;308:837–8. 534a. Perl A, Fernandez D, Telarico T, Phillips PE. Endogenous retroviral pathogenesis in lupus. Curr Opin Rheumatol. 2010;22:483–92. 534b. Caza TN, Fernandez DR, Talaber G, Oaks Z, Haas M, Madaio MP, Lai ZW, Miklossy G, Singh RR, Chudakov DM, Malorni W, Middleton F, Banki K, Perl A. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment of SLE. Ann Rheum Dis 2013; doi:10.1136/ annrheumdis-2013-203794. 535. Alvino CL, Ong SC, McNail KA, Delaine C, Brooker GW, Wallace JC, Forbes BE. Understanding the mechanism of insulin and insulin growth factor (IGF) receptor activation by IGF-II. PLoS One. 2011;6(11):e27488. 536. Bhagrava R, Beriwal S, McManus K, Dabbs DJ. Insulin-like growth factor receptor-1 (IGF-1R) expression in normal breast, proliferative breast lesions, and breast carcinoma. Appl Immunohistochem Mol Morphol. 2011;19:218–25. 678 References

537. Davison Z, de Blacquière GE, Westley BR, May FE. Insulin-like growth factor-dependent proliferation and survival of triple-negative breast cancer cells: implications for therapy. Neoplasia. 2011;13:504–15. 538. Fox EM, Miller TW, Balko JM, Kuba MG, Sánchez V, Smith RA, Liu S, González-Angulo AM, Mills GB, Ye F, Shyr Y, Manning HC, Buck E, Arteaga CL. A kinome-wide screen identifies the insulin/IGF-1 receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res. 2011;71:6773–84. 539. Litzenburger BC, Creighton CJ, Tsimelzon A, Chan BT, Hilsenbeck SG, Wang T, Carboni JM, Gottards MM, Huang F, Chang JC, Lewis MT, Rimawi MF, Lee AV. High IGF-IR activity in triple-negative breast cancer cell lines and tumor grafts correlates with sensitivity to anti-IGF-IR therapy. Clin Cancer Res. 2011;17:2314–27. 540. Peiró G, Adrover E, Sánchez-Tejada L, Lerma E, Planeles M, Sánchez-Payá J, Aranda FI, Giner D, Gutiérrez-Aviño FJ. Increased insulin-like growth factor-1 receptor mRNA expression predicts poor survival in immunophenotypes of early breast carcinoma. Mol Pathol. 2011;24:201–8. 541. Richardson AE, Hamilton N, Davis W, Brito C, De León D. Insulin-like growth factor-2 (IGF-2) activates estrogen receptor-α and -β via the IGF-1 and the insulin receptors in breast cancer cells. Growth Factors. 2011;29:82–93. 542. Sarfstein R, Pasmanik-Chor M, Yeheskei A, Edry L, Shomrion N, Warman N, Wertheimer E, Maor S, Shochat L, Werner H. Insulin-like growth factor-I receptor (IGF-IR) translocates to nucleus and autoregulates IGF-IR gene expression in breast cancer cells. J Biol Chem. 2012;287:2766–76. 543. Tamimi RM, Colditz GA, Wang Y, Collins LC, Hu R, Rosner B, Irie HY, Connolly JL, Schnitt SJ. Expression of IGF-IR in normal breast tissue and subsequent risk of breast cancer. Breast Cancer Res Treat. 2011;128:2430–50. 544. Pengchong H, Tao H. Expression of IGF-IR, VEGF-C and D2-40 and their correlation with lymph node metastasis in endometrial adenocarcinoma. Eur J Gynecol Oncol. 2011;32:660–4. 545. Shu S, Yang Y, Li X, Li T, Zhang Y, Xu C, Liang C, Wang X. Down-regulation of IGF-1R expression inhibits growth and enhances chemosensitivity of endometrial carcinoma in vitro. Mol Cell Biochem. 2011;353:225–33. 546. Tennant MK, Thrasher JB, Twomey OPA, Drivdahl PH, Birnbaum RS, Plymate SR. Protein and messenger ribonucleic acid (mRNA) for the type 1 insulin-like growth factor (IGF) receptor is decreased and IGF-II mRNA is increased in human prostate carcinoma compared to benign prostate epithelium. J Clin Endocrinol Metab. 1996;81:3774–82. 547. Ma Y, Cheng Q, Ren Z, Xu L, Zhao Y, Sun J, Hu S, Xiao W. Induction of IGF-1R expression by EGF-1 facilitates the growth of prostate cancer. Cancer Lett. 2012;317:150–6. 548. Rojas A, Liu G, Coleman I, Nelson PS, Zhang M, Dash R, Fisher PB, Plymate SR, Wu JD. IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene. 2011;30:2345–55. 549. Donohoe CL, Doyle SL, McGarrigle S, Cathcart MC, Daly E, O’Grady A, Lysaght J, Pidgeon GP, Reynolds JV. Role of the insulin-like growth factor 1 axis and visceral adiposity in esophageal adenocarcinoma. Br J Surg. 2012;99:387–96. 550. Ohashi H, Adachi Y, Yamamoto Taniguchi H, Noso K, Suzuki H, Arimura Y, Imai K, Carbone DP, Shinomura Y. Insulin-like growth factor receptor expression is associated with aggressive phenotypes and has therapeutic activity in biliary tract cancers. Cancer Sci. 2012;103:252–61. 551. Yang JM, Chen WS, Liu ZP, Luo YH, Liu WW. Effects of insulin-like growth factors IR and -IIR antisense gene transfections on the biological behavior of SMMC-7721 human hepatoma cells. J Gastroenterol Hepatol. 2003;18:296–301. References 679

552. Inno A, Di Salvatore M, Cenco T, Martini M, Orlandi A, Strippoli A, Ferrara AM, Bagalá C, Cassano A, Larocca LM, Barone C. Is there a role for IGF-1R and c-MET pathways in resistance to cetuximab in metastatic colorectal cancer? Clin Colorectal Cancer. 2011;10:325–32. 553. Shan HB, Zhang R, Li Y, Xu GL, Luo GY, Gao XY, Yang HL. Expression of IGF-1R in colorectal polyps and its role in colorectal carcinogenesis. Technol Cancer Res Treat. 2011;10:381–9. 554. Zhao D, Bakirtzi K, Zhan Y, Zeng H, Koon HW, Pothoulakis C. Insulin-like growth factor-1 receptor transactivation modulates the inflammatory and proliferative responses of neurotensin in human colonic epithelial cells. J Biol Chem. 2011;286:6092–9. 555. Badzio A, Wynes MW, Dziadziuszko R, Merrick DT, Pardo M, Rzyman W, Kowalczyk A, Singh S, Ranger-Moore J, Manniquez G, Gaire F, Jassem J, Hirsch FR. Increased insulin-like growth factor 1 receptor protein expression and gene copy number in small cell lung cancer. J Thorac Oncol. 2010;5:1905–11. 556. Zhang X, Feng J, Sha H, Huang J, Han B. Correlations between IGF-IR expression and clinicopathological factors and prognosis in patients with lung adenocarcinoma. Zhongguo Fei Ai Za Zhi. 2010;13:113–1117. 557. Zuo Q, Luo RC. Relationship between the insulin-like growth factor 1 receptor signaling pathway and the resistance of nasopharyngeal carcinoma to cetuximab. Zhonhua Zhing Liu Za Zhi. 2010;32:575–9. 558. Molhoek KR, Shada AL, Smolin M, Chowbina S, Papin J, Brautigan DL, Slingluff CL Jr. Comprehensive analysis of receptor tyrosine kinase activation in human melanomas reveals autocrine signaling through IGF-IR. Melanoma Res. 2011;19:890–900. 559. Abraham J, Prajapati SI, Nishijo K, Schaffer BS, Taniguchi E, Kilcoyne A, McCleish AT, Nelon LD, Giles FG, Efstratiadis A, LeGallo RD, Nowak BM, Rubin BP, Malempati S, Keller C. Evasion mechanisms to Igf1r inhibition in rhabdomyosarcoma. Mol Cancer Ther. 2011;10:697–707. 560. Burrow S, Andrulis IL, Pollak M, Bell RS. Expression of insulin-like growth factor receptor, IGF-1, and IGF-2, in primary and metastatic osteosarcoma. J Surg Oncol. 1998;89:21–7. 561. Demicco EG, Tiorres KE, Ghadimi MP, Colombo C, Bolshakov S, Hoffman A, Peng T, Bovée JV, Wang WL, Lev D, Lazar AJ. Involvement of the PI3K/Akt pathway in myxoid/round cell liposarcoma. Mol Pathol. 2012;25:212–21. 562. Martin AS, Ordónez JL, Amaral AT, Prins F, Floris G, Debiec-Rychter M, Hogendoom PC, de Alava E. IGF-IR signaling in Ewing sarcoma is shaped by clathrin-/caveolin-dependent endocytosis. PLoS One. 2011;6(5):e19846. 563. Ohlsson C, Kley N, Werner H, Leroith D. p53 regulates insulin-like growth factorIR (IGF-I) receptor expression and IGF-I-induced tyrosine phosphorylation in an osteosar- coma cell line: interaction between p53a and Sp1. Endocrinology. 1998;139:1101–7. 564. Wang YH, Han XD, Qiu Y, Xiong J, Wang B, Zhu ZZ, Qian BP, Chen YX, Wang SF, Shi HF, Sun X. Increased expression of insulin-like growth factor-1-receptor is correlated with tumor metastasis and prognosis in patients with osteosarcoma. J Surg Oncol. 2012;105:235–43. 565. He Q, Li X, Zhang Z, Zhang QX, Yang LP. The type I insulin-like growth factor receptor highly expressed in clonal cells of myelodysplastic syndromes. Zhonghua Xue Ye Xue Za Zhi. 2011;32:744–7. 566. Medyouf H, Gusscott S, Wang H, Tseng JC, Wai C, Nemirovsky O, Trumpp A, Pflumio F, Carboni J, Gottardis M, Pollak M, Kung AL, Aster JC, Holzenberger M, Weng AP. High level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. J Exp Med. 2011;208:1809–22. 567. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer. 2012;12:159–69. 680 References

568. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate: 1/phosphatidyl-inositol 3-kinase cascade. Mol Cancer Ther 2005;4:1533-1540 569. Vishwamitra D, Shi P, Wilson D, Manshouri R, Vega F, Schlette EJ, Amin HM. Expression and effects of inhibition of type I insulin-like growth factor receptor tyrosine kinase in mantle cell lymphoma. Haematologica. 2011;96:871–80. 570. Attias-Geva Z, Bentov I, Ludwig DL, Fishman A, Bruchim I, Werner H. Insulin-like growth factor-I receptor (IGF-IR) targeting with monoclonal antibody cixutumumab (IMC-A12) inhibits IGF-I action in endometrial cancer cells. Eur J Cancer. 2011;47:1717–26. 571. Dong J, Sereno A, Snyder WB, Miller BR, Tamraz S, Doern A, Favis M, Wu X, Tran H, Langley E, Joseph I, Boccia A, Kelly R, Wortham K, Wang Q, Berquist L, Huang Gao SM, Hariharan K, Demarest SJ. Stable IgG-like bispecific antibodies directed toward the type I insulin-like growth factor receptor demonstrate enhanced ligand blockade and anti-tumor activity. J Biol Chem. 2011;286:4703–17. 572. Durfort T, Tkach M, Meschaninova MI, Rivas MA, Elizalde PV, Venyaminova AG, Schillaci R, François JC. Small interfering RNA targeted to IGF-IR delays tumor growth and induces proinflammatory cytokines in a mouse breast cancer model. PLoS One. 2012;7(1):e29213. 573. Ganguly S, Basu B, Shome S, Jadhav T, Roy S, Majumdar J, Dasguopta PS, Basu S. Dopamine, by acting through its D2 receptor, inhibits insulin-like growth factor-I (IGF-I) -induced gastric cancer cell proliferation via upregulation of Krüppel-like factor 4 through down-regulation of IGF-IR and AKT phosphorylation. Am J Pathol. 2010;177:2701–7. 574. Hartog H, Van Der Graaf WT, Boezen HM, Wesseling J. Treatment of breast cancer cells by IGF-R tyrosine kinase inhibitor combined with conventional systemic drugs. Anticancer Res. 2012;32:1309–18. 575. Höpfner M, Huerther A, Sutter AP, Baradan V, Schuppan D, Scherübl H. Blockade of IGF-1 receptor tyrosine kinase has antineoplastic effects in hepatocellular carcinoma cells. Biochem Pharmacol. 2006;71:1435–48. 576. Iozzo RV, Buraschi S, Genua M, Xu SQ, Solomides CC, Peioer SC, Gomelia LG, Owens RC, Morrison A. Decorin antagonizes IGF receptor I (IGF-IR) function by interfering with IGF-IR activity and attenuating downstream signaling. J Biol Chem. 2011;286:34712–21. 577. Liu B, Fan Z, Edgerton SM, Yang X, Lind SE. Thor Ad. Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erb2/IGF-1 receptor interactions. Cell Cycle. 2011;10:2959–66. 578. Liu X, Allen JD, Arnold JT, Blackman MR. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells. Carcinogenesis. 2008;29:816–23. 579. Mao Y, Shang Y, Pham VC, Ernst JA, Lill JAR, Scales SJ, Zha J. Polyubiqitination of insulin-like growth factor I receptor (IGF-IR) activation loop promotes antibody-induced receptor internalization and down-regulation. J Biol Chem. 2011;286:41852–61. 580. Birmann BM, Neuhouser ML, Rosner B, Albanes D, Buring JE, Giles GG, Lan Q, Lee IM, Purdue MP, Rothman N, Severi G, Yuan JM, Anderson KC, Pollak M, Rifai N, Hartge P, Landgren O, Lessin L, Virtamo J, Wallace RB, Manson JE, Colditz GA. Prediagnosis biomarkers of insulin-like growth factor-1, insulin, and interleukin-6 dysregulation and multiple myeloma risk in the Multiple Myeloma Cohort Consortium. Blood. 2012;120:4929–37. 581. Tagnon CE, Sorensen PH. Targeting the insulin-like growth factor 1 receptor (IGF1R) signaling pathway for cancer therapy. Expert Opin Ther Targets. 2012;16:33–48. References 681

582. Weickhardt A, Doebele R, Oton A, Lettieri J, Maxson D, Reynolds M, Brown A, Jackson MK, Dy G, Adjei A, Fetterly G, Lun X, Franklin W, Varella-Garcia M, Hirsch FR, Wynes MW, Youssoufian H, Adjei A, Camidge DR. A phase I/II study of erlotinib in combination with anti-insulin-like growth factor-1 receptor monoclonal antibody IMC-A12 (cixutumumab) in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2012;7:419–26. 583. D’Amario D, Cabral-Da-Silva MC, Zheng H, Fiorini C, Goichberg P, Steadman E, Ferreira-Martins J, Sanada F, Piccoli M, Cappetta D, D’Alessandro DA, Michler RE, Hosoda T, Anastasia L, Rota M, Leri A, Anversa P, Kajstura J. Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ Res. 2011;108:1467–81. 584. Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, Popescu R, Della Donna L, Evers P, Dekmezian C, Reue K, Christofk H, Mischel PS, Pajonk F. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci USA. 2011;108:16062–7. 585. Le A, Lane AN, Hamaker M, Bos S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmermann LJ, Liebler FDC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Fang CV. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15:110–21. 586. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Matés JM, DeBerardinis R. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA. 2011;108:8674–9. 587. Chen JK, Xio J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30:4297– 2306. 588. Kretschmer N, Rinner B, Deutsch AJ, Lohberger B, Nausz H, Kunert O, Blunder M, Boechzelt H, Schaider H, Bauer R. Naphthokinones from Onosma paniculata induce cell-cycle arrest and apoptosis in melanoma cells. J Nat Prod. 2012;75:865–9. 589. Gong K, Li W. Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: a potential new treatment for hepatocellular carcinoma. Free Radic Biol Med. 2011;51:2259–71. 590. Selig M, Xavier KB, Santos H, Schönheit P. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol. 1997;167:217–232. 591. Malki L, Yanku M, Borovok I, Cohen G, Mevarech M, Aharonowitz Y. Identification and characterization of gshA, a gene encoding the glutamate-cysteine ligase in the halophilic archaeon Haloferax volcanii. J Bacteriol. 2009;191:5196–5204. 592. Maaty WS, Wiedenheft B, Tarlykov P, Schaff N, Heinemann J, Robison-Cox J, Valenzuela J, Blum P, Lawrence CM, Douglas T, Young MJ, Bothner B. Something old, something new, something borrowed; how the thermoacidophilic archaeon Sulfolobus solfataricus responds to oxidative stress. PLoS One. 2009;4(9):e6964. doi:10.1371/ journal.pone.0006964. 593. Nunn CE, Johnsen U, Schönheit P, Fuhrer T, Sauer U, Hough DW, Danson MJ. Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius. J Biol Chem. 2010;285:33701–3370. 594. Pickl A, Johnsern U, Schönheit P. Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphatase kinase, and class II fructose-1,6-bisphosphate aldolase. J Bacteriol. 2012;194:3088–97. 595. Rogers PV, Luo S, Sucic JF, Rutherford CL. Characterization and cloning of glycogen phosphorylase 1 from Dictyostelium discoideum. Biochem Biophys Acta. 1991;1129:262–71. 682 References

596. Szijgyártó Z, Garedew A, Azevedo C, Saiardi A. Influence of inositol pyrophosphates on cellular energy dynamics. Science. 2011;334:802–5. 597. Slamovits CH, Keeling PJ. Pyruvate-phosphate dikinase of oxymonads and parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. Eukaryot Cell. 2006;5:148–54. 598. Cervantes-Sandoval I, Serrano-Luna J, Pecheco-Yépez J, Silva-Olivares A, Tsutsumi V, Shibayama M. Differences between Naegleria fowleri and Naegleria gruberi in expression of mannose and fucose glycoconjugates. Parasitol Res. 2010;106:695–701. 599. Lizundia R, Chaussepied M, Huerre M, Werling D, Di Santo JP, Langsley G. c-Jun NH2-terminal kinase/c-Jun signaling promotes survival and metastasis of B lymphocytes transformed by Theileria. Cancer Res. 2006;66:6105–10. 600. Dessauge F, Hialy S, Baumgartner M, Blumen B, Werling D, Langsley G. c-Myc activation by Theileria parasites promotes survival of infected B-lymphocytes. Oncogene. 2005;24:1075–83. 601. Guergnon J, Chaussepied M, Sopp P, Lizundia R, Moreau MF, Blumen B, Weling D, Howard CJ, Langsley G. A tumour necrosis factor alpha autocrine loop contributes to proliferation and nuclear factor-kappaB activation of Theileria parva-transformed B cells. Cell Microbiol. 2003;5:709–16. 602. Jensen K, Makins GD, Kalisewska A, Hulme MJ, Paxton E, Glass EJ. The protozoan parasite Theileria annulata alters the differentiation state of the infected macrophage and suppresses musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors. Int J Parasitol. 2009;39:1099–108. 603. Ahmed JS, Glass EJ, Salih DA, Seitzer YU. Innate immunity to tropical theileriosis. Innate Immun. 2008;14:5–12. 604. Connelley TK, MacHugh ND, Pelle R, Weir W, Morrison WI. Escape from CD8+ T cell response by natural variants of an immunodominant epitope from Theileria parva is predominantly due to loss of TCR recognition. J Immunol. 2011;187:5910–20. 605. Latif AA, Hove T. History and critical review of Theileria parva (Boleni), the vaccine stock against Zimbabwean cattle theileriosis. Ticks Tick Borne Dis. 2011;2:163–7. 606. Lizundia R, Werling D, Langsley G, Ralph SA. Theileria as a target for chemotherapy. Antimicrob Agents Chemother. 2009;53:1213–7. 607. Haller D, Mackiewicz M, Gerber S, Beyer D, Kullmann B, Schneider I, Ahmed JS, Seitzer U. Cytoplasmic sequestration of p53 promotes survival in leukocytes transformed by Theileria. Oncogene. 2010;29:3079–86. 608. Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys E, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol. 2007;6(4):10. doi:10.1186/jbiol61. 609. Emadi A, Ross AE, Cowan KM, Fortenberry YM, Vuica-Ross M. A chemical genetic screen for modulators of asymmetrical 2,2’-dimeric naphthoquinones cytotoxicity in yeast. PLoS One. 2010;5(5):e10846. doi:10.1371/journal.pone.0010846. 610. Yang H, Zhou P, Huang H, Chen D, Ma N, Cui CQ, Shen S, Dong W, Zhang X, Lian W, Wang X, Dou QP, Liu J. Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer. 2009;124:2450–9. 611. Yanai I, Wolf YI, Koonin EV. Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol 2002; 3(5): research 0024.1-research0024.13. 612. Furuta Y, Yahara K, Hatakeyama M, Kobayashi I. Evolution of cagA oncogene of Helicobacter pylori through recombination. PLoS One. 2011;6(8):e23499. doi:10.1371/ journal.pone.0023499. 613. Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature. 2005;436:113–1118. 614. Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW. Evolutionary origin of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryot Cell. 2006;5:1517–31. References 683

615. Rogozin IB, Basu MK, Csűrös M, Koonin EV. Analysis of rare genomic changes does not support the unikont-bikont phylogeny and supports cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol Evol. 2009;1:99–113. 616. Kondrashov FA, Koonin EV, Morgunov IG, Finogenova TV, Kondrashova MN. Evolution of glyoxylate cycle enzymes in metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol Direct. 2006;1:36. doi:10.1186/1745- 6150-131. 617. Stover NA, Dixon TA, Cavalcanti ARO. Multiple independent fusions of glucose-6-phosphate dehydrogenase and enzymes in the pentose phosphate pathway. PLoS One. 2011;6(8):e22269. doi:10.1371/journal.pone.0022269. 618. Slavic K, Straschl U, Reininger L, Doering C, Morin C, Towari R, Krishna S. Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality. Mol Microbiol. 2010;75:1402–13. 619. Müller I, Diaz de Escauriaza M, Lajoie P, Theis M, Jung M, Müller A, Burgard C, Greiner M, Snapp EL, Dudek J, Zimmermann R. Evolutionary gain of function for the ER membrane protein Sec62 from yeast to humans. Mol Biol Cell. 2010;21:691–703. 620. Pick C, Ebersberger I, Spielmann T, Bruchhaus I, Burmester T. Phylogenomic analyses of malaria parasites and evolution of their exported proteins. BMC Evol Biol. 2001;11:167. doi:10.1186/1471-2148-11-167. 621. Guruprasad L, Tanneeru K, Guruprasad K. Structural rationale for the recognition of arginine at P3 in PEXEL motif containing proteins of Plasmodium falciparum by plasmepsin V. Protein Pept Lett. 2011;18:634–41. 622. Falk I, de Carvalho EG, Kun JF. Parasite-host interaction in malaria: genetic clues and copy number variations. Genome Med 2009; 1(9):82. doi:10.1186/gm52. 623. Sabbatini S, Manfredi R, Fiorino S. Malaria infection and human evolution. Infect Med. 2010;18:56–74. 624. Papazahariadou M, Athanasiadis GI, Papadopoulos E, Simeonidou I, Hatzistiljanou M, Castellani ML, Bhattacharya K, Shanmugham LN, Conti P, Frydas S. Involvement of NK cells against tumors and parasites. Int J Biol Markers. 2007;22:144–53. 625. Vetukuri RR, Tian Z, Avrova AO, Savenkov EI, Dixelius C, Whisson SC. Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biol. 2011;115:1225–33. 626. Morris PF, Schlosser LR, Onasch KD, Wittenschlaeger T, Austin R, Provart N. Multiple horizontal gene transfer events and domain fusions have created novel regulatory and metabolic networks in the oomycete genome. PLoS One. 2009;4(9):e6133. doi:10.1371/ journal.pone.0006133. 627. Dong S, Yu D, Cui L, Qutob D, Tedman-Jones J, Kale SD, Tyler BM, Wang Y, Gijzen M. Sequence variants of the Phytophthora sojae RXLR effector Avr3a/5 are differentially recognized by Rps3a and Rps5 in soybean. PLoS One. 2011;6(7):e20172. doi:10.1371/journal.pone.0020172. 628. Kay J, Meiler HJG, ten Have A, van Kan J. The aspartic protease family of three Phytophthora species. BMC Genomics. 2011;12:254. doi:10.1186/1471-2164-12-254. 629. Feng BZ, Li PQ, Fu L, Sun BB, Zhang XG. Identification of 18 genes encoding necrosis-inducing proteins from the plant pathogen Phytophthora capsici (Pythiaceae: Oomycetes). Genet Mol Res. 2011;10:910922. 630. Gyetvai G, Sønderkaer M, Göbel U, Basekow R, Ballvora A, Imhoff M, Kersten B, Nielsen KL, Gebhardt C. The transcriptome of compatible and incompatible interactions of potato (Solanum tuberosum) with Phytophthora infestans revealed by DeepSAGE analysis. PLoS One. 2012;7(2):e31526. doi:10.1371/journal.pone.0031526. 631. Bozkurt TO, Schornack S, Win J, Shindo T, Ilyas M, Oliva R, Cano LM, Jones AM, Huitema E, van der Hoorn RA, Kamoun. Phytophthora infestans effector AVRblb2 prevents secretion of plant immune protease at the haustorial interface. Proc Natl Acad Sci USA. 2011;108:20832–7. 684 References

632. Bouwmeester K, de Sain M, Weide R, Gouget A, Klamer S, Canut H, Govers F. The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog. 2011;7(3):e10011327. doi:10. 1371/journal.ppat.1001327. 633. Chen Y, Liu Z, Halterman DA. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O. PLoS Pathog. 2012;8(3): e1002595. doi:10.1371/journal.ppat.1002595. 634. Dimitriadis D, Koumandou VL, Trimpalis P, Kossida S. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis. BMC Evol Biol. 2011;11:193. doi:10.1186/1471-2148-11-193. 635. Nara T, Hashimoto M, Hirawake H, Liao CW, Fukai Y, Suzuki S, Tsubouchi A, Morales J, Takamiya S, Fujimura T, Taka H, Mineki R, Fan CK, Inaoka DK, Inoue M, Tanaka A, Harada S, Kita K, Aoki T. Molecular interaction of the first 3 enzymes of the de novo pyrimidine biosynthetic pathway of Trypanosoma cruzi. Biochem Biophys Res Commun. 2012;418:140–3. 636. Hoek M, Engstler M, Cross GAM. Expression-site-associated gene 8 (ESAG8) of trypanosome brucei is apparently essential and accumulates in the . J Cell Sci. 2000;113:3959–68. 637. Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D. Nucleolus: the fascinating nuclear body. Histochem Cell Biol. 2008;129:13–31. 638. Makiuchi T, Annoura T, Hashimoto T, Murata E,. Aoki, Nara T. Evolutionary analysis of synteny and gene fusion for pyrimidine biosynthetic enzymes in Euglenozoa: an extraordinary gap between kinetoplastids and diplonemids. Protists 200;159:459-470. 639. Tsagrasoulis D, Danos V, Kissa M, Trimpalis P, Koumandoun VL, Karagouni AD, Tsakalidis A, Kossida S. SAFE software and FED database to uncover protein-protein interactions using gene fusion analysis. Evol Bioinform Online. 2012;8:47–60. doi:10. 4137/EBO.S8018. 640. Salim HMW, Negritto MC, Cavalcanti ARO. 1+1=3: A fusion of 2 enzymes in the methionine salvage pathway of Tetrahymena thermophila creates a trifunctional enzyme that catalyzes 3 steps in the pathway. PLoS One. 2009;5(10):e1000701. doi:10.1371/ journal.pgen.1000701. 641. Salim HMW, Koire AM, Stover NA, Cavalcanti AR. Detection of fused genes in eukaryotic genomes using gene deFuser: analysis of the Tetrahymena thermophila genome. BMC Bioinform. 2011;12:279. doi:10.1186/1471-2105-12-279. 642a. Schuldt NJ, Aldhamen YA, Appledom DM, Seregin SS, Kousa Y, Godbehere S, Amalfitano A. Malaria vaccines. Vaccine platforms combining circumsporozoite proteins and potent immune modulators. PLoS One. 2011;6(8):e24147. 643. Ojan F, Reiter K, Zhang Y, Shimp RL Jr, Nguyen V, Aebig JA, Rausch KM, Zhu D, Lambert L, Mullen GE, Martin LB, Long CA, Miller LH, Narum DL. Immunogenicity of self-assembled aggregates and chemically cross-linked conjugates of the 42 kDa Plasmodium falciparum merozoite surface protein-1. PLoS One. 2012;7(6):e36999. 644. Horvath JC, Horak A, Sinkovics JG, Pritchard M, Pendleton S, Horvath E. Cancer vaccines with emphasis on a viral oncolysate melanoma vaccine. Acta Microbiol Immunol Hung. 1999;46:1–20. 645. Sinkovics JG, Horvath JC. Vaccination against human cancers. Int J Oncol. 2000;16:81–96. 646. Andersen BH, Ohlfest JAR. Increasing the efficacy of tumor cell vaccines by enhancing cross priming. Cancer Lett. 2012;325:155–64. 647. Bolli E, Quaglino E, Arigoni M, Lollini PL, Calogero R, Forni G, Cavallo F. Oncoantigens for an immune prevention of cancer. Am J Cancer Res. 2011;1:255–64. 648. Turcotte S, Rosenberg SA. Immunotherapy of metastatic solid cancers. Adv Surg. 2011;45:341–60. References 685

649. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247:824–30. 650. Daley GQ, Van Etten RA, Baltimore D. Blast crisis in a murine model of chronic myelogenous leukemia. Proc Natl Acad Sci USA. 1991;88:11336–8. 651. Sinkovics JG. Active tumor-specific immunization of the bone marrow (progenitor stem cell) donor. J Natl Cancer Inst. 1995;87:1804. 652. Kaufmann I, Martin G, Friedlein A, Keller W. Human Fip1 is a subunit of CPSF that binds to U-rich elements and stimulates poly(A) polymerase. EMBO. 2004;23:616–26. 653. Li B, Zhang G, Li C, He D, Li X, Zhang C, Tang F, Deng X, Lu J, Tang Y, Li R, Chen Z, Duan C. Identification of JAK2 as a mediator of FIP1L1-PDGFRA-induced eosinophil growth and function in CEL. PLoS One. 2012;7(4):e349122. doi:10.1371/journal.pone. 0034912. 654. Messie K, Vovor A, Kueviakoe IM, Sallah LK, Agbetiafa K, Segbena AY. Clonal hypereosinophilic syndrome: two cases report in black men from sub-Saharan Africa and literature reviews. ISRN Hematol. 2011;2011:974609. doi:10.5402/2011/974609. 655. Tang TC, Chang H, Chuang WY. Complete response of myeloid sarcoma with FIP1L1-PDGFRA-associated myeloproliferative neoplasms to imatinib mesylate monotherapy. Acta Haematol. 2012;128:83–7. 656. Montano-Almendras CP, Essaghir A, Schoemans H, Varis I, Noel LA, Velghe AI, Latinne D, Knoops L, Demoulin JB. ETV6-PDGFRB and FIP1L12-PDGFRA stimulate human hematopoietic progenitor proliferation and differentiation into eosinophils: role of NFκB. Haematologica 2012;97:1064–72. 657. Domer PH, Fakharzadeh SS, Chen CS, Jockel J, Johansen L, Silverman GA, Kersey JH, Korsmeyer SJ. Acute mixed lineage leukemia t(4;11)(q21;q23) generates an MLL0-AF4 fusion product. Proc Natl Acad Sci USA. 1999;90:7884–8. 658. Harper DP, Aplan PD. Chromosome rearrangement leading to MLL gene fusions: clinical and biological aspects. Cancer Res. 2008;68:10024–7. 659. Valverde R, Pozdnyakova I, Kajander T, Venkatraman J, Regan L. Fragile X mental retardation syndrome: structure of the KH1-KH2 domains of fragile X mental retardation protein structure. 2007;15:1090–1098. 660. Schrier M, Severijnen LA, Reis S, Rife M, van Padje S, van Cappellen G, Oostra BA, Willemsen R. Transport kinetics of FMRP containing the I304N mutation of severe fragile X syndrome in neurites of living rat PC12 cells. Exp Neurol. 2004;189:343–53. 661. Darnell JC, Richter JD. Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harbor Perspect Biol 2012 Jun 20pii:cshperspect.a012344v1. doi:10.1101/sshperspect.a012344. 662. Sandberg G, Schalling M. Effect of in vitro promoter methylation and CGG repeat expansion on FMR1 expression. Nucleic Acids Res. 1997;25:2883–7. 663. Xu S, Poidevin M, Han E, Bi J, Jin P. Circadian rhythm-dependent alterations of gene expression in drosophila brain lacking X mental retardation protein. PLoS One. 2012;7 (5):e37937. doi:10.1371/journal.pone.0037937. 664. Darnell JC, Fraser CE, Mostovetsky O, Darnell RB. Discrimination of common and unique RNA-binding activities among fragile X mental retardation protein paralogs. Hum Mol Genet. 2009;18:3164–77. 665. Hollingworth D, Candel AM, Nicastro G, Martin SR, Briata P, Gherzi R, Ramos A. KH domains with impaired nucleic acid binding as a tool for functional analysis. Nucleic Acids Res 2012 29. doi:10.1093/nar/gks368. 666. Siomi H, Matunis MJ, Michael WM, Dreyfuss G. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res. 1993;21:1193–8. 667. Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell. 1993;74:291–8. 686 References

668. Anantharaman V, Koonin EV, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 2002;30:1427–64. 669. Palenchar JB, Bellofatto V. Gene transcription in trypanosomes. Mol Biochem Parasitol. 2006;145:135–41. 670. Wurth L. Versatility of RNA-binding proteins in cancer. Comp Funct Genomics. 2012;2012:178525. doi:10.1155/2012/178525. 671. Brykailo M, McLane LM, Fridovich-Keil J, Corbett AH. Analysis of a predicted nuclear localization signal: implications for the intracellular localization and function of the Saccharomyces cerevisiae RNAp-binding protein Scp160. Nucleic Acids Res. 2007;35:6862–9. 672. Deshpande G, Calhoun G, Schedl P. The drosophila fragile X protein dFMR1 is required during early embryogenesis for pole cell formation and rapid nuclear division. Genetics. 2006;174:1287–96. 673. Bueno C, Montes R, Catalina P, Rodriguez R, Menendez P. Insights into the cellular origin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement. Leukemia. 2011;25:400–10. 674. Sun Y, Varambally S, Maher CA, CanQ Chockley P, Toubai T, Malter C, Nieves S, Tawara I, Wang Y, Ward PA, Chinnayan A, Reddy P. Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood. 2011;117:6177–83. 675. Schreiber V, Mooq-Lutz C, Régnier CH, Chenard MP, Boeuf H, Vonesch JL, Tomasetto C, Rio MC. Lasp-1, a novel type of actin-binding protein accumulating in cell membrane extensions. Mol Med. 1998;4:675–87. 676. Strehl S, Borkhardt A, Slany R, Fuchs UE, Konig M, Haas OA. The human Lasp1 gene is fused to MLL in an acute myeloid leukemia with t(11;17)(q23;q21). Oncogene. 2003;22:157–60. 677. Frietsch JJ, Grunewald TG, Jasper S, Kammerer U, Herterich S, Kapp M, Honig A, Butt E. Nuclear localization of LASP-1 correlates with poor long-term survival in female breast cancer. Br J Cancer. 2010;102:1645–53. 678. Payne VA, Au WS, Gray Nora Ed, Rahman SM, Sanders R, Hadaschik D, Friedman JE, O’Rahilly S, Rochford JJ. Sequential regulation of diacylglycerol acetyltransferase 2 expression by CAAT/enhancer-binding protein beta (C/EBPbeta) and C/EBPalpha during adipogenesis. J Biol Chem. 2007;282:21005–14. 679. Esteves CL, Kellly V, Bay V, Man TY, Morton NM, Leutz A, Seckl JAR, Chapman KE. Regulation of adipocyte 11β-hydroxysteroid dehyrogenase type1 (11β-HSD1) by CCAAT/enhancer-binding protein (C/EBP) β isoforms, LIP and Lap. PLoS One. 2012;7(5):e37953. 680. Göranson M, Andersson MK, Forni C, Stahlberg A, Andersson C, Olofsson A, Mantovani R, Aman P. The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-kappaB target genes by interaction with NFKBIZ. Oncogene. 2009;28:270–8. 681. Forni C, Minuzzo M, Virdis E, Tamborini E, Simone M, Tavecchio M, Erba E, Grosso F, Gronchi A, Amari P, Casali P, D’Icalci M, Pilotti S, Mantovani R. Trabectedin (ET-743) promotes differentiation in myxoid liposarcoma tumors. Mol Cancer Ther. 2009;6:449–57. 682. Peng C, Guo W, Yang Y, Zhao H. Downregulation of SS18-SSX1 expression by small interfering RNA inhibits growth and induces apoptosis in human synovial sarcoma cell line HS-SY-II in vitro. Eur J Cancer Prev. 2008;17:392–8. 683. Brassesco MS, Cortez MA, Valera ET, Engel EE, Nogueira-Barbosa MH, Becker AP, Scridell CA, Tone LG. Cryptic SYT/SXX1 fusion gene in high-grade biphasic synovial sarcoma with unique complex rearrangement and extensive BCL2 overexpression. Cancer Genet Cytogenet. 2010;196:189–93. References 687

684. Picchione F, Pritchard C, Lagutina I, Janke L, Grosveld GC. IRIZIO: a novel gene cooperating with PAX3-FOXO1 in alveolar rhabdomyosarcoma. Carcinogenesis. 2011;32:452–61. 685. Tonelli R, McIntyre A, Camerin C, Walters ZS, Di Leo K, Selfe J, Purgato S, Missiaglia E, Portori A, Renshaw J, Astolfi A, Taylor KR, Serravalle S, Bishop R, Nasnni C, Valentin LJ, Faccini A, Euschner I, Formica S, Reis-Filho JS, Ambrosini V, Thway K, Franzoni M, Summersgill B, Marchelli R, Hralia P, Cantelli-Forti G, Fanti S, Corradini R, Pession A, Shipley J. Antitumor activity of sustained N-myc reduction in rhabdomyosarcomas and transcription block by antigen therapy. Clin Cancer Res. 2012;18:796–807. 686. Peron M, Bonvini P, Rosolen A. Effect of inhibition of the ubiquitin-proteasome system and Hsp90 on growth and survival of rhabdomyosarcoma cells in vitro. BMC Cancer. 2012;12(1):233. 687. von Levetzow C, Jiang X, Gwye Y, von Levetzow G, Hung L, Cooper A. Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One. 2011;6(4):e19305. doi:10.1371/journal.pone.0019305. 688. Sankar S, Lessnick SL. Promiscuous partnership in Ewing’s sarcoma. Cancer Genet. 2011;204:351–65. 689. Brodie SG, Stocketr SJ, Wardlaw JC, Duncan MH, Mc Connell TS, Feddersen RM, Williams TM. EWS and WT-1 gene fusion in desmoplastic round small cell tumor in the abdomen. Hum Pathol. 1995;26:1370–4. 690. Rekhi B, Basak R, Desai SB, Jambhekar NA. A t(11;22)(p13;q120 EWS-WT1 positive desmoplastic small round cell tumor of the maxilla: an unusual case indicating the role of molecular diagnosis in round cell sarcomas. J Postgrad Med. 2010;56:201–5. 691. Spahn L, Ptermann R, Siligan C, Schmid JA. Interaction of the EWS NH2 terminus with BARD1 links the Ewing’s sarcoma gene to a common tumor suppressor pathway. Cancer Res. 2002;62:4583–7. 692. Kim S, Lim B, Kim J. EWS-Oct-4b, an alternative EWS-Oct-4 fusion gene, is a potent oncogene linked to human epithelial tumors. Br J Cancer. 2010;102:436–46. 693. French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene a novel mechanism in aggressive carcinoma. Cancer Res. 2003;63:304–7. 694. Hsieh MS, French CA, Liang CW, Hsiao CH. NUT midline carcinoma: case report and review of the literature. Int J Surg Pathol. 2011;19:808–12. 695. Braese JC, Johannes M, Mannsperger H, Fälth M, Metzger J, Kacprzyk LA, Andrasiuk T, Gade S, Meister M, Sirma H, Sauter G, Simon R, Sckomm T, Beissbarth T, Korf U, Kunor R, Sultmann H. TMPRSS2-ERG-specific transcriptional modulation is associated with prostate cancer biomarker and TGF-β signaling. BMC Cancer. 2011;11:507. doi:10.1189/1471-2407-11-507. 696. Luedeke M, Linnert CM, Hofer MD, Surowy HM, Rinckleb AE, Hoegel J, Kuefer R, Rubin MA, Vogel W, Maier C. Predisposition for TMPRSS2-ERG fusion in prostate cancer by variants in DNA repair genes. Cancer Epidemiol Biomarkers Prev 2999;18:3030–3035. 697. Ribeiro FR, Paulo P, Costa VL, Barros-Silva JD, Ramalho-Carvalho J, Jerónimo C, Henrique R, Lind GE, Skotheim RI, Lothe RA, Teixeira MR. Cysteine-rich secretory protein-3 (CRISP3) is strongly up-regulated in prostate carcinomas with the TMPRSS2-ERG fusion gene. PLoS One. 2011;6(7):e22311. doi:10.1371/journal.pone. 0022317. 698. Li Y, Kong D, Wang Z, Ahmad A, Bao B, Padhye S, Sarkar FH. Inactivation of AR/TMPR2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res. 2011;4:1495–506. 688 References

699. Lynch JA, Özüak O, Abderrahman K, Abouheif E, Despan C, Roth S. The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasma and pole cells at the base of the Holometabola. PLoS Genet. 2011;7(4):e1002029. doi:10.1371/ journal.pgen.1002029. 700. Chuma S, Hosokawa M, Kitamura K, Kasai S, Fujioka M, Hiyoshi M, Takamune K, Noce T, Nakatsuji N. Tdrd1/Mtr-1, a tudor-related gene is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Natl Acad Sci USA. 2006;103:15894–9. 701. Tanaka Tosokawa M, Vagin VV, Reuter M, Hayashi E, Mochizuki AL, Kitamura K, Yamanaka H, Komdoh G, Okawa K, Kuramochi-Miyagawa S, Nakano T, Schidanandam R, Hannon GJ, Pillai RS, Nakatsuji N, Chuma S. Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc Natl Acad Sci USA. 2011;108:10579–84. 702. Yabuta Y, Ohta H, Abe T, Kurimoto K, Chuma S, Saitou M. TDRD5 is required for retrotransposons silencing chromatoid body assembly and spermiogenesis in mice. J Cell Biol. 2011;192:781–95. 703. Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C, Wilber A, Watabe K. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem cells in bone. J Exp Med. 2011;208:2641–55. 704. Secondini C, Wetterwald A, Schwanninger R, Thalmann GN, Cecchini MG. The role of the BMP signaling antagonist noggin in the development of prostate cancer osteolytic bone metastasis. PLoS One. 2011;6(1):e160778. doi:10.1371/journal.pone.0016073. 705. Célia-Terrassa T, Meca-Cortés O, Mateo F, de Paz AM, Rubio N, Amal-Estapé A, Ell BJ, Bermudo R, Diaz A, Guerra-Rebollo M, Lozano JJ, Estarás C, Ulloa C, Álvarez-Simón D, Milá J, Vilela R, Paciucci R, Marínez-Balbás M, de Hereros AG, Gomis RR, Kang Y, Blanco J, Fernández PL, Thomson TM. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiation cells. J Clin Invest. 2012;122:1849–68. 706. Pernicová Z, Slabáková E, Kharaishvili G, Bouchal J, Kraal M, Kunickvá Z, Machjala M, Kiozubik A, Souček K. Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia. 2011;13:526–36. 707. Rickman DS, Pflueger D, Moss B, VanDoren VE, Chen CX, de la Taille A, Kuefer R, Tewari AK, Setlur SR, Demichelis F, Rubin MA. SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res. 2009;69:2734–8. 708. Zhang Y, Gong M, Yuan H, Park HG, Frierson HF, Li H. Chimeric transcript generated by cis-splicing of adjacent genes regulates prostate cancer cell proliferation. Cancer Discov. 2012;2:598–607. 709. Schaefer K-L, Brachwitz K, Wai DH, Braun Y, Diallo R, Korsching E, Eisenacher M, Voss R, van Valen F, Baer C, Selle B, Spahn L, Liaio S-K, Lee KAW, Hogendoorn PCW, Reifenberger G, Gabbert HE, Poremba C. Expression profiling of t (12;22) positive clear cell sarcoma of soft tissue cell lines reveals characteristic up-regulation of potential new marker genes including ERBB3. Cancer Res. 2004;64:3395–405. 710. Hisaoka M, Ishida T, Kuo TT, Matsumaya A, Imamura T, Nishida K, Kuroda H, Imayama Y, Oshiro H, Kobayashi H, Nakajima T, Fukuda T, Ae K, Hashimoto H. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32:452–60. 711. Wang WL, Mayordomo E, Zhang W, Hernandez VS, Tuvin D, Garcia L, Lev DC, Lazar AJ, López-Terrada D. Detection and characterization of EWSR1/ATF1 and EWSR1/CREB chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mol Pathol 2009;22:1291–9. doi:10.1038/modpathol.2009.85. References 689

712. Lichter OP, Walczak H, Weitz S, Behrmann I, Krammer PH. The human APO-1 (APT) antigen maps to 10q21, a region that is syntenic with mouse chromosome 19. Genomics 992;14:179–180. 713. Sokova OI, Kirichenko OP, Mukeria AF, Demidiov LV, Chebotarev AN, Koonin BP. Enhanced expression of 1p32 and 1p22 fragile sites in lymphocytes in cutaneous malignant melanomas. Cancer Genet Cytogenet. 1992;58:24–8. 714. Okamoto I, Pirker C, Bilban M, Berger W, Losert D, Marosi C, Haas OA, Wolff K, Pehamberger H. Seven novel and stable translocations associated with oncogenic gene expression in malignant melanoma. Neoplasia. 2005;7:303–11. 715. Tweardy DJ, Anderson K, Cannizzaro LA, Steinman RA, Croce CM, Huebner K. Molecular cloning of cDNA for the human granulocyte colony-stimulating factor receptor from HL-60 and mapping of the gene to chromosome region 1p32-34. Blood. 1992;79:1148–54. 716. Sinkovics J. Malignant lymphoma arising from natural killer cells: report of the first case in 1970 and newer developments in the FasL-FasR system. Acta Microbiol Immunol Hungar. 1997;44:295–307. Erratum. The FasR was written in the MS as CD95. 717. Sinkovics JG, Horvath JC. Virological and immunological connotations of apoptotic and anti-apoptotic forces in neoplasia. Int J Oncol 2001;19:473-488. Erratum. Artist’s typographic error in cartoon: as if c-Kit receptor captured hepatocyte growth factor/scatter factor as its ligand. Correctly, these ligands react with receptor c-Met; c-Kit’s (CD117) ligand is the stem cell factor. Idem. 2006;27:33. 718. Horvath JC, Horvath E, Sinkovics JG, Horak A, Pendleton S, Mallah J: Human melanoma cells (HMC) eliminate autologous host lymphocytes (Ly FasR+) and escape apoptotic death by utilizing the FasL system as an autocrine growth loop (HMC FasL→FasR). Proc American Assoc Cancer Res. 1998;39:584 #3971. 719. Takahashi T, Tanaka M, Ogasawara J, Suda T, Murakami H, Nagata S. Swapping between Fas and granulocyte colony-stimulating factor receptor. J Biol Chem. 1996;271:17555–60. 720. Shinohara H, Yagita H, Ikawa Y, Oyaizu N. Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res. 2000;60:1766–72. 721. Koonin EV. Darwinian evolution in the light of genomics. Nucleic Acids Res. 2009;37:1011–34. 722. Uddin M, Sturge M, Peddle L, O’Reilly DD, Rahman P. Genome-wide signatures of ‘rearrangement hotspots’ within segmental duplications in humans. PLoS One. 2011;6 (12):e28853. doi:10.1371/journal.pone.0028853. 723. Dameria RR, Knickelbein KE, Kepchia D, Jackson A, Armitage BA, Eckert KA, Opresko PL. Telomeric repeat mutagenicity in human somatic cells is modulated by repeat orientation and G-quadruplex stability. DNA Repair. 2010;9:1119–29. 724. Harris JE, Sinkovics JG. The Immunology of Malignant Disease. JE Harris, JG Sinkovics. In: Mosby CV, editor. 2nd ed. Saint Louis 1976. 725. Gleason JE, Eisenmann DM. Wnt signaling controls the stem cell-like asymmetric division of the epithelial stem cells during C. elegans larval development. Dev Biol. 2010;348:58–66. 726. Geissler K, Zach O. Pathways involved in Drosophila and human cancer development: the Notch, Hedgehog, wingless, Runt, and Trithorax pathway. Ann Hematol. 2012;91:645–69. 727. Saini N, Reichert H. Neural stem cells in Drosophila: molecular genetic mechanisms underlying normal neural proliferation and abnormal brain tumor formation. Stem Cells 2012;2012:486169. doi:10.1155/2012/486169. 728. Gafuik C, Steller H. A gain-of-function germline mutation in Drosophila ras 1 affects apoptosis and cell fate during development. PLoS One. 2011;6(8):e23535. doi:10.1371/ journal.pone.0023535. 690 References

729. Smadja C, Shi P, Butlin RK, Robertson HM. Large gene family expansion and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Mol Biol Evol. 2009;26:2073–86. 730. Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 2012;10(1):e1001241. doi:10.1371/journal.pbio.1001241. 731. Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science. 2000;289:85–8. 732. D’Aniello S, Irimia M, Maeso I, Pascual-Anaya J, Jiménez-Delgado S, Bertrand S, Garcia-Fernández J. Gene expansion and retention leads to a diverse tyrosine kinase superfamily in amphioxus. Mol Biol Evol. 2008;25:1841–54. 733. Yu Li , Y XZ, L TS, Song LX, Chen PL, Suo TL, Li YH, Wang SD, Chen Y, Ren YM, Zhang SP, Chang ZJ, Fu XY. A novel protein tyrosine kinase NOK that shares homology with platelet-derived growth factor/fibroblast growth factor receptors induces tumorige- nesis and metastasis in nude mice. Cancer Res. 2004;64:3491–3499. 734. Shiu SH, Li WH. Origins, lineage-specific expansion, and multiple losses of tyrosine kinases in eukaryotes. Mol Biol Evol. 2004;21:828–40. 735. Fasano O, Birnbaum D, Edlund L, Fogh J, Wigler M. New human transforming genes detected by a tumorigenicity assay. Mol Cell Biol. 1984;4:1695–705. 736. Fukui M, Yamamoto T, Kawai S, Maruom K, Toyoshima K. Detection of raf-related and two other transforming DNA sequences in human tumors. Proc Natl Acad Sci USA. 1985;82:5954–8. 737. Liu E, Hjelle B, Bishop JM. Transforming genes in chronic myelogenous leukemia. Proc Natl Acad Sci USA. 1988;85:1952–6. 738. O’Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokopp C, Espinosa R III, Le Beau MM, Earp HS, Liu ET. axl, A transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991;11:5016–31. 739. Goruppi S, Charuttini C, Ruaro ME, Varnum B, Schneider C. Gas6 induces growth, β- catenin stabilization, and T-cell factor transcriptional activation in contact-inhibited C57 mammary cells. Mol Cell Biol. 2011;21:902–15. 740. Vajkoczy P, Knyazev P, Kunkel A, Capelle HH, Behrndt S, von Tengg-Kobligk H, Kiessling F, Eichelsbachter U, Essig M, Read TA, Erber R, UllricH A. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci USA. 2006;103:5799–804. 741. Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ, Taichman RS. GAS6/AXK axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow. Neoplasia. 2010;12:116–27. 742. Turnay J, Lecona E, Fernández-Lizarbe S, Gusman-Aránquez M, Olmo N, Lizarbe MA. Structure-function relationship in annexin A13, the founder member of the vertebrate family of annexins. Biochem J. 2005;389:899–911. 743. Jung Y, Shiozawa Y, Wang J, McGregor N, Dai J, Park SI, Barry JE, Havens AM, Joseph J, Kim JK, Patel L, Carmeliet P, Daignault S, Keller ET, McCauley LK, Pienta KJ, Taichman RS. Prevalence of prostate cancer metastases after intravenous inoculation provide clues into the molecular basis of dormancy in the bone marrow microenvironment. Neoplasia. 2012;14:429–39. 744. Rentala S, Mangamoor LN. Isolation, characterization and mobilization of prostate cancer tissue derived CD133+ MDR1+ cells. J Stem Cells. 2010;5:75–81. References 691

745. Ibrahim T, Sacanna E, Gaudion M, Mercatali KL, Scarpi E, Zoli W, Serra P, Kang Y, Amadori D. Role of RANK, RANKL, OPG, and CXCR4 tissue markers in predicting bone metastases in breast cancer patients. Clin Breast Cancer. 2011;11:369–75. 746. Balogh I, Hafizi S, Stenhoff J, Hanssen K, Dahlback B. Analysis of Gas6 in human platelets and plasma. Arterioscler Thromb Vasc Biol. 2005;25:1280–6. 747. Schmidt T, Ben-Batalla I, Schultze A, Loges S. Macrophage-tumor crosstalk: role of TAMR tyrosine kinase receptors and their ligands. Cell Mol Life Sci. 2012;69:1391–414. 748. Weinger JG, Brosnan CE, Loudig O, Goldberg MF, Macian F, Arnett HAS, Prieto AL, Tsiperson V, Shafit-Zagardo B. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis. J Neuroinflammation. 2011;8:49. doi:10. 1186/1742-2094-8-49. 749. Clauser S, Meilac O, Biéche I, Raynal P, Bruneval P, Michel JB, Borgel D. Increased secretion of Gas6 by smooth muscle cells in human atherosclerotic carotid plaques. Thromb Haemost. 2012;107:140149. 750. Camenish TD, Koller BH. Earp HS, Matsushima GK. A novel receptor tyrosine kinase, Mer, inhibits TNFα production and lipopolysaccharide-induced endotoxic shock. J Immunol. 1999;162:3498–503. 751. Weinger JG, Omafri KM, Marsden K, Raine CS, Shafit-Zagardo B. Up-regulation of soluble Axl and Mer receptor tyrosine kinases negatively correlates with Gas6 in established multiple sclerosis lesions. Am J Pathol. 2009;175:283–93. 752. Wu J, Ekman C, Jönsen A, Sturfelt G, Bengtsson AA, Gottsäfer A, Lindblat B, Lindquist E, Saxne T, Dahlbäck B. Increased plasma levels of the soluble Mer tyrosine kinase receptor in systemic lupus erythematosus relate to disease activity and nephritis. Arthritis Res Ther. 2011;13:R62. doi:10.1186/ar3316. 753. Linger RM, DeRyckere D, Brandão L, Sawczyn KK, Jacobsen KM, Liang X, Keating AK, Graham DK. Mer receptor tyrosine kinase is a novel therapeutic target in pediatric B-cell acute lymphoblastic leukemia. Blood. 2009;114:2678–87. 754. Migdall-Wilson J, Bates C, Schlegel J, Brandão L, Linger RM, DeRyckere D, Graham DK. Prolonged exposure to a Mer ligand in leukemia: Gas6 favors expression of a partial Mer glycoform and reveals a novel role for Mer in the nucleus. PLoS One. 2012;7(2)e31635. doi:10.1371/journal.pone.0031635. 755. Huang X, Finerty P, Walker JAR, Butler-Cole C, Vedadi M, Schapira M, Parker SA, Turk BE, Thompson DA. Dhe-Paganon. Structural insights into the inhibited states of the Mer receptor tyrosine kinase. J Struct Biol. 2009;165:88–96. 756. Dutta A, Wang L-H, Hanafusa T, Hanafusa H. Partial nucleotide sequence of Rous sarcoma virus-29 provides evidence that the original Rous sarcoma virus was replication defective. J Virol. 1985;55:728–35. 757. Jia R, Mayer BJ, Hanafusa T, Hanafusa H. A novel oncogene, v-ryk, encoding a truncated receptor tyrosine kinase is transduced into RPL30 virus without loss of viral sequences. J Virol. 1992;66:5975–87. 758. Jia R, Hanafusa H. The proto-oncogene of v-eyk (v-ryk) is a novel receptor-type protein tyrosine kinase with extracellular Ig/FN-III domains. J Biol Chem. 1994;269:1839–44. 759. Stehelin D, Varmus HE, Bishop JM, Vogt P. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature. 1976;260(5547):170–3. 760. Sinkovics JG, Bertin BA, Howe CD. Occurrence of low leukemogenic but immunizing mouse leukemia virus in tissue culture. National Cancer Institute Monograph. 1965;22:349–67. 761. Sinkovics JG. The causative viruses of murine leukemia and their identification through immune responses of the host. Addition. In: Carcinogenesis: A Broad Critique. The University of Texas M.D. Anderson Hospital and Tumor Institute, Houston, Texas 1967; pp 157–175. 692 References

762. Sinkovics JG, Shullenberger CC, Howe CD, Bertin BA. Leukemogenic effect of human leukemic materials in combination with inactivated mouse leukemia virus. Cancer. 1967;20:846–50. 763. Saharinen P, Bry M, Alitalo K. How do angiopoietins Tie in with vascular endothelial growth factors? Curr Opin Hematol. 2010;17:198–205. 764. Seegar TC, Eller B, Tzvetkova-Robey D, Kolev MV, Henderson SC, Nikolov DB, Barton WA. Tie1Tie2 interactions mediate functional differences between angiopoietin ligands. Mol Cell. 2010;37:643–55. 765. Brown LF, Dezube BJ, Tognazzi K, Dvorak HF, Yancopoulos GD. Expression of Tie1, Tie2, and angiopoietins 1, 2, and 4 in Kaposi’s sarcoma and cutaneous angiosarcoma. Am J Pathol. 2000;156:2179–83. 766. Györkey F, Sinkovics JG, Melnick JL, Gyorkey P. Retroviruses in Kaposi sarcoma cells. N Engl J Med. 1984;311:1183–4. 767. Sinkovics J, Szakács J, Horváth J, Györkey F, Györkey P, Gergely AS. Kaposi sarcoma. Orvosi Hetilap (Budapest). 2006;147:617–21. 768. Sidky YA, Borden EC. Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res. 1987;47:51555161. 769. Folkman J. Successful treatment of an angiogenetic disease. N Engl J Med. 1989;320:1211–2. 770. Sinkovics JG. Interferons: antiangiogenesis agents. Canadian J Inf Dis. 1992;3 (B):128B–32B. 771. Haselstein JAR, Kasmerchak K, Buehler D, Hafez GR, Cleary K, Moody JS, Kozak KR. Efficacy of Tie2 receptor antagonism in angiosarcoma. Neoplasia. 2012;14:131–40. 772. Tartari CJ, Donadoni C, Manieri E, Mina PD, Villa A, Gambacorti-Passerini C. Dissection of the RET/β-catenin interaction in the TPC1 thyroid cancer cell line. Am J Cancer Res. 2011;1:716–25. 773. Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R, Kemler R. Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012;336:1549–54. 774. Matus DG, Magie C, Pang K, Martindale MQ, Thomsen GH. The Hedgehog gene family of the cnidarians, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol. 2008;313:501–18. 775. Greider CW. Wnt regulates TERT—putting the horse before the cart. Science. 2012;336:1519–20. 776. Fonar Y, Gutkovich YE, Root H, Malyarova A, Aamar E, Golubovskaya VM, Elias S, Elkouby YM, Frank D. Focal adhesion kinase protein regulates the gene expression to control cell fate specification in the developing neural plate. Mol Biol Cell. 2011;22:2409–21. 777. Morton JP, Mylant KB, Sansom OJ. A FAK-PI-3K-mTOR axis is required for driven intestinal regeneration and tumorigenesis. Cell Cycle. 2011;10:173–5. 778. Wu Y, Sommers JA, Loiland JA, Kitaon H, Kuper J, Kisker C, Brosh RM. The Q motif of FANCJ DNA helicase regulates its dimerization, DNA binding and DNA repair function. J Biol Chem. 2012;287:21699–716. doi:10.1074/jbc.M112.351338. 779. Sarlós K, Gyimesi M, Kovács M. RecQ helicase translocates along single-stranded DNA with a moderate processivity and tight mechanochemical coupling. Proc Natl Acad Sci USA. 2012 Jun 4 doi:10.1073/pnas.1114468.109. 780. Raymond J, Monnat JAR. Human RECQ helicase: roles in DNA metabolism, mutagenesis and cancer biology. Semin Cancer Biol. 2010;20:329–39. 781. Suhasini AN, Brosh RM Jr. Fanconi anemia and Bloom’s syndrome crosstalk through FANCJ-BLM helicase interaction. Trends Genet. 2012;28:7–13. 782. Phillips LG, Sale JE. The Werner’s syndrome protein collaborates with Rev1 to promote replication fork progression on damaged DNA. DNA Repair (Amst). 2010;9:1064–72. References 693

783. Sarkies P, Murat P, Phillips LG, Patel KJ, Balasubramanian S, Sale JE. FANCJ coordinates two pathway that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res. 2012;40:1485–98. 784. Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R. The C-terminal (BRCT) domain of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem. 1998;273:25388–92. 785. Jansen JG, Tsaalbi-Shtylik A, Langerak P, Calléja F, Meijers CM, Jacobs H, de Wind N. The BRCT domain of mammalian Re1 is involved in regulating DNA translesion synthesis. Nucleic Acids Res. 2005;33:356–65. 786. Pozo FM, Oda T, Sekimoto T, Murakumo Y, Masutani C, Hanaoka F, Yamashita T. Molecule chaperone Hsp90 regulates REV1-mediated mutagenesis. Mol Cell Biol. 2011;31:3396–409. 787. Dumstorf CA, Mukhopadhyay S, Krishnan E, Haribabu B, McGregor WG. REV1 is implicated in the development of carcinogen-induced lung cancer. Mol Cancer Res. 2009;7:247–54. 788. Xie K, Doles J, Hemann MT, Walker GC. Error-prone translesion synthesis mediates acquired chemoresistance. Proc Natl Acad Sci USA. 2010;107:20792–7. 789. Debska S, Kubicka J, Czyzykowski R, Habib M, Potemski P. PARP inhibitors – theoretical basis and clinical application. Postepy Hig Med Dosw. 2012;30:311–21. 790. Passetto ZY, Yan Y, Bessho T, Natarajan A. Inhibition of BRCT(BRCA1)-phospho- roprotein interaction enhances the cytotoxic effect of olaparib in breast cancer cells: a proof of concept study for synthetic lethal therapeutic option. Breast Cancer Res Treat. 2012;134:511–7. doi:10.1007/s10549-912-2079-4. 791. Sharma S, Hicks JK, Chute CL, Brennan JAR, Ann JY, Glover TW, Canman CE. REV1 and polymerase ζ facilitate homologous recombination repair. Nucleic Acids Res. 2012;4:682–91. 792. Yap TA, Sandhu SK, Carden CP, de Bono JS. Poly(ADP-Ribose) polymerase(PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA; A Cancer J Clinicians. 2011;61:31–49. 793. Rudner J, Ruiner D-E, Handrick R, Eibl H-J, Jendrossek V. The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effect of ionizing radiation. Radiat Oncol. 2010;5:108664. doi:10.1186/1748-717X-5-108. 794. Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: ‘Par-laying’ NAD into a nuclear signal. Genes Dev. 2005;19:1951–7. doi:10.1101/gad.1331805. 795. Virag L. PARP-1 and the shape of cell death. In: Burkle A, editor. Poly(ADP-ribosyl) ation. Landes Bioscience, Georgetown, TX, 2005;141–154. 796. Ivanov A, Cragg MS, Erenpreisa J, Emzinsh D, Lukman H, Illidge TM. Endopolyploid cells produced after severe genotoxic damage have the potential to repair DNA double strand breaks. J Cell Sci. 2003;116:4095–106. 797. Lyakhovich A, Ramirez MJ, Castellanos A, Castella M, Simons AM, Parvin JD, Surralles J. Fanconi anemia protein FANCD2 inhibits TRF1 polyADP-ribosylation through tankyrase1-dependent manner. Genome Integr. 2011;122(1):4. doi:10.1186/ 2041.2.4. 798. Meng L, Hsu JK, Zhu Q, Lin T, Tsai RY. Nucleostemin inhibits TRF1 dimerization and shortens its dynamic association with the telomere. J Cell Sci. 2011;124:3706–14. 799. Zhang Yang J, Liu Y, Chen X, Yu T, Jia J, Liu C. PR55alpha, a regulatory subunit of PP2A, specifically regulates PP2A-mediated beta-catenin dephosphorylation. J Biol Chem. 2009;284:22649–226556. 800. Yang L, Chen Y, Cui T, Knösel T, Zhang Q, Kai A, Huber O, Petersen I. Desmoplakin acts as a tumour suppressor by inhibition of the Wnt/β-catenin signaling pathway in human lung cancer. Carcinogenesis. 2012;33:1863–70. 694 References

801. Luo WR, Chen XY, Li SY, Wu AB, Yao KT. Neoplastic spindle cells in nasopharyngeal carcinoma show features of epithelial-mesenchymal transition. Histopathology. 2012;61:113–22. 802. Hay E, Biczkowski T, Marty, Da Nascimento S, Sonnet P, Marie PJ. Peptide-based mediated disruption of N-cadherin-LRP5/6 interaction promotes Wnt signaling and bone formation. J Bone Miner Res. 2012;27:1852–63. doi:10.1002/jbmr.1956. 803. Jiang Y, He X, Howe PH. Disabled-2 (Dab2) inhibits Wnt/β-catenin signaling by binding LRP6 and promoting its interaction through clathrin. EMBO. 2012;10:31(10):22336–49. doi:10.1038/emboj.2012.83. 804. Gwak J, Hwang SG, Park HS, Choi SR, Park SH, Kim H, Ha NC, Bae SJ, Han JK, Kim DE, Chom JW, Oh S. Small molecule-based disruption of Axin/β-catenin protein complex regulates mesenchymal stem cell differentiation. Cell Res. 2012;22(1):237–47. doi:10.1038/cr.2011 Aug 9. 805. Putnam NH, Srivastava M, Hellsten U, Dirks S, Chapman J, Salamov A, Terry A, Shapiro M, Lindquist E, Kapitonov VV, Jurka J, Genikhovich, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317:86–94 806. Erwin DE, Davidson EH. The last common bilateral ancestor. Development. 2002;129:3021–32. 807. Acosta H, López SL, Revinsky DR, Carrasco AE. Notch destabilizes maternal beta-catenin and restricts dorsal-anterior development in Xenopus. Development. 2011;138:2567–79. 808. Fujimi TJ, Hatayama M, Aruga J. Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway. Dev Biol. 2012;36:220–31. 809. Lyons JP, Miller RK, Zhou X, Weidinger G, Deroo T, Denayer T, Park JI, Ji H, Hong JY, Li A, Moon RT, Jones EA, Vleminckx K, Vize PD, McCrea PD. Requirement of Wnt/beta-catenin signaling in pronephric kidney development. Mech Dev. 2009;126:142–59. 810. Wang Y, Fu Y, Gao L, Zhu G, Liang J, Gao C, Huang B, Fenger U, Niehrs C, Chen YG, Wu W. Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. J Biol Chem. 2010;285:10890–901. 811. Bläker H, Helmchen B, Bönisch A, Aulmann S, Penzel R, Otto HF, Rieker RJ. Mutational activation of the RAS-RAF-MAPK and Wnt pathway in small intestinal adenocarcinomas. Scand J Gastroenterol. 2004;39:748–53. 812. Clark PE, Polosukhina S, Love H, Correa H, Coffin C, Perlman EJ, de Caestecker M, Moses HL, Zent R. β-Catenin and K-RAS synergize to form primitive renal epithelial tumors with features of epithelial Wilms tumors. Am J Pathol. 2011;179:3045–55. 813. Torre C, Benhamouche S, Mitchell C, Godard C, Veber P, Latourneur F, Cagbard N, Jacques S, Finzi L, Perret C, Colnot S. The transforming growth factor-α and cyclin D1 genes are direct targets of β-catenin signaling in hepatocyte proliferation. J Hepatol. 2011;55:86–95. 814. Yamazaki K, Hanami K, Nagao T, Asoh A, Sugano I, Ishida Y. Increased cyclinD1 expression in cancer of the ampula of Vater: relevance to nuclear beta-catenin accumulation and K-ras gene mutation. Mol Pathol. 2003;56:336–41. 815. Zhang B, Ougolkov A, Yamashita K, Takahashi Y, Mai M, Minamoto T. beta-Catenin and ras oncogenes detect most human colorectal cancers. Clin Cancer Res. 2003;9:3079– 3079. 816. Holland LZ. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes. Dev Biol. 2002;241:209–28. References 695

817. Onai T, Takai Akira, Setimarga DH, Holland LZ. Essential role of Dkk3 for head formation by inhibiting Wnt/β-catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evol Dev. 2012;14:338–50. 818. Bao J, Zheng JJ, Wu D. The structural basis of DKK-mediated inhibition of Wnt/LRP signaling. Sci Signal. 2012;5(224):22. 819. Dellinger TH, Planutis K, Jandial DD, Eskander RN, Martinez ME, Zi X, Monk BJ, Holcombe RE. Expression of the Wnt antagonist Dickkopf-3 is associated with prognostic clinicopathologic characteristics and impairs proliferation and invasion in endometrial cancer. Gynecol Oncol. 2012;126:259–67. 820. Li L, Mao J, Sun L, Liu W, Wu D. Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled. J Biol Chem. 2002;277:5977–81. 821. Xu WH, Liu ZB, Yang C, Qin W, Shao ZM. Expression of dickkopf-1 beta-catenin related to the prognosis of breast cancer patients with triple negative phenotype. PLoS One. 2012;7(5):e37624. 822. Dihlmann S, Kloor M, Fallsehr C, von Knebel Doeberitz M. Regulation of AKT1 expression by beta-catenin/Tcf/Lef signaling in colorectal cancer cells. Carcinogenesis. 2005;26:1503–12. 823. Yang ZR, Dong WG, Lei XF, Liu M, Liu QS. Overexpression of Dickkopf-3 induces apoptosis through mitochondrial pathway in human colon cancer. World J Gastroenterol. 2012;18:1590–601. 824. Hernandez Y, Zamora G, Ray S, Chapoy J, Chavez E, Valvarde R, Williams E, Aley SB, Das S. Transcriptional analysis of three major putative phosphatidylinositol kinase genes in a parasitic protozoan, Giardia lamblia. J Eukaryot Microbiol. 2007;54:29–32. 825. Szentpetery Z, Szakacs J, Bojjireddy N, Tai AW, Balla T. Genetic and functional studies of phosphatidyl-inositol 4-kinase type IIIa. Biochim Biophys Acta. 2011;1811:476–83. 826. Li S, Lin P, Fayad LE, Lennon PA, Miranda RN, Yin CC, Lin E, Medeiros LJ. B-cell lymphomas with MYC/8q24 rearrangements and IGH/BCL2/t(14;18)(q32;q21): an aggressive disease with heterogenous histology, germinal center B-cell immunopheno- type and poor outcome. Mol Pathol. 2012;25:145–56. 827. Yan Y, Park SS, Janz S, Eckhardt LA. In a model immunoglobulin heavy-chain (IGH)/ MYC translocation, the IgH 3’ regulatory region induces MYC expression at the immature stage of B cell development. Genes Chromosomes Cancer. 2007;46:950–9. 828. Zaheen A, Boulianne B, Parsa JY, Ramachandran S, Gommerman JL, Martin A. AID constrains germinal center size by rendering B cells susceptible to apoptosis. Blood. 2009;114:547–54. 829. Phan RT, Saito M, Kitagawa Y, Means AR, Dalla-Favera R. Genotoxic stress regulates expression of the proto-oncogene Bcl6 in germinal center B cells. Nat Immunol. 2007;8:1132–9. 830. Ranuncolo SM, Polo JM, Dierov J, Singer M, Kuo T, Greally J, Green R, Carroll M, Melnick A. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat Immunol. 2007;8:705–14. 831. Hangaishi A, Kurokawa M. Blimp-1 is a tumor suppressor gene in lymphoid malignancies. Int J Hematol. 2010;91:46–53. 832. Küçük C, Iqbal J, Hu X, Gaulard P, De Leval L, Srivastava G, Au WY, McKeithan TW, Chan WC. PRDM1 is a tumor suppressor gene in natural killer cell malignancies. Proc Natl Acad Sci USA. 2011;108:20119–24. 833. Lin J, Lwin T, Zhao JJ, Tam W, Choi YS, Moscinski LC, Dalton WS, Sotomayor EM, Wright KL, Tao J. Follicular dendritic cell-induced microRNA-mediated upregulation of PRDM1 and downregulation of BCL-6 in non-Hodgkin’s B-cell lymphomas. Leukemia. 2011;25:145–52. 696 References

834. Sherman MH, Kuraishy AI, Deshpande C, Hong JS, Cacalano NA, Gatti RA, Manis JP, Demore MA, Pellegrini M, Teitell MA. AID-induced genotoxic stress promotes B cell differentiation in the germinal center via ATM and LKB1 signaling. Mol Cell. 2010;39:873–85. 835. Shioh Y. ATM (ataxia telangiectasia mutated): expanding roles in the DNA damage response and cellular homeostasis. Biochem Soc Trans. 2001;29(Pt 6):661–6. 836. Martelli AM, Charini F, Evangelisti C, Ognibene A, Bressanin D, Bill AM, Manzolin L, Cappellini, McCubrey JA. Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies. Expert Opin Ther Targets. 2012;16:720–42. 837. Liu L, Siu F-M, Che C-M, Xu A, Wang Y. Akt blocks the tumor suppressor activity of LKB1 by promoting phosphorylation-dependent nuclear retention through 14-3-3 proteins. M J Transl Res. 2012;4:175–86. 838. Fumasoni I, Meani N, Rambaldi D, Scafetta G, Alcalay M, Ciccarelli FD. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol Biol. 2007;7:187. doi:10.1186/1471-2148-7-187. 839. X-s Shu, Geng H, Li L, Ying J, Ma C, Wang Y, Poon FF, Wang X, Ying Y, Yeo W, Srivastava G, Tsao SW, Yu J, Sung JJY, Huang S, Chan ATC, Tao Q. The epigenetic modifier PRDM5 functions as a tumor suppressor through modulating WNT/β-catenin signaling and is frequently silenced in multiple tumors. PLoS One. 2011;6(11):e27346. doi:10.1371/journal.pone.0027346. 840. Sun W, Qiao L, Liu Q, Chen L, Ling B, Sammynaiken S, Yang J. Anticancer activity of the PR domain of tumor suppressor RIZ1. Int J Med Sci. 2011;8:161–7. 841. Münk C, Willemsen A, Bravo IG. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol Biol. 2012;12(1):71. 842. Muranyi W, Flügel RM. Analysis of splicing patterns of human spumaretrovirus by polymerase chain reaction reveals complex RNA structure. J Virol. 1991;65:727–35. 843. Flügel RM, Rethwilm A, Maurer B, Darai G. Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes. EMBO J. 1987;6:2077–87. 844. Flügel RM. Spumaviruses: a group of complex retroviruses. J Acquired Immune Defic Syndr. 1992;4:739–59. 845. Russelln RA, Wiegand HK, Moore MD, Schäfer A, Mc Clure MC, Cullen BP. Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense. J Virol. 2005;79:8724–31. 846. Maurer B, Flügel RM. The 3’-orf protein of human immunodeficiency virus 2 shows sequence homology with the bel3 gene of the human spumaretrovirus. FEBS Lett. 1987;222:286–8. 847. Liniai ML. Foamy viruses are unconventional retroviruses. J Virol. 1999;73:1747–55. 848. D’Errico I, Gadaleta G, Saccone C. Pseudogenes in metazoan: origin and features. Brief Funct Genomic Proteomic. 2004;3:157–67. 849. Permanyer J, Albalat R, Gonzáles-Duarte R. Getting closer to a pre-vertebrate genome: the non-LTR retrotransposon. Int J Biol Sci. 2006;2:48–53. 850. Moreau-Aubry A, Le Guiner S, Labarrière N, Gesnel MC, Jotereau F, Breathnach R. A processed pseudogene codes for a new antigen recognized by CD8(+) T cell clone on melanoma. J Exp Med. 2000;191:1617–24. 851. Csűrös M, István M. Statistical alignment of retropseudogenes and their functional paralogs. Mol Biol Evol. 2005;22:2457–71. 852. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–6. References 697

853. Kalyanma-Sudaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM, Cao X, Asangani IA, Kothari V, Prensner KR, Lonigro RJ, Mk Iyer, Barrette T, Shanmugam A, Dhanasekaran SM, Palanisamy N, Chinnaiyan AM. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell. 2012;149:1622–34. 854. Verschoor EJ, Langenhuijzen S, Bontjer I, Fagrouch Z, Niphuis H, Warren KS, Eulenberger K, Heney JL. The phylogeography of orangutan foamy viruses supports the theory of ancient repopulation of Sumatra. J Virol. 2004;78:12712–6. 855. Winkler IG, Flügel RM, Asikainen K, Flower RL. Antibody to human foamy virus not detected in individuals treated with blood products or in blood donors. Vox Sang 2000;79:118–9. 856. Dang Y, Wang X, Esselman WJ, Zheng YH. Identification of APOBEC3DE as another antitretroviral factor from the human APOBEC family. J Virol. 2006;80:10522–33. 857. Nascimento MC, Sumita LM, Souza VU, Weiss HA, Oliveira J, Mascheretti M, Quiroga M, Vela RA, Sabino E, Pannuti CS, Mayaud P. Seroprevalence of Kaposi sarcoma-associated herpesvirus and other serologic markers in the Brazilian Amazon. Emerg Infect Dis. 2009;15:663–7. 858. Rogozin IB, Iyer LM, Liang L, Glazko GV, Liston VG, Palov YI, Aravind L, Pancer Z. Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol. 2007;8:647–56. 859. Severi F, Chiocca A, Conticello SG. Analysis of reptilian APOBEC1 suggests that RNA editing may not be its ancestral function. Mol Biol Evol. 2011;28:1125–9. 860. Kohli RM, Maul RW, Guminski AF, McClure RL, Gajula KS, Saribasak H, McMahon MA, Siciliano RF, Gearhart PJ, Stivers JT. Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversi- fication. J Biol Chem. 2010;285:40956–64. 861. Bernacchi S, Mercenne G, Tournaire C, Marquet R, Paillart JC. Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif. Nucleic Acids Res. 2011;39:2404–15. 862. Oroszlan S, Luftig RB. Retroviral proteases. Curr Top Microbiol Immunol. 1990;157:153–85. 863. Fehér A, Boross P, Sperka T, Miklóssy G, Kádas J, Bagossi P, Oroszlan S, Weber IT, Tőzsér J. Characterization of the murine leukemia virus protease and its comparison with the human immunodeficiency virus type 1 protease. J Gen Virol. 2006;87:1321–30. 864. Ali A, Wang J, Nathans RS, Cao H, Sharova N, Stevenson M, Rana TM. Synthesis and structure-activity relationship studies of HIV-1 virion infectivity factor (Vif) inhibitors that block viral replication. Chem Med Chem. 2012;7:1217–29. 865a. Paprotka T, Delviks-Frankenberry KA, Cingöz O, Martinez A, Kung HJ, Pepper CG, Hu WS, Fivash MJ Jr, Coffin JM, Pathak VK. Recombinant origin of the retrovirus XMRV. Science. 2011;333:97–101. 865b. Paprotka T, Venkatachan NJ, Chaipan C, Burdick R, Delviks-Frankenberry KA, Hu WS, Pathak VK. Inhibition of xenotropic murine leukemia virus-related virus by APOBEC3 proteins and antiviral drugs. J Virol. 2010;84:5719–29. 866. Hohn O, Bannert N. Origin of XMRV and its demise as a human pathogen associated with chronic fatigue syndrome. Viruses. 2011;3:13121319. 867. Del Prete GQ, Kearney MF, Spindler J, Wiegand A, Chertova E, Roser JD, Estes JD, Hao XP, Trubey CM, Lara A, Lee K, Chaipan C, Bess JW Jr, Nagashima K, Keele BE, Macallister R, Smedley J, Pathak VK, Kewalramani VN, Coffin JM, Lifson JD. Restricted replication of xenotropic murine leukemia virus-related virus in pigtail macaques. J Virol. 2012;86:3152–66. 868. Yamanaka S, Balestra ME, Ferrell LD, Fan J, Arnold KS, Taylor S, Taylor JM, Innerarity TL. Apolipoprotein B mRNA-editing protein induces hepatocellular carci- noma and dysplasia in transgenic animals. Proc Natl Acad Sci USA. 1995;82:8483–7. 698 References

869. Greeve J, Lellek H, Apostel F, Hundoegger K, Barialai A, Kirsten R, Welker S, Greten H. Absence of APOBEC-1 mediated mRNA editing in human carcinomas. Oncogene. 1999;18:6357–65. 870. Cesana D, Sgualdino J, Rudilosso L, Merella S, Naldini L, Montini. Whole transcriptome characterization of aberrant splicing events induced by lentiviral vector integration. J Clin Invest. 2012;122:1667–76. 871a. Bandyopadhyay S, Cookson MR. Evolutionary and functional relationships within the DJ-1 superfamily. BMC Evol Biol 2004;4:6. doi:10.1186/1471-2148-4-6. 871b. Maita C, Maita H, Iguchi-Ariga SMM, Ariga H. Monomer DJ-1 and its N-terminal sequence are necessary for mitochondrial localization of DJ-1 mutants. PLoS One. 2013;8(1):e54087. doi:10.1371/journal.pone.0054087. 871c. Martin SE, Sausen M, Joseph A, Kingham BF, Martin ES. Identification of a HMGA2-EFCAB6 gene rearrangement following next-generation sequencing in a patient with a t(12;22)(q14.3;q13.2) and JAK2V617F-positive myeloproliferative neoplasm. Cancer Genet. 2012;205:295–303. 872a. Wu Y, Deford J, Benjamin R, Lee MG, Ruben L. The gene family of EF-hand calcium-binding proteins from the flagellum of Trypanosoma brucei. Biochem J. 1994;304:833–41. 872b. Wu Y, Haghighat NG, Ruben L. The predominant calcimedin from Trypanosoma brucei comprises a family of flagellar EF-hand calcium-binding proteins. Biochem J. 1992;287 (187–193):873. 873. Abe N, Watanabe T, Matsumoto M, Masaki T, Mori T, Sugiyama M, Ghiasappetta G, Fusco A, Atomi Y. An increased high mobility group A2 expression level is associated with malignant phenotype in pancreatic exocrine tissue. Br J Cancer. 2003;89:2104–9. 874a. Mansouri A, Ridgway LD, Korapati A, Zhang G, Tian L, Wang Y, Siddik ZH, Mills GS, Claret FX. Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem. 2003;278:19245–56. 874b. Takahashi K, Taira T, Niki T, Seino C, Iguchi-Ariga SMM, Ariga H. DJ-1 positively regulates the androgen receptor by impairing the binding of PIASxα to the receptor. J Biol Chem. 2001;276:37556–63. 874c. Pei X-j Wu, T-t Li B, X-y Tian, Li Z, Q-x Yang. Increased expression of macrophage migration inhibitory factor and DJ-1 contribute to cell invasion and metastasis of nasopharyngeal carcinoma. Int J Med Sci. 2014;11:106–15. 875. Lee H, Choi SK, Ro JY. Overexpression of DJ-1 and HSP90α, and loss of PTEN associated with invasive urothelial carcinoma of urinary bladder: possible prognostic markers. Oncol Lett. 2012;3:507–12. 876. Hornbruch-Freitag C, Griemert B, Buttgereit D, Renkawitz-Pohl R. Drosophila Swiprosin-1 / EFHD2 accumulates at the prefusion complex stage during Drosophila myoblast fusion. J Cell Sci. 2011;124:3266–78. 877. Avramidou A, Kroczek C, Lang C, Schuh W, Jäck HM, Mielenz D. The novel adaptor protein Swiprosin-1 enhances BCR signals and contributes to BCR-induced apoptosis. Cell Death Diff. 2007;14:1936–47. 878. Kaneko-Ishino T, Ishino F. The role of genes domesticated from LTR retrotransposons and retroviruses in mammals. Front Microbiol. 2012;3:262. 879. Villesen P, Aagaard L, Wiuf C, Pederson FS. Identification of endogenous retroviral reading frames in the human genome. Retrovirology. 2004;1:32. doi:10.1186/1742- 4690-1-32. 880. Kämmerer U, Germeyer A, Stengel S, Kapp Denner J. Human endogenous retrovirus K (HERV-K) is expressed in villous and extravillous cytotrophoblast cells of the human placenta. J Reprod Immunol. 2011;91:1–8. 881. Buzdin A. Human-specific endogenous retroviruses. Sci World J. 2007;7:1848–68. References 699

882. Solyom Sz, Kazazian HH. Mobile elements in the human genome: implications for disease. Genome Med. 2012;4(2):12. doi:10.1185/gm311. 883. Dupressoir A, Lavialle C, Heidmann T. From ancestral infectious retroviruses to bona fide cellular genes. Role of the captured syncytins in placentation. Placenta. 2012;33:663–71. 884. Dunk CE, Gerllhaus A, Drewlo S, Baczyk D, Pötgens AJ, Winterhagen E, Kingdom JC, Lye SJ. The molecular role of connexin 43 in human trophoblast cell fusion. Biol Reprod. 2012;86:115. doi:10.1095/bioreprod.111.096925. 885. Bjerregaard B, Holck S, Christensen IJ, Larsson LI. Syncytin is involved in breast cancer endothelial cell fusion. Cell Mol Life Sci. 2006;63:1906–11. 886. Strick R, Ackermann S, Langbein M, Swiatek J, Schubert SW, Hashemolhossieini S, Koscheck T, Fasching PA, Schild RL, Beckmann MW, Strissel PL. Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral syncytin-1 and regulated by TGF-beta. J Mol Med. 2007;85:23–38. 887. Gimenez J, Montgiraud C, Pichon J-P, Arsac M, Ruel M, Bouton O, Mailet F. Custom human endogenous retrovirus dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic Acids Res. 2010;38:2229–46. 888. Bonnaud B, Beliaeff J, Bouton O, Oriol G, Duret L, Mallet F. Natural history of the ERvWE1 endogenous retroviral locus. Retrovirology. 2005;2:57. doi:10.1186/1742- 4690-2-57. 889. Cáceres M, Comparative NISC. Sequencing Program, Thomas JW. The gene of retroviral origin syncytin 1 is specific to hominids and is inactive in Old World monkeys. J Hered. 2006;97:100–6. 890. Roebke C, Wahl S, Laufer G, Stadelmann C, Sauter M, Mueller N. An N-terminally truncated envelope protein encoded by a human endogenous retrovirus HERV-W from Xq22.3. Retrovirology. 2010;7:69. doi:10.1186/1742-4690-7-69. 891. Blaise S, de Parseval N, Bénit L, Heidmann T. Genomwide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA. 2003;100:1301–13018. 892. de Parseval N, Diop G, Blaise S, Helle F, Vasilescu A, Matsuda F, Heldmann T. Comprehensive search for intra- and inter-specific sequence polymorphisms among coding envelope genes of retroviral origin found in the human genome: genes and pseudogenes. BMC Genomics. 2005;5:117. doi:10.1186/1471-2164-6-117. 893. Malassiné A, Frendo J-L, Blaise S, Handschuh P, Tsatsaris V, Heidmann T. Human endogenous retrovirus-FRD envelope protein (syncytin 2) expression in normal and trisomy 21-affected placenta. Retrovirology. 2008;5:6. doi:10.1186/1742-4690-5-6. 894. Esnault C, Priet S, Ribet D, Vernochet C, Bruis T, Lavialle C, Weissenbach J, Heidmann T. A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci USA. 2006;105:17532–7. 895a. Sinkovics JG, Horvath JC, Gyorkey F. From evolutionary coexistence to criminal collusion of herpes- and retro(lenti)viruses in human pathological entities. Program & Abstracts, 15th Annual Clinical Virology Symposium, Pan American Society for Virology & Department of Medical Microbiology & Immunology, The University of South Florida College of Medicine, Clearwater, Florida, May 1999 #T32. 895b. Sinkovics JG, Horvath JC. Ancient viruses coexisted with the Universal Ancestor(s) and coevolved with each other and with their host cells. Program & Abstracts, 16th Clinical Virology Symposium, Pan American Society for Clinical Virology & Department of Medical Microbiology & Immunology, The University of South Florida College of Medicine, Clearwater, FL, May 2000 #M35. 700 References

895c. Sinkovics JG, Horvath JC. Criminal collusion of herpes- and retro(lenti)viruses. 2nd International Conference of M Kaposi Research Foundation, Budapest, Aug 31–Sept 1 2000. Magyar Venerologiai Archivum (Hungarian Archives Venerology) 2000;4/2-3:105–106. 896. Laufer G, Mayer J, Mueller BF, Mueller-Lantzsch N, Ruprecht K. Analysis of transcribed human endogenous retrovirus W env locus clarifies the origin of multiple sclerosis -associated retrovirus env sequences. Retrovirology. 2009;5:37. doi:10.1186/ 1742-4690-6-37. 897. Perron H, Germi R, Bernard C, Garcia-Montojo M, Deluen C, Farinelli L, Faucard R, Veas F, Stefas I, Fabriek BO, Van-Horssen J, Van-der-Valk P, Gerdill C, Mancuso R, Saresella M, Clerici M, Marcel S, Creange A, Cavaretta R, Caputo D, Arru G, Morand P, Lang AB, Sotgiu S, Ruprecht K, Rieckmann P, Villoslada P, Chofflon M, Boucraut J, Pelletier J, Hartung HP. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult Scler. 2012;18:1721–36. 898. Iba H, Takeya T, Cross FR, Hanafusa T, Hanafusa H. Rous sarcoma virus variants that carry the cellular src gene instead of the viral src gene cannot transform chicken embryo fibroblasts. Proc Natl Acad Sci USA. 1984;81:4424–8. 899. Sinkovics JG, Szakacs A, Butler JJ, Hirano M, Shullenberger CC, Howe CD. Pathological conditions (leukemias and sarcomas, leukemoid reactions, runt disease, and immunization without disease) associated with the inoculation of a long-term tissue culture line of a murine leukemia virus. In: Clifford P, Linsell CA, Timms GL, editors. “Cancer in Africa” East African Med J (East African Publishing House, Nairobi, Kenya); 1968;143–153. 900. Sinkovics JG, Howe DC, Shullenberger CC. Studies on virus attenuation in murine leukemia. In: International Symposium on Comparative Leukemia Research. Paris, July 12–31, 1967. Bibliotheca Haematol (Karger, Basel, New York) 1968;31:73–75. 901. Huebner RJ, Todaro GJ. Oncogenes of RNA tumor viruses as determinants of cancer. Proc Natl Acad Sci USA. 1969;64:1087–94. 902. Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ. Ancient deuterostome origins of vertebrate brain signaling centres. Nature. 2012;483:289–94. 903. Perrimon N, Pitsouli C, Shilo BZ. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol. 2012;4(8):005975. doi:10.1101/ cshperspect.a005975. 904. Vincent S, Perrimon N, Axelrod JD. Hedgehog and wingless stabilize but do not induce cell fate during Drosophila dorsal embryonic epidermal patterning. Development. 2998;135:27r67-2775. 905. Lin G, Chen Y, Slack JM. Transgenic analysis of signaling pathways required for Xenopus tadpole spinal cord and muscle regeneration. Anat Rec (Hoboken) 2012. doi:10.1002/ar.22437. 906. Nusse R, Theunissen H. Waginjer vE, Rijsewik F, Gennissen A, Otto A, Schuuring E, van Ooyen A. The Wnt-1 (int-1) oncogene promoter and its mechanism of activation by insertion of proviral DNA of the mouse mammary tumor virus. Mol Cell Biol. 1990;10:4170–9. 907. Pond AC, Herschkowitz I, Schwertfeger KL, Weim B, Zhang Y, York B, Cardiff RD, Hilsenbeck S, Perou CM, Creighton CJ, Lloyd RE, Rosen JM. Fibroblast growth factor receptor signaling dramatically accelerates tumorigenesis and enhances oncoprotein translation in the mouse mammary tumor virus-Wnt-1 mouse model of breast cancer. Cancer Res. 2010;70:4868–79. 908. Cui J-W, Y-j Li, Sarkar A, Brown J, Tan Y-H, Premyslova M, Michaud C, Iscove C, Wang G-J, Ben-David Y. Retroviral insertion activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differen- tiation to proliferation. Blood. 2007;110:2631–40. References 701

909. Wang CL, Wang BB, Bartha G, Li L, Channa N, Klinger M, Killeen N, Wabl M. Activation of an oncogenic microRNA cistron by integration. Proc Natl Acad Sci. 2006;103:18680–4. 910. Kashif M, Hellwig A, Hashemolhosseini S, Kumar V, Bock F, Wang F, Shahzad K, Ranjan S, Wolter J, Madhusudhan T, Bierhaus A, Nawroth P, Isermann B. Nuclear factor erythroid-derived 2 (Nfe2)regulates JunD DNA-binding activity via acetylation: a novel mechanism regulating trophoblast differentiation. J Biol Chem. 2012;287:5400–11. 911. Arany I, Jozsa Z, Ember I. Further studies on migration and colonization of leukemic lymphoblasts in AKR and HSS inbred mice. Cancer Biochem Biophys. 1987;9:149–54. 912. Hays EF, Bristol GC, McDougall S, Klotz JL, Kronenberg M. Development of lymphoma in the thymus of AKR mice treated with the lymphomagenic virus SL3-3. Cancer Res. 1989;49:4225–30. 913. Glud SZ, Sørensen AB, Andrulis M, Wang B, Kondo E, Serfling RS, Palmetshofer A, Pedersen FS. A tumor suppressor function for NFATc3 in T-cell lymphomagenesis by murine leukemia virus. Blood. 2005;106:3546–52. 914. Beá S, Tort F, Pinyol M, Puig X, Hernández L, Hernández S, Fernandez PL, van Lohuizen M, Colomer D, Campo E. BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphoma. Cancer Res. 2001;61:2409–12. 915a. Pinyol M, Bea S, Plá L, Ribrag V, Bosq J, Rosenwald A, Campo E, Jares P. Inactivation of RB1 in mantle cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis. Blood. 2007;109:5422–9. doi:10.1182/blood-2006- 11-057208. 915b. Enjuanes A, Fernández V, Hernández L, Navarro A, Beá S, Pinyol M, López-Guillermo A, Rosenwald A, Ott G, Campo E, Jares P. Identification of methylated genes associated with aggressive clinicopathological features in mantle cell lymphoma. PLoS One. 2011;6 (5):e19736. 916. Guo BH, Feng Y, Zhang R, Xu LH, Li MZ, Kung HE, Song LB, Zeng MS. Bmi-1 promotes invasion and metastasis and its elevated expression is correlated with advanced stage of breast cancer. Mol Cancer. 2011;10(1):10. 917. Song W, Tao K, Li H, Jin C, Song Z, Li J, Shi H, Li X, Dang Z, Dou K. Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci. 2010;101:1754–60. 918. Yang GF, He WP, Cai MY, He LR, Luo JH, Deng HX, Guan XY, Zeng MS, Zeng YX, Xie S. Intensive expression of Bmi-1 is a new independent predictor of poor outcome in patients with ovarian carcinoma. BMC Cancer. 2010;10:133. 919a. Yu Q, Meng XX, Liu B, Liu DD, Zhang W, Liu WH, Yang G. Effects of antisense Bmi-1 RNA on the proliferation of lung cancer cell line A5491. Zhongua Bing Li Xue Za Zhi. 2009;38:829–32. 919b. Yu CC, Lo WL, Chen YW, Huang PI, Hsu HS, Tseng LK, Hung SC, Kao SY, Chang CJ, Chiou SH. Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. J Oncol 2011; 2011.pii;609259. 920a. Jiang Y, Su B, Meng X, Liu C, Liu B, Liu D, Fan Y, Yang Y. Effect of siRNA-mediated silencing of Bmi-1 gene expression on HeLa cells. Cancer Sci. 2010;101:379–86. 920b. Jiang L, Wu J, Yang Y, Liu L, Song L, Li J, Li M. Bmi-1 promotes the aggressiveness of glioma via activating the NF-κB/MMP-9 signaling pathway. BMC Cancer. 2012;12:406. 921. Smith MR, LI H, Gordon L, Gascoyne RD, Paietta E, Forero-Torres A, Kahl BS, Advani R, Hong F, Horning SJ. Phase II study of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone immunochemotherapy followed by yttrium-90-ibritumomab tiuxetan in untreated mantle-cell lymphoma: Eastern Cooperative Oncology Group study E1499. J Clin Oncol. 2012;30:3119–26. 702 References

922a. Fiskus W, Rao R, Balusu R, Ganguly S, Tao J, Sotomayor EM, Mudunuru U, Smith JE, Hembruff SL, Atadja PW, Marquez VE, Bhalla KN. Superior efficacy of a combined epigenetic therapy against human mantle cell lymphoma (MCL) cells. Clin Cancer Res. 2012;18:6227–38. 922b. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R, Zhang Y, Chan JC, Fu K, Marquez VE, Chen-Kiang S, Moscinski LC, Stao E, Dalton WS, Weight KL, Sotomayor E, Bhalla K, Tao J. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell. 2012;22:506–23. 923. Tátrai P, Szepesi Á, Matula Z, Szigeti A, Buchan G, Mádi A, Uher E, Német K. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation. Biochem Biophys Res Commun. 2012;422:28–35. 924. Pandhare-Dash J, Mantri CK, Gong Y, Chen Z, Dash C. XMRV accelerates cellular proliferation, transformational activity, and invasiveness of prostate cancer cells by downregulating p27(Kip1). Prostate. 2012;72:886–97. 925. Niller H-H, Wolf H, Ay E, Minarovits J. Epigenetic dysregulation of Epstein-Barr virus latency and development of autoimmune disease. Adv Exp Med Biol. 2011;711:82–102. 926. Niller H-H, Wolf H, Minarovits J. Viral hit and run oncogenesis: genetic and epigenetic scenarios. Cancer Lett. 2011;305:200–17. 927. Morrison JA, Klingelhutz AJ, Raab-Traub N. Epstein-Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J Virol. 2003;77:12276–84. 928. Takacs M, Segesdi J, Banati F, Koroknai A, Wolf H, Niller HH, Minarovits J. The importance of epigenetic alterations in the development of Epstein-Barr virus-related lymphomas. Mediterr J Hematol Infect Dis. 2009;1(2):e2009012. doi:10.4084/MJHID. 2009.012. 929. Portal D, Zhao B, Calderwood MA, Sondermann T, Johannsen E, Kieff E. EBV nuclear antigen EBNALP dismisses transcription repressors NCo and RBPJ from enhancers and EBNA2 increases NCoR-deficient RBPJ DNA binding. Proc Natl Acad Sci USA. 2011;108:7808–13. 930. Zuo J, Thomas WA, Haigh TA, Fitzsimmons L, Long HM, Hislop AD, Taylor GS, Rowe M. Epstein-Barr virus evades CD4+T cell responses in lytic cycle through BZLF1-mediated downregulation of CD74 and the cooperation of vBcl-2. PLoS Pathog. 2011;7(12):e1002455. doi:10.1371/journal.ppat.1002455. 931. Palmeri D, Carroll KD, Gonzalez-Lopez O, Lukac DM. Kaposi’s sarcoma-associated herpesvirus Rta tetramers make high-affinity interactions with repetitive DNA elements in the Mta promoter to stimulate DNA binding of RBP-Jk/CSL. J Virol. 2011;85:11901–15. 932a. Lu M, Suen J, Frias C, Pfeiffer R, Tsai MH, Chuang E, Zeichner SL. Dissection of Kaposi’s sarcoma-associated herpesvirus gene expression program by using the viral DNA replication inhibitor cidofovir. J Virol. 2004;78:13637–52. 932b. Lu J, Verma SC, Cain Q, Saha A, Dzeng RK, Robertson ES. The RBP-Jk binding sites within the RTA promoter regulate KSHV latent infection and cell proliferation. PLoS Pathog. 2012;8(1):e10002479. doi:10.1371/journal.ppat.1002479. 933. Martinez-FP Tang O. Leucine zipper domain is required for Kaposi sarcoma-associated herpesvirus (KSHV) K-bZIP protein to interact with histone deacetylase and is important for KSHV replication. J Biol Chem. 2012;287:15622–34. 934. Naranatt PP, Krishnan HH, Svojanovsky SR, Bloomer C, Mathur S, Chandran B. Host gene induction and transcriptional reprogramming in Kaposi’s sarcoma-associated herpesvirus (FSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insight into modulation events early during infection. Cancer Res. 2004;64:72–84. 935. Ritthipichai K, Nan Y, Bossis I, Zhang Y. Viral FLICE inhibitory protein of rhesus monkey rhadinovirus inhibits apoptosis by enhancing autophagosome formation. PLoS One. 2012;7(5):e39438. doi:10.1371/journal.pone.0039438. References 703

936. Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA. Pillars article: the macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell. 1990;61:113–24. 937. Moreau-Gachelin F. Multi-stage Friend murine erythroleukemia: molecular insights into oncogene cooperation. Retrovirology. 2008;4(5):99. 938. Ballon G, Chen K, Perez R, Tam W, Cesarman E. Kaposi sarcoma herpesvirus (KSHV) vFLIP oncoprotein induces B cell transdifferentiation and tumorigenesis in mice. J Clin Invest. 2011;121:1141–53. 939. Cavallaro U, Gasparini G, Soria MR, Maier JA. Spindle cells isolated from Kaposi’s sarcoma-like lesions of BKV/tat-transgenic mice co-express markers of different cell types. AIDS. 1996;10:1211–129. 940. Majerciak V, Zheng Z-M. Kaposi’s sarcoma-associated herpesvirus ORF57 in viral RNA processing. Front Biosci. 2009;14:1516–28. 941. Yoo J, Kang J, Lee HN, Aguilar B, Kafka D, Lee S, Choi I, Lee J, Ramu S, Haas J, Koh CJ, Hong Y-K. Kaposin-B enhances the PROX1 mRNA stability during lymphatic reprogramming of vascular endothelial cells by Kaposi’s sarcoma herpes virus. PLoS Pathog 2010; 6(8):e1001046. doi:10.1371/journal.ppat.1001046. 942. Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M, Nusbaum JD, Shamulailatpam P, Love CL, Dave SS, Tuschl T, Ohler U, Cullen BR. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe. 2011;10:515–26. 943. Morissette G, Flamand L. Herpesviruses and chromosomal integration. J Virol. 2010;84:12100–9. 944. Kniazhanskaia ES, Kondrashina OV, Gottikh MB. Approaches towards directed DNA integration by the use of retroviral integrases and transposases. Mol Biol (Moskva). 2011;45:931–48. 945. Aubert M, Ryu BY, Banks L, Rawkings DJ, Scharenberg AM, Jerome KR. Successful targeting and disruption of an integrated reporter lentivirus using the engineered homing endonuclease Y2 I-Anil. PLoS One. 2011;6(2):e16825. 946. Flamand L, Komaroff AL, Arbuckle JH, Medveczky PG, Ablashi DV. Review, Part I. Human herpesvirus-6-basic biology, diagnostic testing, and antiviral efficacy. J Med Virol. 2010;82:1560–8. 947. Kaufer BB, Arndt S, Trapp S, Osterrieder N, Jarosinski KW. Herpesvirus telomerase RNA (vTR) with a mutated template sequence abrogates herpesvirus-induced lym- phomagenesis. PLoS Pathog. 2011;7(10):e1002333. doi:10.1371/journal.ppat.1002333. 948. Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, Lund TC, Tolar J, De Meirleir K, Montoya JG, Komaroff AL, Ambros PF, Medveczky PG. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci USA. 2010;107:5563–8. 949. Kaufer BB, Jarosinski KW, Osterrieder N. Herpesvirus telomeric repeats facilitate genome integration into host telomeres and mobilization of viral DNA during reactivation. J Exp Med. 2011;208:605–15. 950a. Daibata M, Taguchi T, Taguchi H, Miyoshi I. Integration of human herpesvirus 6 in Burkitt’s lymphoma cell line. Br J Haematol. 1998;102:1307–13. 950b. Daibata M, Taguchi T, Nemoto Y, Taguchi H, Miyoshi I. Inheritance of chromosomally integrated human herpesvirus 6 DNA. Blood. 1999;94:1545–9. 951. Murakami Y, Tanimoto K, Fujiwara H, An J, Suemori K, Ochi T, Hasegawa H, Yasukawa M. Human herpesvirus 6 infection impairs Toll-like receptor signaling. Virol J. 2010;7:91. doi:10.1186/1743-422X-7-91. 952. Cermelli C, Cenacchi V, Beretti F, Pezzini F, Luca DD, Blasi E. Human herpesvirus-6 dysregulates monocyte-mediated anticryptococcal defences. J Med Microbiol. 2006;55:695–702. 704 References

953a. Arbuckle JH, Pantry S, Medveczky PG. The mechanism and significance of integration and vertical transmission of human herpesvirus 6 genome. In: Berencsi III Gy, editor. Maternal fetal transmission of human viruses and their influence on tumorigenesis. Springer Verlag 2912. p. 171–194. 953b. Arbuckle KH, Medveczky PG. The molecular biology of human herpesvirus 6 latency and telomere integration. Microbes Infect. 2011;13:7831–41. 954. Tuddenham L, Jung JS, Chane-Woon-Ming B, Dölken L, Pfeffer S. Small RNA deep sequencing identifies microRNAs and other small noncoding RNAs from human herpesvirus 6B. J Virol. 2012;86:1638–49. 955. Li Z, Yamauchi Y, Kamakura M, Murayama T, Goshima F, Kimura H, Nishiyama Y. Herpes simplex virus requires poly(ADP-ribose) polymerase activity for efficient replication and induces extracellular signal-related kinase-dependent phosphorylation and ICP0-dependent nuclear localization of tankyrase. J Virol. 2012;86:492–503. 956. Deng ZH, Atanasiu C, Zhao K, Marmorstein R, Sbodio JI, Chi N-W, Lieberman PM. Inhibition of Epstein-Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA. J Virol. 2005;79:4640–50. 957. Dregalla RC, Zhou J, Idate RP, Battaglia CLR, Liber HL, Bailey SM. Regulatory roles of tankyrase 1 at telomeres and DNA repair: suppression of T-SCE and stabilization of DNA-PKcs. Aging. 2010;2:691–708. 958. Bao R, Christova T, Song S, Angers S, Yan X, Attisano L. Inhibition of tankyrase induces axin stabilization and blocks Wnt signaling in breast cancer cells. PLoS One 2012;7(11):e48670. doi:10.1371/journal.pone.0048670. 959. James RG, Davidson KC, Bosch KA, Biechele TL, Robin NC, Taylor RJ, Major MB, Camp ND, Fowler K, Martins TJ, Moon RT. WIKI4, a novel inhibitor of tankyrase and Wnt/β-catenin signaling. PLoS. 2012;7(12):e50457. doi:10.1371/journal.pone.0050457. 960. Gunaydin H, Gu Y, Huang X. Novel binding mode of a potent and selective tankyrase inhibitor. PLoS One. 2012;7(3):e33740. doi:10.1371/journal.pone.0033740. 961. Azumi K, De Santis R, De Tomaso A, Rigoutsos I, Yoshizaki F, Pinto MR, Marino R, Shida K, Ikeda M, Ikeda M, Arai M, Inoue Y, Shimizu T, Satoh N, Rokssaar DS, Du Pasquier L, Kasahara M, Satake M, Noriala M. Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: “waiting for Godot”. Immunogenetics. 2003;55:570–81. 962. Dishaw LJ, Flores-Torres JA, Mueller MG, Karrer CR, Skapura DP, Melillo D, Zucchetti I, De Santis R, Pinto MP, Litman FW. A basal chordate model for studies of gut microbial immune interactions. Front Immunol. 2012;3:96. doi:10.3389/fimmu.2012. 00096. 963. Wilson DR, Norton DD, Fugmann SD. The PHD domain of the sea urchin RAG2 homolog, SpRAG2L, recognizes dimethylated lysine 4 in histone H3 tails. Dev Comp Immunol. 2008;32:1221–30. 964. De Tomaso AW. Sea squirts and immune tolerance. Dis Model Med v. 2009;2:440–5. 965. Rinkevich B, Douek J, Rabinowitz C, Paz G. The candidate Fu/HC gene in Botryllus schlosseri (Urochordata) and ascidians’ historecognition – an oxymoron? Dev Comp Immunol. 2112;36:718–727. 966. Chernakhovskaya Y, Shaghijan HS, Slavina RG, Svet-Moldavsky GJ. Helminths and allotransplantation. Rev Eur Etud Clin Biol. 1972;17:395–9. 967. Dales RP. Second-set graft rejections: do they occur in invertebrates? Symp Soc Exp Biol. 1978;32:203–19. 968. Orta AJ, Sullivan JT. Short-term immunoisolation of incompatible xenografts in a snail, Biomphalaria glabrata. Dev Comp Immunol. 2000;24:543–51. 969a. Smith LC, Clow LA, Terwilliger DP. The ancestral complement system in sea urchins. Immunol Rev. 2001;180:16–34. References 705

969b. Smith LC, Davidson EH. The echinoderm immune system. Characters shared with vertebrate immune systems and characters arising later in deuterostome phylogeny. Ann N Y Acad Sci. 1994;15:213–26. 970. Detournay O, Schnitzler CE, Poole A, Weis VM. Regulation of cnidarian-dinoflagellate mutualisms: Evidence that activation of a host TGFβ innate immune pathway promotes tolerance of the symbiont. Dev Comp Immunol. 2012; 38:525-37. doi:10.1016/j.dci. 2012.08008. 971. Rosengarten RD, Moreno MA, Lakkis FG, Buss LW, Dellaporta SL. Genetic diversity of the allodeterminant alr2 in Hydractinia symbiolongicarpus. Mol Biol Evol. 2011;28:933–47. 972. Gloria-Soria A, Moreno MA, Yund PO, Lakkis HG, Dellaporta SL, Buss LW. Evolutionary genetics of the Hydroid allodeterminant alr2. Mol Biol Evol. 2012;29:3921–32. 973. Millane RC, Kanska J, Duffy DJ, Seoighe C, Cunningham S, Plickert G, Frank U. Induced stem cell neoplasia in a cnidaria by ectopic expression of a POU domain transcription factor. Development. 2011;138:2429–39. 974. Duffy DJ, Millane RC, Frank U. A heat shock protein and wnt signaling crosstalk during axial patterning and stem cell proliferation. Dev Biol. 2012;362:271–81. 975. Seipp S, Schmich J, Leitz T. Apoptosis—a death-inducing mechanism tightly linked with morphogenesis in Hydractinia echinata (Cnidaria, Hydrozoa). Development. 2001;128:4891–8. 976. Wang WS, Hung SW, Lin TH, Tu CY, Wong ML, Chiou SH, Shieh MT. The effect of five different glycans on innate immune responses by phagocytes of hybrid tilapia and Japanese eels, Anguilla japonica. J Aquat Anim Health. 2007;19:49–59. 977. Hossein MM, Kawai K, Osima S. Immunogenicity of pressure inactivated Edwardsiella tarda bacteria in Anguilla japonica (Japanese eel). Pak J Biol Sci. 2011;14:755–67. 978. Hozumi N, Tonegawa S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. J Immunol. 2004;173:4260–4. 979. Gellert M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem. 2002;71:101–32. 980. Grundy GJ, Ramón-Maiques S, Dimitriadis EK, Kotova S, Biertümpfel C, Heymann JB, Steven AC, Gellert M, Yang W. Initial stages of V(D)J recombination: the organization of RAG1/2 and RSS DNA in the postcleavage complex. Mol Cell. 2009;35:217–27. 981. Hiom K, Malek M, Gellert M. DNA transposition by the RAG1 and RAG2 proteins: possible source of oncogenic translocations. Cell. 1998;94:463–770. 982. Onozawa M, Aplan PD. Illegitimate V(D)J recombination involving nonantigen receptor loci in lymphoid malignancy. Genes Chromosomes Cancer. 2012;51:525–35. 983. Kulski JK, Shigenari A, Shiina T, Ota M, Hosimichi K, James I, Inoko H. Human endogenous retrovirus (HERVK9) structural polymorphism with haplotypic HLA-A allelic associations. Genetics. 2008;180:445–57. 984. Sugamata R, Suetake H, Kikuchi K, Suzuki Y. Teleost B7 expressed on monocytes regulates T cell responses. J Immunol. 2009;182:6799–806. 985. Criscitiello MF, Ohta Y, Graham MD, Eubanks JO, Chen PL, Flajnik MF. Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II. Dev Comp Immunol. 2012;36:521–33. 986. Flajnik MF, Tlapakova T, Criscitiello MF, Krylov V, Ohta Y. Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and B7’s historical relationship with the MHC. Immunogenetics. 2012;64:571–90. 987. Holen E, Lie KK, Araujo P, Olsvik PA. Pathogen recognition and mechanisms in Atlantic cod (Gadus morhua) head kidney cells: bacteria (LPS) and virus (poly I:C) signals through different pathways and affect distinct genes. Fish Shellfish Immunol. 2012;33:267–76. 706 References

988. Magnadottir B, Audunsdottir SS, Bragason BT, Gisladottir B, Jonsson ZO, Gudmundsdottir S. The acute phase response of Atlantic cod (Gadus morhua): humoral and cellular response. Fish Shellfish Immunol. 2011;3:1124–30. 989. Star B, Nederbragt AJ, Hentoft S, Grimholt U, Malstrøm M, Gregers TF, Rouinge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzén A, Winer R, Kight J, Vogel JH, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tiria KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjøen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansenm SD, Searle S, Lkien S, Nilsen F, Jonassen T, Omholt SW, Sternseth NC, Jakobsen KS. The genome sequence of Atlantic cod reveals a unique immune system. Nature. 2011;477:207–10. 990a. Dreyfus DH. Evidence suggesting an evolutionary relationship between transposable elements and immune system recombination sequences. Mol Immunol. 1992;29:807–10. 990b. Dreyfus DH, Jones JF, Gelfand EW. Asymmetric DDE (D35E)-like sequences in the RAG proteins: implications for V(D)J recombination and retroviral pathogenesis. Med Hypotheses. 1999;52:545–9. 990c. Dreyfus DH, Nagasawa M, Kelleher CA, Gelfand EW. Stable expression of Epstein-Barr virus BZLF-1 encoded ZEBRA protein activates p53-dependent transcription in human Jurkat T-lymphoblastoid cells. Blood. 2000;96:625–34. 991. McGeoch DJ, Cook SD, Colan A, Jamieson FE, Elford EA. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J Mol Biol. 1995;247:443–58. 992. Niller HH, Salamon D, Rahmann S, Ilg K, Koroknai A, Bánáti F, Schwarzmann F, Wolf H, Minárovits J. A 30kb region of the Epstein-Barr virus genome is colinear with the rearranged human immunoglobulin gene loci: implications for a “ping-pong evolution” model for persisting viruses and their hosts. A review. Acta Microbiol Immunol Hung. 2004;51:469–84. 993. Forterre P. Defining life: the virus viewpoint. Orig Life Evol Biosci. 2010;40:151–60. 994a. Niller HH, Salamon D, Ilg K, Koroknai A, Banati F, Baum G, Rucker O, Schwarzmann F, Wolf GH, Minarovits J. The in vivo binding site for oncoprotein c-Myc in the promoter for Epstein-Barr virus (EBV) encoding RNA (EBER) 1 suggests a specific site for EBV in lymphomagenesis. Med Sci Monit. 2003;9:1–9. 994b. Szenthe K, Koroknai A, Banati F, Bathori Z, Lozsa R, Burgyan J, Wolf H, Salamon D, Nagy K, Niller HH, Minarovits J. The 5’ regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification markers in B lymphoid cells. Biochem Biophys Res Commun. 2013;433:489–95. 995. Dreyfus DH, Liu Y, Ghoda LY, Chang JT. Analysis of an ankyrin-like region in Epstein Barr virus encoded (EBV) BZLF-1 (ZEBRA) protein: implications for interactions with NFκB and p53. Virol J. 2011;8:42. 996a. Dishaw LJ, Mueller MG, Gwatney N, Cannon JP, Haire RN, Litman RT, Amemiya CT, Ota T, Rowen L, Glusman G, Litman GW. Genomic complexity of the variable region-containing chitin-binding proteins in amphioxus. BMC Genet. 2008;9:78. 996b. Dishaw LJ, Haire RN, Litman GW. The amphioxus genome provides unique insight into the evolution of immunity. Brief Funct Genomics. 2012;11:167–76. 997. Goodwin TJ, Poulter RT. A group of deuterostome Ty3/gypsy-like retrotransposons with Ty1/copia-like pol-domain orders. Mol Genet Genomics. 2002;267:481–91. 998. Savin KW, Cocks BG, Wong F, Sawbridge T, Cogan N, Savage D, Warner S. A neurotropic herpesvirus infecting the gastropod, abalone, shares ancestry with oyster herpesvirus and a herpesvirus associated with the amphioxus genome. Virol J. 2010;10 (7):308. 999. Arzul I, Renault T, Lipart C. Experimental herpes-like viral infections in marine bivalves: demonstration of interspecies transmission. Dis Aquat Organ. 2001;46:1–6. References 707

1000. Batista FM, Arzul I, Pepin JF, Ruano F, Friedman CS, Boudry P, Renault T. Detection of ostreid herpesvirus 1 DNA by PCR in bivalve mollusks: a critical review. J Virol Methods. 2007;139:1–11. 1001. Gs Richards, Simionato E, Perron M, Adamska M, Vervoort M, Degnan SM. Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol. 2008;18:1156–61. 1002a. Davison AJ. Herpesvirus systematics. Vet Microbiol. 2010;143:52–69. 1002b. Davison AJ, Davison MD. Identification of structural proteins of channel catfish virus by mass spectrometry. Virology. 1995;206:1035–43. 1002c. Davison AJ, Sauerbier W, Dolan A, Addison C, McKinnell RG. Genomic studies of the Lucké herpesvirus (RaHV-1). J Cancer Res Clin Oncol. 1999;125:232–8. 1002d. Davison AJ, Trus BL, Cheng N, Steven AC, Watson MS, Cunningham C, Le Deuff RM, Renault T. A novel class of herpesvirus with bivalve hosts. J Gen Virol. 2005;86:41–53. 1003a. van Beurden SJ, Bossers A, Voorbergen-Laarman MH, Haenen OL, Peters S, Abma-Henkens MH, Peeters BP, Rottier PJ, Engelsma MY. Complete genome sequence and taxonomic position of anguillid herpesvirus 1. J Gen Virol. 2010;91:880–7. 1003b. van Beurden SJ, Leroy B, Wattiez R, Haenen OL, Boeren S, Vervoort JJ, Peeters BP, Rottier PJ, Engelsma MY, Vanderplasschen AF. Identification and localization of the structural proteins of anguillid herpesvirus 1. Vet Res. 2011;42(1):105. doi:10.1186/ 1297-9716-42-105. 1003c. van Beurden SJ, Gatherer D, Kerr K, Galbraith J, Herzyk P, Peeters BP, RottierOJ Engelsma MY, Davison AJ. Anguillid herpesvirus 1 transcriptome. J Virol. 2012;86:10150–61. 1004. Waltzek TB, Kelley GO, Alfaro ME, Kurobe T, Davison AJ, Hedrick RP. Phylogenetic relationships in the family . Dis Aquat Organ. 2009;84:179–94. 1005. Papermaster BW, Condie RM, Finstad J, Good RA. Evolution of the immune response. I. The phylogenetic development of adaptive immunologic responsiveness in vertebrates. J Exp Med. 1964;119:105–30. 1006. Granoff A. Herpesvirus and the Lucké tumor. Cancer Res. 1973;33:1431–3. 1007. Govett PD, Harms CA, Johnson AJ, Latimer KS, Wellahan JF, Fatzinger MH, Christian LS, Kelly TR, Lewbart GA. Lymphoid follicular cloacal inflammation associated with a novel herpesvirus in juvenile alligators (Alligator mississippiensis). J Vet Diagn Invest. 2005;17:474–9. 1008. McCowan C, Shepherdley C, Slocombe RF. Herpesvirus-like particles in the skin of a saltwater crocodile (Crocodylus porosus). Aust Vet J. 2004;82:357–77. 1009. Stacy BA, Wellehan JF, Foley AM, Coberley SS, Herbst LH, Manire CA, Garner MM, Brookins MD, Childress AL, Jacobson ER. Two herpesviruses associated with disease in wild Atlantic loggerhead sea turtles (Caretta caretta). Vet Microbiol. 2008;126:63–73. 1010. Arbello M, Sierra E, Esperón F, Watanabec TT, Bellière EN, Espinosa de los Monteros A, Fernández. Herpesvirus infection with severe lymphoid necrosis affecting a beaked whale stranded in Canary Islands. Dis Aquat Organ. 2010;89:261–4. 1011. Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, Schmidt T, Kraus T, Stellberger T, Frutenberg Sutham S, Bandyopadhyay S, Rose D, von Brunn A, Uhlmann M, Zeretzke C, Dong YA, Boulet H, Koegl M, Bailer SM, Koszinowski U, Ideker T, Uetz P, Zimmer R, Haas J. Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009;5(9):1000570. 1012. Hamblin C, Hedger RS. Prevalence of neutralizing antibodies to bovid herpesvirus 2 in African wildlife. J Wildl Dis. 1982;18:429–36. 1013. Roychoudhury S, Mukherjee D. A detailed comparative analysis on the overall codon usage pattern in herpesviruses. Virus Res. 2010;148:31–43. 1014. Maness H, Nollens HH, Jensen ED, Goldstein T, LaMere S, Childress A, Sykes J, St Leger J, Lacave G, Latson FE, Wellehan JF Jr. Phylogenetic analysis of marine mammal herpesviruses. Vet Microbiol. 2011;149:23–9. 708 References

1015. Miyoshi K, Nishida S, Sone E, Tajim Y, Makara M, Yoshioka M, Nakamura M, Yamada TK, Koike H. Molecular identification of novel alpha-and gammaherpesviruses from cetaceans stranded on Japanese coasts. Zoolog Sci. 2011;28:126–33. 1016. Dong M, Fu Y, Yu C, Su J, Huang S, Wu X, Wei J, Yuan S, Shen Y, Xu A. Identification and characterization of a homolog of an activation gene for the recombination activating gene 1 (RAG1) in amphioxus. Fish Shellfish Imunol. 2005;19:165–74. 1017. Athineos D, Marshall L, White RJ. Regulation of TFIIIB during F9 differentiation. BMC Mol Biol. 2010;12(11):212. 1018. Codina A, Love JD, Li Y, Lazar MA, Neuhaus D, Schwabe JW. Structural insights into the interaction and activation of histone deacetylase 3 by nuclear receptor coreceptors. Proc Natl Acad Sci USA. 2005;102:6009–14. 1019. Euskirchen G, Auerbach RK, Snyder M. SWI/SNF chromatin-remodeling factors; multiscale analyses and diverse functions. J Biol Chem. 2012;287:30897–905. 1020. Ghisletti S, Huang W, Jepsen K, Benner C, Hardiman G, Rosenfeld MG, Glass CK. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev. 2009;23:681–93. 1021. Kapitonov W, Jurka J. Harbinger transposons and an ancient HARBI1 gene derived from a tansposase. DNA Cell Biol. 2004;23:311–24. 1022. Noguchi C, Rapp JB, Skorobogatko YV, Bailey LD, Noguchi E. Swi1 associates with chromatin through CCT domain and recruits Swi3 to preserve genomic integrity. PLos One. 2012;7(8):e3988. 1023a. Sinzelle L, Izsvák Z, Ivics Z. Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci. 2009;66:1073–93. 1023b. Sinzelle L, Kapitonov VV, Grzela DP, Jursch T, Jurka J, Izsvák Z, Ivics Z. Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposons-derived cellular genes. Proc Natl Acad Sci. 2008;105:4715–20. 1024. Yu J, Li Y, Ishizuka T, Guenther MG, Lazar MA. A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J. 2003;22:3403–10. 1025. Zhang H, Kruk JA, Reese JC. Dissection of coactivator reqirement at RNR3 reveals unexpected contributions from TFIID and SAGA. J Biol Chem. 2008;283:27360–8. 1026. Baker AM, Fu Q, Hayward W, Lindsay SM, Fletcher TM. The Myb/SANT domain of the telomere-binding protein TRF2 alters chromatin structure. Nucleic Acids Res. 2009;37:5019–31. 1027. Ryan DP, Sundaramoorthy R, Martin D, Singh V, Owen-Hughes T. The DNA-binding domain of the Chd1 chromatin-remodeling enzyme contains SANT and SLIDE domains. EMBO J. 2011;30:2596–609. 1028a. Ivics Z. Recombinase technology for gene therapy. Curr Gene Ther. 2011;11(5):331. 1028b. Ivics Z, Izsvák Z. Nonviral gene delivery with the sleeping beauty transposons system. Hum Gene Ther. 2011;22:1043–51. 1029. Lv B, Shi T, Wang X, Song Q, Zhang Y, Shen Y, Ma D, Lou Y. Overexpression of the novel human gene, nuclear apoptosis-inducing factor1, induces apoptosis. Int J Biochem Cell Biol. 2006;38:671–83. 1030. Smith JJ, Sumiyama K, Ameyima CT. A living fossil in the genome of a living fossil: Harbinger transposons in the Coelacanth genome. Mol Biol Evol. 2012;29:985–93. 1031. Chiu L-W, Zhou X, Burke S, Wu X, Prior RL, Li L. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol. 2010;154:1470–80. 1032. Dmochowski L, Grey CE, Burmester BR, Walter WG. Submicroscopic morphology of avian neoplasms. II. Studies on granuloblastosis (myeloblastosis). Proc Soc Exp Biol Med. 1958;98:666–9. References 709

1033a. Beard D, Beaudreau GS, Bonar RA, Sharp DG, Beard JW. Virus of avian erythroblastosis. III. Antigenic constitution and relation to the agent of avian myeloblastosis. J Natl Cancer Inst. 1957;18:231–59. 1033b. Beard JW, Chabot JF, Beard D, Heine U, Houts GE. Renal neoplastic response to leukosis virus strain BAI A avian myeloblastosis virus and MC29. Cancer Res. 1976;35:339–53. 1034a. Heine U, Bonar RA, Beard JW. Aberrant cytoplasmic structures in avian virus tumor cells. Exp Mol Pathol. 1965;76:81–97. 1034b. Heine U, Beard D, Beard JW. Ultracytochemical studies on aberrant structures in avian virus tumor cells. Cancer Res. 1968;28:585–94. 1035. Castellano M, Golay J, Mantovani A, Introna M. Detection of a transcriptional block in the first intron of the human c-myb gene. Int J Clin Lab Res. 1992;22:159–64. 1036. Quelen C, Lippert E, Struski S, Demur C, Soler G, Prade N, Delabesse E, Broccardo C, Dastugue N, Mahon FX, Brousset P. Identification of a transforming MYG-GATA1 fusion gene in acute basophilic leukemia: a new entity in male infants. Blood. 2011;117:5719–22. 1037. Miyazaki T, Pan Y, Joshi K, Purohit D, Hu B, Demir H, Mazumder S, Okabe S, Yamori T, Viapiano M, Shin-ya K, Seimiya H, Nakano I. Telomestatin impairs glioma stem cell survival and growth through the disruption of telomeric G-quadruplex and inhibition of the proto-oncogene, c-Myb. Clin Cancer Res. 2012;18:1268–80. 1038. Chu CH, Chang LC, Hsu HM, Wei SY, Liu HW, Lee Y, Kuo CC, Indra D, Chen C, Ong SJ, Tai JH. A highly organized structure mediating nuclear localization of a Myb2 transcription factor in the protozoan parasite Trichomonas vaginalis. Eukaryot Cell. 2011;10:1607–17. 1039. de Souza RF, Iyer LM, Aravind L. Diversity and evolution of chromatin proteins encoded by DNA viruses. Biochem Biophys Acta. 2010;1799:302–18. 1040. Colson P, de Lamballerie X, Fournous G, Raoult D. Reclassification of giant viruses composing a fourth domain of life in the new order of Megavirales. Intervirology. 2012;55:321–32. 1041. Thomas V, Bertelli C, Collyn F, Casson N, Telenti A, Goesmann A, Coxatto A, Greub G. Lausannevirus, a giant amoebal virus encoding histone doublets. Environ Microbiol. 2011;13:1454–66. 1042. Williams TA, Embley TM, Heinz E. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS One. 2011;6(6): e21080. 1043. Abhiman S, Iyer LM, Aravind L. BEN: a novel domain in chromatin factors and DNA viral proteins. Bioinformatics. 2008;24:458–61. 1044. Gram H, Rüger W. The alpha-glucosyltransferases of bacteriophages T2, T4, and T6. A comparison of their primary structures. Mol Gen Genet. 1986;202:467–70. 1045. Yoshida T, Claverie JM, Ogata H. Mimivirus reveals MRE11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids. Virol J. 2011;8:427. 1046. de Jager M, Trujillo KM, Sung P, Hopfner KP, Carney JP, Tainer JA, Connelly JC, Leach DR, Kanaar R, Wyman C. Differential arrangements of conserved building blocks among homologs of the Rad50/Mre11 DNA repair protein complex. J Mol Biol. 2004;339:937–49. 1047. Connelly JC, de Leau ES, Leach DR. Nucleolytic processing of a protein-bound DNA end by the E. coli SbcCD (MR) complex. DNA Repair (Amst). 2003;2:795–897. 1048. Darmon E, Dorenbos R, Meens J, Freudi R, Antelmann H, Hecker M, Kuiper OP, Bron S, Quax WJ, Dubois JY, van Dijl JM. A disulfide bond-containing alkaline phosphatase triggers a BDbC-dependent secretion stress response in Bacillus subtilis. Appl Environ Microbiol. 2006;72:6876–85. 710 References

1049. Fujisawa M, Wada Y, Tsuchiya T, Ito M. Characterization of Bacillus subtilis YfkE (ChaA): a calcium-specific Ca2+/H+ antiporter of the CaCA family. Arch Microbiol. 2009;191:649–57. 1050. Curtis FA, Reed P, Sharples GJ. Evolution of a phage RuvC endonuclease for resolution of both Holiday and branched DNA junctions. Mol Microbiol. 2005;55:1332–45. 1051. Storvik KA, Foster PL. The SMC-like protein complex SbcCD enhances DNA polymerase IV-dependent spontaneous mutation in Escherichia coli. J Bacteriol. 2011;193:660–9. 1052. Yamada K, Fukuoh A, Iwasaki H, Shinagawa H. Novel properties of the Thermus thermophilus RuvB protein, which promotes branch migration of Holiday junctions. Mol Gen Genet. 1999;261:1001–11. 1053. Zahradka K, Zahradka D, Petranović M. Loss of lambda recombinogenicity in UV-irradiated Escherichia coli: the role of host genes ruvA, ruvB, ruvC, and ruvG. Res Microbiol. 2001;152:873–81. 1054. Leipe DD, Koonin EV, Aravind L. STAND, a class of P-lop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol. 2004;343:1–28. 1055. Qian C, Zhou MM. SET domain protein lysine methyltransferase: Structure, specificity and catalysis. Cell Mol Life Sci. 2006;63:2755–63. 1056. Zhu X, Ma H, Chen Z. Phylogenetics and evolution of Su(var)3-9 SET genes in land plants: rapid diversification in structure and function. BMC Evol Biol. 2011;11:63. 1057. Aravind L, Abhiman S, Iyer LM. Natural history of the eukaryotic chromatin protein methylation system. Prog Mol Biol Transl Sci. 2011;101:105–16. 1058. Mujtaba S, Manzur KL, Gurnon JR, Kang M, Van Etten JL, Zhou MM. Epigenetic transcriptional repression of cellular genes by a viral SET protein. Nat Cell Sci. 2008;10:1114–22. 1059. O’Connell PA, Madureira PA, Berman JN, Liwski RS, Waisman DM. Regulation of S100A10 by the PML-RAR-alpha oncoprotein. Blood. 2011;117:4095–105. 1060. Chen SJ, Zhou GB, Zhang XW, Mao JH, de Thé H, Chen Z. From an old remedy to a magic bullet: molecular mechanism underlying the therapeutic effects of arsenic in fighting leukemia. Blood. 2011;117:6425–37. 1061. He P, Liu Y, Zhang M, Wang X, Xi J, Wu D, Li J, Cao Y. Interferon-gamma enhances promyelocytic leukemia protein expression in acute promyelocytic cells and cooperates with allotrans-retinoic acid to induce maturation of NB4 and NB4-R1 cells. Exp Ther Med. 2012;3:776–80. 1062. Iriyama N, Yuan B, Hatta Y, Horikoshi A, Yoshino Y, Toyoda H, Aizawa S, Takeuchi J. Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A. Oncol Rep. 2012;28:1875–82. 1063. Ghaffari SH, Momeny M, Bashash D, Mirzaei R, Ghavamzadeh A, Alimoghaddam K. Cytotoxic effect of arsenic trioxide on acute promyelocytic leukemia cells through suppression of NFkB-dependent induction of hTERT due to down-regulation of Pin1 transcription. Hematology. 2012;17:198–206. 1064. Suliman BA, Xu D, Williams BR. The promyelocytic leukemia zink finger protein: two decades of molecular oncology. Front Oncol. 2012;2:74. doi:10.3389/fonc.2012.00074. 1065. Lynch EA, Langille MG, Darling A, Wilbanks EG, Haltiner C, Shao KS, Starr MO, Teiling C, Harkins TT, Edwards RA, Eisen JA, Facciotti MT. Sequencing of seven haloarchaeal genomes reveals patterns of genomic flux. PLoS One. 2012;7(7):e41389. 1066. Andam CP, Harlow TJ, Papke RT, Gogarten JP. Ancient origin of the divergent forms of leucyl-tRNA synthesases in the Halobacteriales. BMC Evol Biol. 2012;12:85. 1067. Aparicio T, Megías D, Méndez J. Visualization of the MCM DNA helicase at replication factories before the onset of DNA synthesis. Chromosoma. 2012;121:499–507. References 711

1068. de Castro IF, Volonté L, Risco C. Virus factories: biogenesis and structural design. Cell Microbiol. 2013;15:24–34. doi:10.1111/cmi.12029. 1069. Erickson KD, Bouchet-Marquis C, Heiser K, Szomolanyi-Tsuda E, Mishra R, Lamothe B, Hoenger A, Garcea RL. Virion assembly factories in the nucleus of polyoma-infected cells. PLoS Pathog. 2012;8(4):e1002630. 1070. Netherton CL, Wileman T. Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr Opin Virol. 2011;1:381–7. 1071. Song W, Pascal JM, Ellenberger T, Tomlinson AE. The DNA binding domain of human DNA ligase I interacts with both nicked DNA and the DNA sliding clamps, PCNA and hRad9-hRad1-hHus1. DNA Repair (Amst). 2009;8:912–9. 1072. Gupta A, Mehra P, Dhar SK. Plasmodium falciparum origin recognition complex subunit 5: functional characterization and role in DNA replication foci formation. Mol Microbiol. 2008;69:646–65. 1073. Kaufmann D, Gassen A, Maiser A, Leonhardt H, Janzen CJ. Regulation and spatial organization of PCNA in Trypanosoma brucei. Biochem Biophys Res Commun. 2012;419:698–702. 1074. Kilbey BJ, Fraser I, McAleese S, Goman M, Ridley RG. Molecular characterization and stage-specific expression of proliferating cell nuclear antigen (PCNA) from the malarial parasite, Plasmodium falciparum. Nucleic Acids Res. 1993;21:239–43. 1075. Kumar P, Wang CC. Dissociation of cytokinesis initiation from mitotic control in a eukaryote. Eukaryot Cell. 2006;5:92–102. 1076. Minocha N, Kumar D, Rajanala K, Saha S. Characterization of Leishmania donovani MCM4: expression patterns and interaction with PCNA. PLoS One. 2011;6(7):e23107. 1077. Acherya N, Klassen R, Johnson RE, Prakash L, Prakash S. PCNA binding domain in all three subunits of yeast DNA polymerase delta modulate its function in DNA replication. Proc Natl Acad Sci USA. 2011;108:17927–32. 1078. Li Z, Umeyama T, Wang CC. The Aurora kinase in Trypanosoma brucei plays distinctive roles in metaphase-anaphase transition and cytokine initiation. PLoS Pathog. 2009;5(9):e1000575. 1079. Hammarton TC, Kramer S, Tetley L, Boshart M, Mottram JC. Trypanosoma brucei Polo-like kinase is essential for basal body duplication, kDNA segregation and cytokinesis. Mol Microbiol. 2007;65:1229–48. 1080. Saeki T, Ouchi M, Ouchi T. Physiological and oncogenic Aurora-A pathway. Int J Biol Sci. 2009;5:758–62. 1081. Eckerdt F, Yuan J, Strebhardt K. Polo-like kinases and oncogenesis. Oncogene. 2005;24:267–76. 1082. Jang YJ, Kim YS, Kim WH. Oncogenic effect of Polo-like kinase 1 expression in human gastric carcinomas. Int J Oncol. 2006;29:589–94. 1083. Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I. Polo-like kinases (Plks) and cancer. Oncogene. 2005;24:287–91. 1084. Weichert W, Schmidt M, Gekeler V, Denkert C, Stephan C, Jung K, Loening S, Dietel M, Kristiansen G. Polo-like kinase1 is overexpressed in prostate cancer and linked to higher tumor grades. Prostate. 2004;60:240–5. 1085. Khan J, Khan S, Attaullah S, Ali I, Khan SN. Aurora kinase-CT191D is constitutively active mutant. BMC Cell Biol. 2012;13:8. doi:10.1186/1471-2121-13-8. 1086. den Hollander J, Rimpi S, Doherty JAR, Rudelius M, Buck A, Hoellein A, Kremer M, Graf N, Scheerer M, Hall MA, Goga A, von Bubnoff N, Duyster J, Peschel C, Cleveland JL, Nilsson JA, Keller U. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood. 2010;116:1496–505. 1087a. Ricke RM, Jeganathan KB, van Deursen JM. Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. J Cell Biol. 2011;193:1049–64. 712 References

1087b. Ricke RM, van Deursen JM. Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle. 2011;10:3645–51. 1088. Lazzaro F, Novarina D, Amara F, Watt DL, Stone JE, Cistanzo V, Burgers PM, Kunkel TA, Plevani P, Muzi-Falconi M. RNAase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol Cell. 2012;45:99–110. 1089. Muramoto T, Chubb JR. Live imaging of the Dictyostelium cell cycle reveals widespread S phase during development, a G2 bias in spore differentiation and a premitotic checkpoint. Development. 2008;135:1647–57. 1090. Zamir L, Zaretsky M, Fridman Y, Ner-Gaon H, Rubin E, Aharoni A. Tight coevolution of proliferating cell nuclear antigen (PCNA)-partner interaction network in fungi leads to interspecies network incompatibility. Proc Natl Acad Sci USA. 2012;109:E406–14. 1091. Lin S, Carpenter EJ. Identification and preliminary characterization of PCNA gene in the phytoplankton Dunaliella tertiolecta and Isochrysis galbana. Mol Mar Biol Biotechnol. 1998;7:62–71. 1092. Zhang H, Hou Y, Lin S. Isolation and characterization of proliferating cell nuclear antigen from the dinoflagellate Pfiesteria piscida. J Eukaryot Microbiol. 2006;53:142–50. 1093. Philipova R, Whitaker M. Active ERK1 is dimerized in vivo: bisphosphodimers generate peak kinase activity and monophosphodimers maintain basal ERK1 activity. J Cell Sci. 2005;118:5767–76. 1094. Jeffery WR. Role of PCNA and ependymal cells in ascidian neural development. Gene. 2002;287:97–105. 1095. Gerenday A, Fallon AM. Increased levels of the cell cycle inhibitor protein, decapo, accompany 20-hydroxyecdysone-induced GH1 arrest in a mosquito cell line. Arch Insect Biochem Physiol. 2011;8:61–73. 1096. Ruike T, Takeuchi R, Takata K, Oshige M, Kasai N, Shimanouchi K, Kanai Y, Nakamura R, Sugawara F, Sakaguchi K. Characterization of a special proliferating cell nuclear antigen (PCNA2) from Drosophila melanogaster. FEBS J. 2006;273:5062–73. 1097. Boerckel J, Walker D, Ahmed S. The Caenorhabditis elegans Rad 17 homolog HRP-17 is required for telomere replication. Genetics. 2007;176:703–9. 1098. Mahler M, Miyachi K, Peebles C, Fritzler MJ. The clinical significance of autoantibodies to the proliferating cell nuclear antigen (PCNA). Autoimmun Rev. 2012;11:771–5. 1099. Ku DH, Travali S, Calabretta B, Huebner K, Baserga R. Human gene for proliferating cell nuclear antigen has pseudogenes and localizes to chromosome 20. Somat Cell Mol Genet. 1989;15:297–307. 1100. Stoimenov I, Lagerqvist A. The PCNA pseudogene in the human genome. BMC Res Notes. 2012;5:87. 1101. Webb G, Parsons P, Chenevix-Trench G. Localization of the gene for human proliferating nuclear antigen/cyclin by in situ hybridization. Hum Genet. 1990;86:84–6. 1102. Zhao H, Ho PC, Lo YH, Espejo A, Bedford MT, Hung MC, Wang SC. Interaction of proliferation cell nuclear antigen (PCNA) with c-Abl in cell proliferation and response to DNA damages in breast cancer. PLoS One. 2012;7(1):e29416. 1103. Gioeli D, Wuderlich W, Sebolt-Leopold J, Bekiranov S, Wulfkufle JD, Petricoin EF 3rd, Conaway M, Weber MJ. Compensatory pathways induced by MEK inhibition are effective drug targets for combination therapy against castration-resistant prostate cancer. Mol Cancer Ther. 2011;10:1581–90. 1104. Thomas RS, Sarwar N, Phoenix F, Coombes RC, Ali S. Phosphorylation at serine 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-alpha activity. J Mol Endocrin. 2008;40:173–84. 1105. Lin S-L, Yan L-Y, Zhang X-T, Yuan J, Li M, Qiao J, Wang Z-Y, Sun Q-Y. ER-alpha36, a variant of ER-α, promotes tamoxifen agonist action in endometrial cancer cells via the MAPK/ERK and PI3K/Akt pathways. PLoS One. 2010;5(2):e9013. References 713

1106. Chen Z, Liu P, Li C, Luo Y, Chen I, Liang W, Chen X, Feng Y, Xia H, Wang F. Deregulated expression of the clock genes in gliomas. Technol Cancer Res Treat. 2012 Aug 10 Epub. 1107. Glading A, Chang P, Lauffenburger DA, Wells A. Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. J Biol Chem. 2000;275:2390–6. 1108. Philipova R, Kisielewska J, Lu P, Larman M, Huang JY, Whitaker M. ERK1 activation is required for S-phase onset and cell cycle progression after fertilization in sea urchin embryos. Development 132:579–589. 1109. Gali H, Juhasz S, Morocz M, Hajdu I, Fatyol K, Szukacsov V, Burkovics P, Haracska L. SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res. 2012;40:6049–59. 1110. Xu ZW, Wang FM, Gao MJ, Chen XY, Shan NN, Cheng SX, Mai X, Zala GH, Hu WL, Xu RC. Cardiotonic steroids attenuate ERK phosphorylation and generate cell cycle arrest to block human hepatoma cell growth. J Steroid Biochem Mol Biol. 2011;126:181–91. 1111. Rosental B, Brusilovsky M, Hadad U, Oz D, Appel MY, Afergan F, Yossef R, Rosenberg LA, Aharoni A, Cerwenka A, Campbell KS, Braiman A, Porgador A. Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol. 2011;187:5693–792. 1112. Chalamcharia VR, Curcio MJ, Belfort M. Nuclear expression of a group II intron is consistent with spliceosomal intron ancestry. Genes Dev. 2010;15:827–36. 1113. Bachvaroff TR, Place AR. From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidium carterae. PLoS One. 2008;3: e2929. 1114. Adl SM, Simpson AGB, Lane CE, Lukes J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW. The revised classification of Eukaryotes. J Eukaryiot Microbiol. 2012;59:4290514. 1115. Roy SW, Hudson AJ, Joseph J, Yee J, Russell AG. Numerous fragmented spliceosomal introns.: AT-AC splicing, and an unusual dynein gene expression pathway in Giardia lamblia. Mol Biol Evol. 2012;29:43–9. 1116a. Kamikawa R, Inagaki Y, Tokoro M, Roger AJ, Hashimoto T. Split introns in the genome of Giardia intestinalis are excised by spliceosome-mediated trans-splicing. Curr Biol. 2011;21:311–5. 1116b. Kamikawa R, Inagaki Y, Roger AJ, Hashimoto T. Splintrons in Giardia intestinalis; spliceosomal introns in a split form. Commun Integr Biol. 2011;4:464–6. 1117. Nixon JE, Wang A, Morrison HG, McArthur AG, Sogin ML, Loftus BJ, Samuelson J. A spliceosomal intron in Giardia lamblia. Proc Natl Acad Sci USA. 2002;99:3701–5. 1118. Vanácova S, Yan W, Carlton JM, Johnson PJ. Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. Proc Natl Acad Sci USA. 2005;102:4430–2235. 1119. Russell AG, Shutt TE, Watkins RF, Gray MW. An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a) of Giardia lamblia. BMC Evol Biol. 2005;5:45. 1120. Hudson AJ, Moore A, Elniski D, Joseph J, Yee J, Russell AG. Evolutionarily divergent spliceosomal snRNA and a conserved non-coding RNA processing motif in Giardia lamblia. Nucleic Acids Res. 2012; 40:10996–1006. doi:10.1093/nar/gks887. 1121. Deng XL, Xu MY, XuXY Ba-Thein W, Zhang RL, Fu YC. A 25-bc ancient spliceosomal intron in the TvRab1a gene of Trichomonas vaginalis. Int J Biochem Cell Biol. 2009;41:417–23. 714 References

1122. Simoes-Barbosa A, Meloni D, Wohlschlegel JA, Konarska MM, Johnson PJ. Spliceosomal snRNAs in the unicellular eukaryote Trichomonas vaginalis are structurally conserved but lack a 5’-cap structure. RNA. 2008;14:1617–31. 1123. Mukherjee M, Brown MT, McArthur AG, Johnson PJ. Proteins of the glycerine decarboxylase complex in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell. 2006;5:2062–71. 1124. Singh S, Singh G, Sagar N, Yadav PK, Jain PA, Gautam B, Wadhwa G. Insight into Trichomonas vaginalis genome evolution through metabolic pathway comparison. Bioinformation. 2012;8:189–95. 1125. Smith AJ, Lauwaet T, Davida BJ, Gilin FD. Giardia lamblia Nek1 and Nek2 kinases affect mitosis and excystation. Int J Parasitol. 2012;42:411–9. 1126. Siol O, Spaller T, Schiefner J, Winckler T. Genetically tagged TRES-A retrotransposons reveal high amplification rates and authentic target site preference in the Dictyostelium discoideum genome. Nucleic Acids Res. 2011;39:6608–19. 1127. Wikmark OG, Haugen P, Haugli K, Johansen SD. Obligatory group I introns with unusual features at positions 1949 and 2449 in nuclear LSU rDNA of Didymiaceae myxomycetes. Mol Phylogenet Evol. 2007;43:596–604. 1128. Cech TR. Ribozymes, the first 20 years. Biochem Soc Trans. 2002;30:1162–6. 1129. Wan T, Suh H, Russell R, Herschlag D. Multiple unfolding events during native folding of the Tetrahymena group I ribozyme. J Mol Biol. 2010;400:1067–77. 1130. Oganesian L, Bryan TM. Physiological relevance of telomeric G-quadruplex formation: a potential drug target. Bioassays. 2007;29:155–65. 1131. Scierer T, Henderson E. A protein from Tetrahymena thermophila that specifically binds parallel-stranded G4-DNA. Biochemistry. 1994;33:2240–6. 1132. Phan AT, Modi YS, Patel DJ. Two-repeat tetrahymena telomeric d(TGGGGTTGGGGT) sequence interconverts between asymmetric dimeric G-quadruplex in solution. J Mol Biol. 2004;338:93–102. 1133. Ban G, Song MS, Lee SW. Cancer cell targeting with mouse TERT-specific group I introns of Tetrahymena thermophila. J Microbiol Biotechnol. 2009;19:1070–6. 1134. Madinger CL, Collins K, Fields LG, Taron CH, Benner JS. Constitutive secretion in Tetrahymena thermophila. Eukaryot Cell. 2010;9:674–81. 1135. Pap E. The role of microvesicles in malignancies. In: Dittmar T, Zänker KS, editors. Cell fusion in health and disease. II. Cell Fusion in disease. Springer Verlag 2011. p. 183–199. 1136. Doležal D, Jirků M, Maslov DA, Lukeš J. Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. Int J System Evol Microbiol. 2000;50:1943–51. 1137. von der Heyden S, Cavalier-Smith T. Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. Int J System Evol Microbiol. 2005;55:2605–21. 1138a. Palfi Z, Bindereif A. Immunological characterization and intracellular localization of trans-spliceosomal small nuclear ribonucleoproteins in Trypanosoma brucei. J Biol Chem. 1992;267:20159–63. 1138b. Palfi Z, Jaé N, Preusser C, Kaminska KH, Bujnicki JM, Lee JH, Günzl A, Kambach C, Urlaub H, Bindereif A. SMN-assisted assembly of snRNP-specific Sm cores in trans- spliceosomal. Genes Dev. 2009;23:1650–64. 1139. Siegel TN, Gunasekera K, Cross GA, Ochsenreiter T. Gene expression in Trypanosoma brucei: lessons from high throughput RNA sequencing. Trends Parasitol. 2011;27:434–41. 1140. Procházka E, Franko F, Polákova S, Sulo P. A complete sequence of Saccharomyces paradoxus mitochondrial genome that restores the respiration in S. cerevisiae. FEMS Yeast Res 2012; doi:10.1111/jk.1567-1364.2012.00833. 1141. Hughes SS, Buckley CO, Neafsey DE. Complex selection on introns size in Cryptococcus neoformans. Mol Biol Evol. 2008;25:247–53. References 715

1142. Nielson CB, Friedman B, Birren B, Burge CB, Galagan JE. Patterns of introns gain and loss in fungi. PLoS Biol. 2004;2(12):e422. 1143. van der Burgt A, Severing E, de Wit PJ, Collemare J. Birth of new spliceosomal introns by multiplication of introner-like elements. Curr Biol. 2012;22:1260–5. 1144. Denoeud F, Henriet S, Mungpakdee S, Aury JM, da Silva C, Brinkmann H, Mikhaleva J, Olsen LC, Jubin C, Cañestro C, Bouquet JM, Danks G, Poulain J, Campsteijn C, Adamski M, Cross I, Yadetie F, Muffao M, et al. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science. 2010;330:1381–8. 1145. Roy SW, Irimia M. Genome evolution: where do new introns come from? Curr Biol. 2012;22:R529–31. 1146. Moabbi AM, Agarwal N, El Kaderi B, Ansari A. Role for gene looping in intron-mediated enhancement of transcription. Proc Natl Acad Sci USA. 2012;109:8505–10. 1147. Slamovits CH, Keeling PJ. A high density of ancient spliceosomal introns in oxymonad excavates. BMC Evol Biol. 2006;6:34. 1148. Roy SW, Penny D. A very high fraction of unique intron positions in the intron-rich diatom Thalassiosira pseudonana indicates widespread intron gain. Mol Biol Evol. 2007;24:1447–57. 1149. Martin W, Koonin EV. Introns and the origin of nucleus-cytosol compartmentalization. Nature. 2006;440:41–5. 1150. Jékely G. Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biol Direct. 2008;3:31. 1151a. Csurös M, Rogozin IB, Koonin EV. A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes. PLoS Comput Biol. 2911;7(9): e1002150. 1151b. Csuros M, Rogozin IB, Koonin EV. Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach. Mol Biol Evol. 2008;25:903–11. 1152a. Jeffares DC, Penkett CJ, Bähler J. Rapidly regulated genes are intron poor. Trends Genet. 2008;24:375–8. 1152b. Penny D, Hoeppner MP, Poole AM, Jeffares DC. An overview of the introns-first theory. J Mol Evol. 2009;69:527–40. 1153. Attoui H, Jaafar FM, Belhouchet M, de Micco P, de Lamballerie X, Brussard CP. Micromonas pusilla reovirus: a new member of the family assigned to a novel proposed genus (minoreovirus). J Gen Virol. 2006;87:1375–83. 1154. Brussard CP, Noordeloos AA, Sandaa RA, Heldal M, Bratbak G. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology. 2004;31:280–91. 1155. Chen F, Suttle CA. Evolutionary relationship among large double-stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes. Virology. 1996;21:170–8. 1156. Clerissi C, Desdevises Y, Grimsley N. Prasinoviruses of the marine green algae Ostreococcus tauri are mainly species specific. J Virol. 2012;86:4611–9. 1157. Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct. 2012;7:11. doi:10.1186/1745-6150-7-11. 1158. Lin K, Zhang DY. The excess of 5’ introns in eukaryotic genomes. Nucleic Acids Res. 2005;33:6522–7. 1159. McManus HA, Lewis LA, Fučikova K, Haugen P. Invasion of protein coding genes by green algal ribosomal group I introns. Mol Phylogenet Evol. 2012;62:109–16. 1160. Kong S, Liu X, Fu L, Yu X, An C. I-PfoP31: a novel nicking HNH homing endonuclease encoded in the group I intron of the DNA polymerase gene in Phormidium foveolarum phage PF-WMP3. PLoS One. 2012;7(8):e43738. doi:10.1371/journal.pone.0043738. 716 References

1161. Taylor GK, Stoddard BL. Structural, functional and evolutionary relationship between homing endonucleases and proteins from their host organisms. Nucleic Acids Res. 2912;40:5189-5200. 1162a. Nozaki H, Ohta N, Yamada T, Takano H. Characterization of rbcL group IA introns from two colonial volvocalean species (Chlorophyceae). Plant Mol Biol. 1998;37:77–85. 1162b. Nozaki H, Takahara M, Nakazawa A, Kita Y, Yamada T, Takano H, Kawano S, Kato M. Evolution of rbcL group IA introns and intron open reading frames within the colonial Volvocales (Chlorophyceae). Mol Phylogenet Evol. 2002;23:326–38. 1163. Turmel M, Boulanger J, Lemieux C. Two group I intron with long internal open reading frames in the chloroplast psbA gene of Chlamydomonas reinhardtii. Nucleic Acids Res. 1989;17:3875–87. 1164. Wikmark OG, Einvik C, De Jonckheere JF, Johansen SD. Short term sequence evolution and vertical inheritance of the Naegleria twin ribozyme group I intron. BMC Evol Biol. 2006;6:39. doi:10.1186/1471-2148-6-39. 1165. Gogarten JP, Hilario E. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 2006;6:94. doi:10. 1186/1471-2148-6-94. 1166. Zimmerly S, Hausner G, Wu XC. Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res. 2001;29:1238–50. 1167. Anraku Y, Hirata R, Wada Y, Ohya Y. Molecular genetics of the yeast vacuolar HATPase. J Exp Biol. 1992;172:67–81. 1168. Butler MI, Gray J, Goodwin TJ, Pouler RT. The distribution and evolutionary history of the PRP8 intein. BMC Evol Biol. 2006;5:42. doi:10.1186/147-2148-6-42. 1169. Rivero F, Dislich H, Glöckner G, Noegel AA. The Dictyostelium discoideum family of Rho-related proteins. Nucleic Acids Res. 2001;29:1068–79. 1170. Ogawa S, Yoshino R, Angata K, Iwamoto M, Pi M, Kuroe K, Matsuo K, Morio T, Urushihara H, Yanagisawa K, Tanaka Y. The mitochondrial DNA of Dictyostelium discoideum: complete sequence, gene content and genome organization. Mol Gen Genet. 2000;263:514–9. 1171. Angata K, Ogawa S, Yanmagashiwa K, Tanaka Y. A group-I intron in the mitochondrial large-subunit ribosomal RNA-encoding gene of Dictyostelium discoideum: same site localization in alga and in vitro self-splicing. Gene 1995;15349–55. 1172. Neuvéglise C, Marck C, Gaillardin C. The introns of budding yeasts. C R Biol. 2011;334:662–70. 1173. Yun C-S, Nishida H. Distribution of introns in fungal histone genes. PLoS One. 2011;6 (1):e416548. 1174. Lee SK, Yu SL, Garcia MX, Alexander H, Alexander S. Differential developmental expression of the rep B and rep D xeroderma pigmentosum related DNA helicase genes from Dictyostelium discoideum. Nucleic Acids Res. 1997;25:2365–74. 1175. Szcześniak MW, Ciomborowska J, Nowak W, Rogozin IB, Makalowska I. Primate and rodent specific intron gains and the origin of retrogenes with splice variants. Mol Biol Evol. 2011;28:33–7. 1176. Au HC, Seao BB, Matsuno-Yagi A, Yasgi T, Scheffler IE. The NDUFA1 gene product (MWFE protein) is essential for activity of complex I in mammalian mitochondria. Proc Natl Acad Sci USA. 1999;96:4354–9. 1177. Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA. 2012;109:1187–92. 1178. Elliott NE, Cleveland SM, Grann V, Janik J, Waldmann TA, Davé UP. FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma. Blood. 2011;118:3911–21. 1179. Schrago CG. On the time scale of New World primate diversification. Am J Phys Anthropol. 2007;132:344–54. References 717

1180a. Brosius J. Many G-protein-coupled receptors are encoded retrogenes. Trends Genet. 1999;15:304–5. 1180b. Schmitz J, Brosius J. Exonization of transposed elements: a challenge and opportunity for evolution. Biochemie. 2011;93:1928–34. 1181. Ayyoub M, Pignon NY, Dojcinovic D, Raimbaud D, Old LJ, Luescher I, Valmori D. Assessment of vaccine-induced CD4 T cell responses to the 119-143 immunodominant region of the tumor specific antigen NY-ESO-1 using DRB1*0101 tetramers. Clin Cancer Res. 2010;16:4607–15. 1182. Sharma P, Shen Y, Wen S, Bajorin DF, Reuter VE, Old LJ, Jungbluth AA. Cancer testis antigens: expression and correlation with survival in human urothelial carcinoma. Clin Cancer Res. 2006;12:5442–7. 1183a. Boukerche H, Su ZZ, Emdad L, Sarkar L, Sarkar D, Fisher PB. MDA-9/syntenin regulates the metastatic phenotype in human melanoma cells by activating nuclear factor-kappaB. Cancer Res. 2007;67:1812–22. 1183b. Boukerche H, Aissaoul H, Prévost C, Hirbec H, Das SK, Su ZZ, Sarkar D, Fisher PB. Src kinase activation is mandatory for MDA-9/syntenin-mediated activation of nuclear factor-kappa B. Oncogene. 2010;29:3054–66. 1183c. Boukerche H, Su ZZ, Prévost C, Sarkar D, Fisher PB. MDA-9/syntenin promotes metastasis in human melanoma cells by activating c-Src. Proc Natl Acad Sci USA. 2008;105:15914–14919. 1184. Flynn M, Saha O, Young P. Molecular evolution of the LNX gene family. BMC Evol Biol. 2011;11:235. 1185. Han M, Wang H, Zhang HT, Han Z. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice. Biochem Biophys Res Commun. 2012;422:139–45. 1186. Wawrzyniak AM, Vermeiren E, Zimmerman P, Ivarsson Y. Extension of PSD-95/discs large/ZO-1 (PDZ) domains influence lipid binding and membrane targeting of syntenin-1. FEBS Lett. 2012;586:1445–51. 1187. Laziċ D, Hofbauer M, Zigrino P, Buchholz S, Kazem S, Feltkamp MC, Mauch C, Steger G, Pfister H, Akgül B. Human papillomavirus type 8 E6 oncoprotein inhibits transcription of the PDZ protein syntenin-2. J Virol. 2012;86:7043–952. 1188. Oulion S, Bertrand S, Belgacem MR, Petillon YL, Escriva H. Sequencing and analysis of the Mediterranean amphioxus (Branchiostoma lanceolatum) transcriptome. PLoS One. 2012;7(5):e36554. 1189. Irimia M, Royo JL, Burguera D, Maeso I, Gómez-Skarmeta JL, Garcia-Fernandez J. Comparative genomics of the Hedgehog loci in chordates and its origins of Shh regulatory novelties. Sci Rep. 2012;2:433. 1190. Sing X, Jin P, Hu J, Qin S, Chen L, Li-Ling J, Ma F. Involvement of AmphiREL, a Rel-like gene identified in Branchiostoma belcheri, in LPS-induced response: Implications for evolution of Rel subfamily genes. Genomics. 2012;99:361–9. 1191. Short S, Kozmik Z, Holland LZ. The function and developmental expression of alternatively spliced isoforms of amphioxus and Xenopus laevis Pax2/5/8 genes: traveling divergence at the invertebrate to vertebrate transition. J Exp Zool B Mol Dev Evol. 2012;318:555–71. 1192. Jiménez-Delgado S, Crespo M, Permanyer J, Garcia-Fernández J, Manzanares M. Evolutionary genomics of the recently duplicated amphioxus Hairy genes. Int J Biol Sci. 2006;2:66–72. 1193. Ou Q, Morris SC, Han J, Zhang Z, Liu J, Chen A, Zhang X, Shu D. Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes. BMC Biology. 2012;10:81. doi:10.1186/1741-7007-10-81. 1194. Barros P, Jordan P, Matos P. Rac1 signaling modulates BCL-6-mediated expression of gene transcription. Mol Cell Biol. 2009;29:4156–66. 718 References

1195a. Murthy S, Ryan A, He C, Mallampali RK, Carter AB. Rac1-mediated mitochondrial H2O2 generation regulates MMP-9 gene expression in macrophages via inhibition of SP-1 and AP-1. J Biol Chem. 2010;285:25062–73. 1195b. Murthy S, Ryan AJ, Carter AB. SP-1 regulation of MMP-9 expression requires Ser586 in the PEST domain. Biochem J. 2012;445:229–36. 1196. Stone DM, Murone M, Luoh S, Ye W, Armanini MP, Gurney A, Phillips H, Brush J, Goddard A, de Sauvage FJ, Rosenthal A. Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J Cell Sci. 1999;112:4437–48. 1197. Polizio AH, Chinchilla P, Chen X, Manning DR, Riobo NA. Sonic hedgehog activates the GTPases Rac1 and RhoA in a Gli-independent manner through coupling of smoothened to Gli-proteins. Sci Signal. 2011;4(200):7. 1198a. Hudson SG, Garrett MJ, Carlson JW, Micklem G, Celniker SE, Goldstein ES, Newfeld SJ. Phylogenetic and genomewide analyses suggest a functional relationship between kayak, the Drososphila fos homolog, and fig, a predicted protein phosphatase 2c nested within a kayak intron. Genetics. 2007;177:1349–61. 1198b. Hudson SG, Goldstein ES. The gene structure of the Drosophila melanogaster proto-oncogene kayak, and its nested gene, fos-intronic gene. Gene. 2008;420:76–81. 1199. Lin K, Zhang DY. The excess of 5’ introns in eukaryotic genomes. Nucleic Acids Res. 2005;33:6522–7. 1200. Reijnen MJ, Hamer KM, den Blaauwen JL, Lambrechts C, Schoneveld I, van Driel R, Otte AP. Polycomb and bmi-1 homologs are expressed in overlapping patterns in Xenopus embryos and are able to interact with each other. Mech Dev. 1995;53:35–46. 1201. Xia R, Jia H, Fan J, Liu Y, Jia J. USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol. 2012;10(1): e1001238. 1202. Hanawa-Suetsugu K, Kukimoto-Niino M, Mishima-Tsamagari C, Akasaka R, Ohsawa N, Sekine S, Ito T, Tochio N, Koshiba S, Kigawa T, Terada T, Shirouzu M, Nishikimi A, Uruno T, Katakai T, Kinashi T, Kohda D, Fukui Y, Yokoyama S. Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms. Proc Natl Acad Sci USA. 2012;109:3305–10. 1203. Sadia H, Siddiqui RT, Nasim A. A unique BCR-ABL1 transcript with the insertion of intronic sequence from BCR and ABL1 genes in a patient with Philadelphia-positive chronic myeloid leukemia: a case study. Cancer Genet Cytogenet. 2010;201:57–61. 1204. Romero P, Colombatti A. The first intron of the BCR gene contains two minor alternative exons. Leuk Res. 1995;19:963–70. 1205. Fioretos T, Panagopoulos I, Lassen C, Swedin A, Billström R, Isaksson M, Strömbeck B, Olofsson T, Mitelman F, Johansson B. Fusion of the BCR and the fibroblast growth factor receptor-1 (FGFR1) genes as a result of t(8;22)(p11;q11) in a myeloproliferative disorder: the first fusion gene involving BCR but not ABL. Genes Chromosomes Cancer. 2001;32:302–10. 1206. Göppner D, Leverkus M. Basal cell carcinoma: from the molecular understanding of the pathogenesis to targeted therapy of progressive disease. J Skin Cancer 2011:650256. 1207a. LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JAR, Chang J, Darbonne WC, Graham RA, Zerivitz KL, Low JA, Von Hoff DD. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011;17:2502–11. References 719

1207b. LoRusso PM, Piha-Paul SA, Mita M, Colevas AD, Malhi V, Colburn D, Yin M, Low JA, Graham RA. Co-administration of vismodegib with rosiglitazone or combined oral contraceptive in patients with locally advanced or metastatic solid tumors: a pharma- cokinetic assessment of drug-drug interaction potential. Cancer Chemother Pharmacol. 2013;71:193–202. 1208a. Uhmann A, Niemann H, Lammering B, Henkel C, Hess I, Nitzky F, Fritsch A, Prüfer A, Rosenberger A, Cullin C, Schraepler A, Reifenberger J, Schweyer S, Pietsch T, Strutz F, Schulz-Schaeffer W, Hahn H. Antitumoral effects of calcitriol in basal cell carcinomas involve inhibition of hedgehog signaling and induction of vitamin D receptor signaling and differentiation. Mol Cancer Ther. 2011;10:2179–88. 1208b. Uhmann A, Nieman H, Lammering B, Henkel C, Heß I, Rosenberger A, Dullin C, Schraepler A, Schultz-Schaeffer W, Hahn H. Calcitriol inhibits hedgehog signaling and induces vitamin D signaling and differentiation in the patched mouse model of embryonal rhabdomyosarcoma. Sarcoma. 2012:357040. 1208c. Ecke I, Petry F, Rosenberger A, Tauber S, Mönkemeyer S, Hess I, Dullin C, Kimmina S, Pirngruber J, Hohnen SA, Uhmann A, Nitzky F, Wojnowski L, Schulz- Scaeffer W, Witt O, Hahn H. Antitumor effects of a combined 5-aza-2’deoxycytidine and valproic acid treatment on rhabdomyosarcoma and medulloblastoma in Ptch mutant mice. Cancer Res. 2009;69:887–95. 1209. Lozina-Lozinsy LK, Bychenkova VN, Zaar EI, Lavin VL, Rumyantseva VM. Some potentialities of living organisms under simulated Martian conditions. Life Sci Space Res. 1971;9:159–65. 1210. Michael LE, Westerman BA, Ermilov AN, Wang A, Ferris J, Liu J, Blom M, Ellison DW, van Lohuizen M, Dlugiosz AA. Bmi1 is required for hedgehog pathway-driven medulloblastoma expansion. Neoplasia. 2006;10:1343–9. 1211. Wang X, Venugopal C, Manranian B, McFarlane N, O’Farrell E, Nolte S, Gunnarsson T, Hollenberg R, Kwiecien J, Northcott F, Taylor MD, Hawkins C, Singh SK. Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene. 2012;31:187–99. 1212. Siegelin MD, Siegelin Y, Habel A, Ami A, Gaiser T. KAAD-cyclopamine augmented TRAIL-mediated apoptosis in malignant glioma cells by modulating the intrinsic and extrinsic apoptotic pathway. Neurobiol Dis. 2009;34:259–66. 1213. Fareh M, Turchi L, Virolle V, Debruyne D, Almairac F, de-la-Forest Divonne S, Paquis P, Preynat-Seauve O, Krause KH, Chneiweiss H, Virolle T. The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ. 2912;19:232–244. 1214. Barco R, Garcia CB, Eid JE. The synovial sarcoma-associated SYT-SSX2 oncogene antagonizes the polycomb complex protein Bmi1. PLoS One. 2009;4(4):e5060. 1215. Bálint E, Reisman D. Increased rate of transcription contributes to elevated expression of the mutant p53 gene in Burkitt’s lymphoma. Cancer Res. 1996;56:1648–53. 1216. Reisman D, Takahashi P, Polson A, Boggs K. Transcriptional regulation of the p53 tumor suppressor gene in S-phase of the cell cycle and the cellular response to DNA damage. Biochem Res Int. 2012:808934. 1217. Moore SW, Zaahl MG. Intronic RET gene variants in Down syndrome-associated Hirschsprung disease in an African population. J Pediatr Surg. 2012;47:299–302. 1218. Moore SW, Zaahl M. The Hirschsprung’s multiple endocrine neoplasia connection. Clinics (Sao Pauo). 2012;67S1:63–7. 1219. Cenik C, Chua HN, Zhang H, Tarnawsky SP, Akef A, Derti A, Tasan M, Moore MJ, Palazzo AF, Roth FP. Genome analysis reveals interplay between 5’UTR introns and nuclear mRNA export for secretory and mitochondrial genes. PLoS Genet. 2011;7(4): e1001366. 720 References

1220. Smits M, Wurdinger T, van het Hof B, Drexhage JA, Geerts D, Wesseling P, Noske DP, Vandertop WP, de Vries HE, Reijerkerk A. Myc-associated zinc-finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB. 2012;26:2639–47. 1221. Fiesel FC, Weber SS, Supper J, Zell A, Kahle OJ. TDP-43 regulated global translational yield by splicing of exon junction complex component SKAR. Nucleic Acids Res. 2012;40:2668–82. 1222a. Johnson SA, Ubberley G, Bentley DL. Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction within the 3’ end processing factor Pcf11. Mol Cell. 2009;33:215–26. 1222b. Johnson SA, Kim H, Erickson B, Bentley DL. The export factor YRA1 modulates mRNA 3’ end processing. Nat Struct Mol Biol. 2011;18:1164–71. 1223. Ma XM, Yoon SO, Richardson CJ, Jülich K, Blenis J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell. 2008;133:303–13. 1224. Smyk A, Szuminska M, Uniewicz KA, Graves LM, Kozlowski P. Human enhancer of rudimentary is a molecular partner of PDIP46/SKAR, a protein interacting with DNA polymerase delta and S6K1 and regulating cell growth. FEBS J. 2006;273:4728–41. 1225. Han E, Phan D, Lo P, Poy MN, Behringer R, Najjar SM, Lin SH. Differences in tissue-specific and embryonic expression of mouse CEACAM1 and CEACAM2 genes. Biochem J. 2001;355:417–23. 1226. Piekielko-Witkowska A, Wiszomirska H, Wojcicka A, Poplawski P, Boguslawska J, Tanski Z, Nauman A. Disturbed expression of splicing factors renal cancer affects alternative splicing of apoptosis regulators, oncogenes, and tumor suppressors. PLoS One. 2010;5(10):e23690. 1227. Han WL, Li WD, Hu J, Rusidanmu A, Chen LF, Shen L, Zheng SS. Expression of the recepteur d’originenantais receptor tyrosine kinase in non-small cell lung cancer and its clinical significance. Clin Med J (Engl). 2012;125:1110–4. 1228. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Spotoletti P, Varmeh S, Egia A, Fedele G, Rameh L, Loda M, Pandolfi PP. Identification of the miR-106b≈25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal. 2010;3(117):29. 1229. Mimeault M, Johansson SL, Batra SK. Pathobiological implications of the expression of EGFR, pAkt, NF-κB and MIC-1 in prostate cancer stem cells and their progenies. PLoS One. 2012;7(2):e31919. 1230. Deng JH, Deng Q, Kuo CH, Delaney SW, Ying SY. MiRNA targets of prostate cancer. Methods Mol Biol. 2013;936:357–69. 1231. Kaufman DS, Zietman AL, McDougal WS, Dahl DM, Harisinghani MG, Wu CL. Case records of the General Hospital. Case 9-2010. A 67-year old man with a persistently elevated PSA level. N Engl J Med. 2012;366:1143–50. 1232. Krauss DJ, Hayek S, Amin M, Ye H, Kestin LL, Zadora S, Vicini FA, Cotant M, Brabbins DS, Ghilezan MI, Gustafson GS, Martinez AA. Prognostic significance of neuroendocrine differentiation in patients with Gleason score 8-10 prostate cancer treated with primary radiotherapy. Int J Radiat Oncol Biol Phys. 2011;81(3):E119–25. 1233. Majid S, Dar AA, Saini S, Arora S, Shahryani V, Zaman MS, Chang I, Yamamura S, Tanaka Y, Deng G, Dahiya R. MicroRNA-23b represses proto-oncogene Src kinase, functions as a methylation-silencer tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. 2012;72:6435–46. 1234. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati P, Pellegatta S, Qiu K, Gao Z, Ceccarelli M, Riccardi R, Brat DJ, Guha A, Aldape K, Golfinos JG, Zagzag D, Mikkelsen T, Finocchiaro G, Lasorella A, Rabadan R, Iavarone A. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 2012;337:1231–5. References 721

1235a. Agrawal N, Frederick MJ, Pikering CR, Bettegowda C, Chang K, Fakhry C, Xie TX, Zhang J, Wang J, Zhang N, El-Naggar AK, Jasser SA, Weinstein JN, TreviñoL Drummind JA, Muzny DM, Wu Y, Wood LD, Hruban RH, Westra WH, Koch WM, Califano JA, Gibbs RA, Sidransky D, Vogelstein B, Velculescu VE, Papadopoulos N, Wheeler DA, Kinzler KW, Myers JN. Exone sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7. 1235b. Agrawal N, Jiao Y, Bettegowda C, Hutfless SM, Wang Y, David S, Cheng Y, Twaddell WS, Latt NL, Shin EJ, Wang LD, Wang L, Yang W, Velculescu VE, Vogelstein B, Papadopoulos N, Kinzler KW, Meltzer SJ. Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov. 2012;2:899–905. 1236. Amakawa R, Jing W, Ozawa K, Matsunami N, Hamaquchi Y, Matsuda F, Kawaichi M, Honjo T, Human JK. Recombination signal binding protein (IGKJRB): comparison with its mouse homologue. Genomics. 1993;17:306–15. 1237. Bargo S, Raafat A, McCurdy D, Amirjazil I, Shu Y, Traicoff J, Plant J, Vonderhaar BK, Callahan R. Transforming acidic-coiled-coil protein-3 (Tacc3) acts as a negative regulator of Notch signaling through binding to CDC10/Ankyrin repeats. Biochem Biophys Res Commun. 2010;400:606–12. 1238. Hood FE, Royle SJ. Pulling it together: the mitotic function of TACC3. Bioarchitecture. 2011;1:105–9. 1239. Minoguchi S, Ikeda T, Itohara S, Kaneko T, Okaichi H, Honio T. Studies on the cell-type specific expression of RBP-L a RBL-L family member, by replacement insertion of beta-galactosidase. J Biochem. 1999;126:738–47. 1240. Wang SS, Chang PJ, Chen LW, Chen LY, Hung CH, Liou JY, Yen JB. Positive and negative regulation in the promoter of the ORF46 gene of Kaposi’s sarcoma-associated herpesvirus. Virus Res. 2012;165:157–69. 1241. Shamay M, Liu J, Li R, Liao G, Greenway M, Hu S, Zhu J, Xie Z, Ambinder RF, Qian J, Zhu H, Hayward SD. A protein array screen for Kaposi’s sarcoma-associated herpesvirus LANA interactions links LANA to TIP60, PP2A activity and telomere shortening. J Virol. 2012;86:5179–91. 1242. Sinkovics JG. Progressive development of viral therapy of human cancers: a personal narrative account. In: Sinkovics JG, Horvath JC, authors/editors. Viral Therapy of Human Cancers. Marcel Dekker, New York; 2005. pp 1–147. 1243. Hayward SD. Viral interactions with the Notch pathway. Semin Cancer Biol. 2004;14:387–96. 1244. Ma W, Du J, Chu Q, Wang Y, Liu L, Song M, Wang W. hCLP46 regulates U937 cell proliferation via Notch signaling pathway. Biochem Biophys Res Commun. 2011;408:84–8. 1245. Kohn A, Dong Y, Mirando AJ, Jesse AM, Honjo T, Zuscik MJ, O’Keefe RJ, Hilton MJ. Cartilage-specific RBPjk-dependent and independent Notch signals regulate cartilage and bone development. Development. 2012;139:1198–212. 1246. Tzeng CW, Frolov A, Frolova N, Jhala NC, Howard JH, Vickers SM, Buchsbaum DJ, Heslin MJ, Arnoletti JP. Pancreatic cancer epidermal growth factor receptor (EGFR) intron 1 polymorphism influences postoperative patient survival and in vitro erlotinib response. Ann Surg Oncol. 2007;14:2150–8. 1247. Frolov A, Liles JS, Kossenkov AV, Tzeng CW, Jhala N, Kulesza P, Varadarajulu S, Sloubeidi M, Heslin MJ, Arnoletti JP. Epidermal growth factor receptor (EGFR) intron 1 polymorphism and clinical outcome in pancreatic adenocarcinoma. Am J Surg. 2010;200:398–405. 1248. Beres TM, Masui T, Swift GH, Shi L, Henke RM, MacDonald RJ. PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Mol Cell Biol. 2006;26:117–30. 722 References

1249. Ehm O, Göritz C, Covic M, Schäffner I, Schwarz TJ, Karaca E, Kempkes B, Kremmer E, Pfrieger FW, Espinosa L, Bigas A, Giachino C, Taylor V, Frisén J, Lie DC. RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J Neurosci. 2010;30:13794–807. doi:10.1523/ JNEUROSCI.1567-10.2010. 1250. Feng F, Wang YC, Hu XB, Liu G, Chen YR, Wang L, He F, Dou GR, Liang L, Zhang HW, Han H. The transcription factor RBP-J-mediated signaling is essential for dendritic cells to evoke efficient anti-tumor immune responses in mice. Mol Cancer. 2010;9:90. 1251. Oswald F, Liptay S, Adler G, Schmidt RM. NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol Cell Biol. 1998;18:2077–88. 1252. Fu T, Zhang P, Feng L, Wang XH, Zheng MH, Qin HY, Chen DL, Wang WZ, Han H. Accelerated acute allograft rejection accompanied by enhanced T-cell proliferation and attenuated Treg function in RBP-J deficient mice. Mol Immunol. 2011;48:751–9. 1253. Wang H, Zou J, Zhao B, Johannsen E, Ashworth T, Wong H, Pear WS, Schug J, Blacklow SC, Arnett KL, Bernstein BE, Kieff E, Aster JC. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci USA. 2011;108:14908–13. 1254. Yenerall P, Zhou L. Identifying the mechanisms of intron gain: progress and trends. Biol Direct. 2012;7:29. doi:10.1186/1745-6150-7-29. 1255. Hellsten U, Aspden JL, Rio DC, Roksar DS. A segmental genomic duplication generates a functional intron. Nat Commun. 2011;2:454. doi:10.1038/ncomms1461. 1256. Szczepankowska AK, Prestel E, Mariadassou M, Bardowski JK, Bidnenko E. Phylogenetic and complementation analysis of a single-stranded DNA binding protein family from lactococcal phages indicates a non-bacterial origin. PLoS One. 2011;6(11):e26942. 1257. Dlakić M, Mushegian A. Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA. 2011;17:799–808. 1258. Boonsong A, Marsh S, Rooney PH, Stevenson DA, Cassidy J, McLeod HL. Characterization of the topoisomerase Iocus in human colorectal cancer. Cancer Genet Cytogenet. 2000;12:56–60. 1259. Chang JY, Liu JE, Juang SH, Liun TW, Chen LT. Novel mutations of topoisomerase I in rendering cells resistant to camptothecin. Cancer Res. 2002;62:3716–21. 1260. Wesierska-Gądek J, Składanowski A. Therapeutic intervention by the simultaneous inhibition of DNA repair and type I or type II DNA topoisomerase: one strategy, many outcomes. Future Med Chem. 2012;4:51–72. 1261. Gongora C, Vezzio-Vie N, Tuduri S, Denis V, Causse A, Auzanneau C, Collod-Beroud G, Coquelle A, Pasero P, Pourquier P, Martineau P, Del Rio M. New topoisomerase I mutations are associated with resistance to camptothecin. Mol Cancer. 2011;10:64. doi:10.1186/1476-4598-10-64. 1262. de Souza RF, Iyer LM, Aravind L. Diversity and evolution of chromatin proteins encoded by DNA viruses. Biochem Biophys Acta. 2010;1799:302–18. 1263. Aravind L, Anantharaman V, Zhang D, de Souza LM, Iyer LM. Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front Cell Infect Microbiol. 2012;2:89. doi:10.3389/fcimb.2012.00089. 1264. Du Z, Park KW, Yu H, Fan Q, Li L. Newly identified linked chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet. 2008;40:460–5. 1265. Kaul-Ghanekar R, Singh S, Mamgain H, Jalota-Badhwar A, Paknikar KM, Chattopadhyay S. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM (atomic force microscopy) and SEM (scanning electron microscopy) study. BMC Cancer. 2009;9:350. 1266. Koonin EV. The origin of introns and their role in eukaryogenesis: a compromised solution to the introns-early versus introns-late debate? Biol Direct. 2006;1:22. doi:10. 1186/1745-6150-1-22. References 723

1267. Wurster AL, Precht P, Becker KG, Wood WH III, Zhang Y, Wang Z, Pazin MJ. IL-10 transcription is negatively regulated by BAF180, a component of the SWI/SNF chromatin remodeling enzyme. BMC Immunol. 2012;13:9. doi:10.1186/1471-2172-13-9. 1268. Zhu X. M H, Chen Z. Phylogenetics and evolution of Su(var)3-9 SET genes in land plants: rapid diversification in structure and function. BMC Evol Biol. 2011;11:63. doi:10.1186/1471-2148-11-63. 1269. Charney S. Behavior genetics and postgenomics. Behav Brain Sci. 2012;35:331–58. 1270. Schanker BD. Epigenetic regulation of brain-derived neurotrophic factor: implications in neurodevelopment and behavior. Behav Brain Sci. 2012;35:377–8. 1271. Nagy GR, Győrffy B, Nagy B, Rigó J Jr. Lower risk for Down syndrome associated with longer oral contraceptive use: a case-control study of women of advanced maternal age presenting for prenatal diagnosis. Contraception. 2012;87:455–458; pii:S0010-7824(12) 00806-2. doi:10.016/j.contraception.2012.08.0440. 1272. Zhong Q, Layman LC. Genetic considerations in the patient with Turner-syndrome-45, X with or without mosaicism. Fertil Steril. 2012;98:775–9. 1273. Gorley A, Wilkie AO. Paternal age effect mutations and selfish spermatogonil selection: causes and consequences for human disease. Am J Hum Genet. 2012;90:175–200. 1274. Lin TY, Cheng YC, Yang HC, Lin WC, Wang CC, Lain PL, Shieh SY. Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16(INKa) signal axis. Oncogene. 2012;31:3287–97. 1275. Majid S, Dar AA, Shahryani V, Hirata H, Ahmad A, Saini S, Tanaka Y, Dahiya AV, Dahiya R. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-cell translocation gene 3 in prostate cancer. Cancer. 2010;116:66–76. 1276. Koonin EV, Wolf Y. Evolution of microbes and viruses: a paradigm shift in ? Front Cell Infect Microbiol. 2012;2:119. doi:10.3389/fcimb.2012.00119. 1277. Duesberg P, Mandrioli D, McCormack A, Nicholson JM. Is carcinogenesis a form of speciation? Cell Cycle. 2011;10:2100–14. 1278a. Ricke RM, Jaganathan KB, van Deursen JM. Bub1 overexpression induces aneuploidy and tumor formation through Auora B kinase hyperactivation. J Cell Biol. 2011;193:1049–64. 1278b. Ricke RM, van Deursen JM. Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle. 2011;10:3645–51. 1279. Saeki T, Ouchi M, Ouchi T. Physiological and oncogenic Aurora-A pathway. Int J Biol Sci. 2009;5:758–62. 1280. Khan J, Khan S, Attaullah S, Ali I, Khan SN. Aurora kinase-C-T191D is constitutively active mutant. BMC Cell Biol. 2012;13:8. doi:10.1186/1471-2121-13-8. 1281. Macurek L, Lindquist A, Medema RH. Aurora-A and B for a joint the game of polo. Cancer Res. 2009;69:4555–8. 1282. Alsford S, Horn D. Cell-cycle regulated control of VSG expression site silencing by histones and histone chaperones ASF1A and CAF-1b in Trypanosoma brucei. Nucleic Acid Res. 2012;40:10150–60. 1283. Barry JD, Hall JP, Plenderleith L. Genome hyperevolution and the success of a parasite. Ann NY Acad Sci. 2012;1267:11–7. 1284. Kanayake DK, Cipriano MJ, Sabatini R. Telomeric co-localization of the modified base J and contingency genes in the protozoan parasite Trypanosoma cruzi. Nucleic Acid Res. 2007;35:6367–77. 1285. Li B. A newly discovered role of telomeres in an ancient organism. Nucleus. 2010;1:260–3. 724 References

1286. Moraes Barros RR, Marini MM, Antônio CR, Cortez DR, Miyake AM, Lima FM, Ruiz JC, Bartholomeu DC, Chiurillo JB, Ramirez JL, da Siveira JF. Anatomy and evolution of telomeric and subtelomeric regions in the protozoan parasite Trypanosoma cruzi. BMC Genomics. 2012;13:299. doi:10.1186/1471-2164-13-229. 1287. Schuster FL, Sullivan JJ. Cultivation of clinically significant Hemoflagellates. Clin Microbiol Rev. 2002;15:374–89. 1288. DuBois KN, Alsford S, Holden JM, Buisson J, Swiderski M, Bart J-M, Ratushny A, Wan Y, Bastin P, Barry JD, Navarro M, Horn D, Aitchison JD, Rout MP, Field Mc. NUP-1 is a large coiled-coil nucleoskeletal protein in Trypanosomes with lamin-like functions. PLoS Biol. 2012;10(3):e1001287n. doi:10.1371/journal.pbio.1001287. 1289. Krüger A, Batsios P, Baumann O, Luckert E, Schwartz, Stick R, Meyer I. Characterization of Ne8q1, the first lamin-like nucleoskeletal protein in a unicellular organism. Mol Biol Cell. 2012;23:360–70. 1290. Lam BD, Anthony EC, Hordijk PL. Analysis of nucleo-cytoplasmic shuttling of the proto-oncogene SET/I2PP2A. Cytometry. 2012;81:81–9. 1291. Yurin YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI, Pellestor F, Beresheva AK, Demidova IA, Kravets VS, Monakhov VV, Soloviev IV. Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One. 2007;2(6): e558. doi:10.1371/journal.pone.000558. 1292. Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian, Kepp O, Niso-Santano M, Shen S, Mariño G, Criollo A, Boilève, Job B, Ladoire S, Ghiringhelli F, Sistigu A, Yamazaki T, Rello-Varona S, Locher C, Poirier-Colame V, Talbot, Valent A, Berardinelli F, Antoccia A, Ciccosanti F, Fimia GM, Piacentini M, Fueyo A, Messina NL, Li M, Chan CJ, Sigl V, Pourcher G, Ruckenstuhl C, Carmona-Gutierrez D, Lazar V, Penninger G, Madeo F, López-OtínC, Smyth MJ, Zitvogel L, Castedo M, Kroemer G. An immunosurveillance mechanism controls cancer cell ploidy. Science. 2012;337:1678–1684. 1293. Zanetti M, Mahadevan NR. Immune surveillance from chromosomal chaos? Science. 2012;337:1616–7. 1294. von Preisz H. Studien über Pettenkoferien. Zbl f Bakteriologie, Parasitenkunde u Infektionskrankheiten, I. Abt/ Originals 1937;139:225-270 Tafeln I-XIII. 1295. Kimura A. Regulation of ribonucleic acid synthesis in spheroplasts, cold-shocked cells, and toluene-treated cells of Escherichia coli. J Bacteriol. 1976;128:123–9. 1296. Althoff S, Selinger D, Wise JA. Molecular evolution of SRB cycle components: functional implications. Nucleic Acids Res. 1994;22:1933–47. 1297. Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012;196:189–201. 1298. Sowa MP, Coulter LJ, Tait A, Hide G. A novel gene encoding a ras-like GTP-binding protein from Trypanosoma brucei: an evolutionary ancestor of the ras and rap genes of higher eukaryotes? Gene. 1999;230:155–61. 1299. Xu MY, Liu JL, Zhang RL, Fu YC. Isolation of a novel ras gene from Trichomonas vaginalis: a possible evolutionary ancestor of the Ras and Rap genes of higher eukaryotes. Biochem Cell Biol. 2007;85:239–45. 1300. Pacheco MA, Ryan EN, Poe AC, Basco L, Udhayakumar V, Collins WE, Escalante AA. Evidence for negative selection on the encoding rhoptry-associated protein 1 (Rap-1) in Plasmodium spp. Infect Gen Evol. 2010;10:655–61. 1301. Bolourani P, Spiegelman G, Weeks G. Ras proteins have multiple functions in vegetative cells of Dictyostelium. Eukaryot Cell. 2010;9:1728–33. 1302. Xie XQ, Guan Y, Ying SH, Feng MG. Differential functions of Ras 1 and Ras 2 proteins in regulating the germination, growth, conidiation, multi-stress tolerance and virulence of Baeauveria bassiana. Environ Microbiol 2012; doi:10.1111/j.1462-2920.2012.02871.x. 1303. Mavromatakis YE, Tomlinson A. The role of the small GTPase Rap in Drosophila R7 photoreceptor specification. Proc Natl Acad Sci USA. 2012;109:3844–9. References 725

1304. Frische EW, Pellis van Berkel W, van Haaften G, Cuppen E, Plasterk RH, Tijsterman M, Bos JL, Zwartkruis FJ. RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans. EMBO. 2007;26:5083–92. 1305. Freeman SA, Lein V, Dang-Lawson M, Mizuno K, Roskelley CD, Gold MR. Cofilin-mediated F-actin severing is regulated by the Rap GTPase and controls the cytoskeletal dynamics that drive lymphocyte spreading and BCR microcluster formation. J Immunol. 2011;187:5887–900. 1306. Beaudoin GM 3rd, Schofield CM, Nuwal T, Zang K, Ullian EM, Huang B, Richardt LF. Afadin, a Ras/Rap effector that controls adherin function, promotes spine and excitatory synapse density in the hippocampus. J Neurosci. 2012;32:99–110. 1307. Wu J, Zhang Y, Frilot N, Kim JI, Kim WJ, Daaka Y. Prostaglandin E2 regulates renal cell carcinoma invasion through the EP4 receptor-Rap GTP-ase signal transduction pathway. J Biol Chem. 2011;286:33954–62. 1308. Gorbushin AM, Panchin YV, Iakovleva NV. In search of the origin of FREPs: characterization of Aplysia californica fibrinogen-related proteins. Dev Comp Immunol. 2010;34:465–73. 1309. Weber F, Aldred MA, Morrison C, Plass C, Frilling A, Broelsch CE, Waite K, Eng C. Silencing of the maternally imprinted tumor suppressor ARHI contributes to follicular thyroid carcinogenesis. J Clin Endocrin Metabol. 2005;90:1149–55. 1310. Baljuls A, Beck M, Oenel A, Robubi A, Kroschewski R, Hekman M, Rudel T, Rapp UR. The tumor suppressor DiRas3 forms a complex with H-Ras and C-RAF proteins and regulates localization, dimerization, and kinase activity of C-RAF. J Biol Chem. 2012;287:23128–40. 1311a. Huang S, Chang IS, Lin W, Ye W, Luo RZ, Lu Z, Lu Z, Lu Y, Liao WS-L, Tao T, Bast RC Jr, Chen X, Yu Y. ARHI (DIRAS3), an imprinted tumor suppressor gene, binds to importins and blocks nuclear import of cargo proteins. Biosci Rep. 2009;30:159–68. 1311b. Badgwell DB, Lu Z, Le K, Gao F, Suh GK, Bao J-J, Das P, Andreef M, Chen W, Yu Y, Ahmed AA, Liao WS-L, Bast RC Jr. The tumor suppressor gene ARHI (DIRAS3) suppresses ovarian cancer cell migration through inhibition of the STAT3 and FAK/Rho signaling pathways. Oncogene. 2012;31:68–79. 1311c. Lu Z, Bast RC Jr. The tumor suppressor gene ARHI (DIRAS3) inhibits ovarian cancer cell migration through multiple mechanisms. Cell Adh Migr. 2013;7:232–6. 1312. Lin D, Cui F, Bu Q, Yan C. The expression and clinical significance of GTP-binding RAS-like 3 (ARHI) and microRNA 221 and 222 in prostate cancer. J Int Med Res. 2011;39:1870–5. 1313. Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J, Tanaka Y, Dahiya R. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila). 2011;4:76–86. 1314. Liu X, Li X, Yin L, Ding J, Jin H, Feng Y. Genistein inhibits placental choriocarcinoma cell line JAR invasion through ERβ/MTA3/Snail/E-cadherin pathway. Oncol Lett. 2011;2:891–7. 1315. Murugan AK, Munirajan AK, Tsuchida N. Ras oncogene in oral cancer: the past 20 years. Oral Oncol. 2012;48:383–92. 1316. Turvey SE, Broide DH. Chapter 2: Innate immunity. J Allergy Clin Immunol. 2010;125: S24–32. 1317. Fineran PC, Charpentier E. Memory of viral infections by CRISP-Cas adaptive immune systems: acquisition of new information. Virology 2012; pii: S0042-6822(12)00501-6. doi:10.1016/j.virol.2012.10.003. 1318. Fischer S, Maier LK, Stoll B, Brendel J, Fischer E, Pfeiffer F, Dyall-Smith M, Marchfelder A. An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA. J Biol Chem. 2012;287:33351–63. 726 References

1319. Westra ER, Swarts DC, Staals RH, Jore MM, Brouns SJ, van der Oost J. The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu Rev Genet. 2012;46:311–39. 1320. Jorth P, Whiteley M. An evolutionary link between natural transformation and CRISPR adaptive immunity. MBio. 2012;3(5):e00309–12. doi:10.11228/mBio.00309-12. 1321. McCurley N, Hirano M, Das S, Cooper MD. Immune related genes underpin the evolution of adaptive immunity in jawless vertebrates. Curr Genomics. 2012;13:86–94. 1322. Boehm T. Evolution of vertebrate immunity. Curr Biol. 2012;22:R722–32. 1323. Gu X, Shivaov V, Strout MP. The role of activation-induced cytidine deaminase in lymphomagenesis. Curr Opin Hematol. 2012;19:292–8. 1324. Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156:744–56. 1325. Gonin J, Larousserie F, Bastard C, Picquenot J-M, Couturier J, Vacher-Lavenu M-C, Devergne O. Epstein-Barr virus-induced gene 3 (EBI3): a novel diagnosis marker in Burkitt lymphoma and diffuse large B-cell lymphoma. PLoS One. 2011;6(9):e24617. doi:10.1371/journal.pone.0024617. 1326. Visekruna A, Volkov A, Steinhoff U. A key role for NF-κB transcription factor c-Rel in T-lymphocyte-differentiation and effector functions. Clin Dev Immunol. 2012;2912:239368. doi:10.1155.2012/239368. 1327. El-Mallawany NK, Frazer JK, Van Vlierberghe P, Ferrando AA, Perkins S, Lim M, Chu Y, Cairo MS. Pediatric T- and NK-cell lymphomas: new biological insights and treatment strategies. Blood Cancer J. 2012;2(4):e65. doi:10.1038/BCJ.2012.8. 1328. Freguja R, Gianesin K, Zanchetta M, De Rossi A. Cross-talk between virus and host innate immunity in pediatric HIV-1 infection and disease progression. New Microbiol. 2012;35:249–57. 1329. Han D, Cai X, Wen J, Matheson D, Skyler JS, Kenyon NS, Chen Z. Innate and adaptive immune gene expression profiles as biomarkers in human type 1 diabetes. Clin Exp Immunol. 2012;170:131–8. 1330. Allcock RJ, Barrow AD, Forbes S, Beck S, Trowsdale J. The human TREM gene cluster at 6.21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44. Eur J Immunol. 2003;33:567–77. 1331. Ubagai T, Tansho S, Ieki R, Ono Y. Evaluation of TREM1 gene expression in circulating polymorphonuclear leukocytes and its inverse correlation with the severity of pathophysiological conditions in patients with acute bacterial infections. Jpn J Infect Dis. 2012;65:376–82. 1332. Wang YS, Li XJ, Zhao WO. TREM-1 is a positive regulator of TNF-α and IL-8 production in U937 foam cells. Bosn J Basic Med Sci. 2012;12:94–101. 1333. Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A. The proinflammatory myeloid cell receptor TREM-1 controls Kupfer cell activation and development of hepatocellular carcinoma. Cancer Res. 2012;72:3977–86. 1334. Ko SY, Barengo N, Ladanyi A, Lee JS, Marini F, Lengyel E, Naora H. HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J Clin Invest. 2012;122:3603–17. 1335. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503. 1336. Boyerinas B, Park SM, Murmann AE, Gwin K, Montag AG, Zillhardt M, Hua YJ, Lengyel E, Peter ME. Let-7 modulates acquired resistance of ovarian cancer to taxanes via IMP-1-mediated stabilization of multidrug resistance 1. Int J Cancer. 2012;130:1787–97. References 727

1337. Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B, Dinulescu DM, Lengyel E, Peter ME. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMG-A2. Cell Cycle. 2007;6:2585–90. 1338. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907. 1339. Colas AR, McKeithan WL, Cunningham TJ, Bushway PJ, Garmine LX, Duester G, Subramariam S. Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis. Genes Dev. 2012;26:2567–79. 1340. Qin B, Xiao B, Liang D, Li Y, Jiang T, Yang H. MicroRNA let-7 inhibits Bcl-xl expression and regulates ox-LDL-induced endothelial apoptosis. BMB Rep. 2012;45:464–9. 1341. Thornton JE, Gregory RI. How does Lin28 let-7 control development and disease. Trends Cell Biol. 2012;22:474–82. 1342. Hertel J, Bartschat S, Wintsche A, Otto C. The Students of the Bioinformatics Lab, Stadler PF. Evolution of the let-7 microRNA family. RNA Biol. 1012;9:231–41. 1343. Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature. 2011;470:255–8. 1344. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, Birchmeier C. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702. 1345. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, Kitamura N. Placental defect and embryonal lethality in mice lacking hepatocyte growth factor /scatter factor. Nature. 1995;373:702–5. 1346. Yang Y, Wang Y, Zeng X, Ma XJ, Zhao Y, Qiao J, Cao B, Li YX, Wang YL. Self-control of HGF regulation on human trophoblast cell invasion via enhancing c-Met receptor shedding by ADAM10 and ADAM17. J Clin Endocrinol Metab. 2012;97: E1390–401. 1347. Baek JH, Birchmeier C, Zenka M, Hieronymus T. The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity. J Immunol. 2012;189:1699–709. 1348. Nam HJ, Chae S, Jang SH, Cho H, Lee JH. The PI3K-Akt mediates oncogenic Met-induced centrosome amplification and chromosome instability. Carcinogenesis. 2010;31:1531–40. 1349. Szabo R, Rasmussen AL, Moyer AB, Kosa P, Schafer JM, Molinolo AA, Gutkind JS, Bugge TH. C-Met-induced epithelial carcinogenesis is initiated by the serin protease matripase. Oncogene. 2011;30:2003–16. 1350. Buurman R, Gürlevik E, Schäffer V, Eilera M, Sandbothe M, Kreipe H, Wilkens L, Schlegelberger B, Kühnel F, Skawran B. Histone deacetylases activate growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology. 2012;143:811–20. 1351. Bishop EA, Lengyel ER, Yamada SD, Montag A, Temkin SM. The expression of hepatocyte growth factor (HGF) and c-Met in uterine serous carcinoma. Gynecol Oncol. 2011;121:218–23. 1352. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177:1053–64. 1353. Mitra AK, Sawada K, Tiwari P, Mui K, Gwin K, Lengyel E. Ligand-dependent activation of c-Met by fibronectin and α(5)β(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene. 2011;30:1566–76. 728 References

1354. Zillhardt M, Park SM, Romero IL, Sawada K, Montag A, Krausz T, Yamada SD, Peter ME, Lengyel E. Foretinib (GSK1363089), an orally available multikinase inhibitor of c-Met and VEGFR-2, blocks proliferation, induces anoikis, and impairs ovarian cancer metastasis. Clin Cancer Res. 2011;17:4042–51. 1355. Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turmer JR, Fu YX, Romero IL, Lengyel E. CD95 promotes tumour growth. Nature. 2010;465:492–6. 1356. Lin HC, Lai PY, Lin YP, Huang JY, Yang BC. Fas ligand enhances malignant behavior of tumor cells through interaction with Met, hepatocyte growth factor receptor, in lipid rafts. J Biol Chem. 2012;287:20664–73. 1357. O’Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT, Smyth MJ, Bouillet P, Robb L, Strasser A. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature. 2009;461:659–63. 1358. Ohta Y, Hayakawa S, Karasaki-Suzuki M, Sugita K, Komine S, Chishima F, Hatta Y, Horie T, Seo N, SDheijh A, Nemoto N, Yamamoto T. Granulocyte colony-stimulating factor suppresses autologous tumor killing activity of the peripheral blood lymphocytes in the patients with ovarian carcinoma. Am J Reprod Immunol 204;52:81–87. 1359. Wang Xie X, Lu WG, Ye DF, Cheng HZ, Li X, Cheng Q. Ovarian carcinoma cells inhibit T cell proliferation of IL-2 receptor beta and gamma expression and their JAK-STAT signaling pathway. Life Sci. 2004;74:1739–49. 1360. Baral E, Nagy E, Krepart GV, Lotocki RJ, Unruh HW, Berczi I. Antiestrogens sensitize human ovarian and lung carcinoma for lysis by autologous killer cells. Anticancer Res. 2000;20:2027–31. 1361. Leveque L, Deknuydt F, Bioley G, Old LJ, Matsuzaki J, Odunsi K, Ayyoub M, Valmori D. Interleukin2-mediated conversion of ovarian cancer-associated CD+ regulatory T cells into proinflammatory interleukin 17-producing helper T cells. J Immunother. 2009;32:101–8. 1362. Chang XH, Cheng HY, Cheng YXC, Ye X, Guo HF, Fun TY, Zhang L, Zhang G, Cui H. Specific immune cell therapy against ovarian cancer in vivo and in vitro. Ai Zheng. 2008;27:1244–50. 1363. Wright SE, Rewers-Felkins KA, Quinlin IS, Phillips CA, Townsend M, Philip R, Dobrzanski MJ, Lockwood-Cooke PR, Robinson W. Cytotoxic T-lymphocyte immunotherapy for ovarian cancer: a pilot study. J Immunother. 2012;35:196–204. 1364. Michaud NR, Jani JP, Hilleman S, Tsaparikos KE, Barbacci-Tobin EG, Knauth E, Putz H, Campbell M, Karam GA, Chrunyk B, Gebhard DF, Green LL, Xu JJ, Dunn MC, Coskran TM, Lapointe JM, Cohen BD, Coleman KG, Bedian V, Vincent P, Kajiji S, Steyn SJ, Borzillo GV, Los G. Biochemical and pharmacological characterization of human c-Met neutralizing monoclonal antibody CE-355621. MAbs. 2012;4:710–23. 1365. Feng Y, Ma PC. Anti-MET targeted therapy has come of age: the first durable complete response with MetMAB in metastatic gastric cancer. Cancer Discov. 2011;1:550–4. 1366a. Sinkovics JG, Horvath JC, Crumpton C, Lay S, Pritchard M. Immunotherapy for ovarian carcinoma. Poster presentation at the MD Anderson/Sloan-Kettering Hospitals 5th International Conference on Ovarian Cancer. Houston TX Dec 1–4 2004, Abstract #17. 1366b. Manjunath SR, Ramanan G, Dedeepiya VD, Terunuma H, Deng X, Baskar S, Senthilkumar R, Thamaraikannen P, Seinivasan T, Preethy S, Abraham SJ. Autologous immune enhancement therapy in recurrent ovarian cancer with metastases: a case report. Case Rep Oncol. 2012;5:114–8. 1367a. Kandalaft LE, Powell DJ, Singh N, Coukos G. Immunotherapy of ovarian cancer: what is next? J Clin Oncol. 2011;29:925–33. 1367b. Kandalaft LE, Powell DJ, Coukos G. A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cell for recurrent ovarian cancer. J Transl Med. 2012;10:157. doi:10.1186/1479-5876-10-157. References 729

1368a. Fritz-Laylin LK, Cande WZ. Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation. J Cell Sci. 2010;123:4024–31. 1368b. Fritz-Laylin LK, Ginger ML, Walsh C, Dawson SC, Fulton C. The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol. 2011;162:607–18. 1369. Leidel S, Gönczy P. Centrosome duplication and nematodes: recent insights from an old relationship. Dev Cell. 2005;9:317–25. 1370. Strnad P, Leidel S, Vinogradova T, Euteneuer U, Khodjakov A, Gönczy P. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev Cell. 2007;13:203–13. 1371. Maruyama S, Misawa K, Iseki M, Watanabe M, Nozaki H. Origins of a cyanobacterial 5-phosphogluconate dehydrogenase in plastid-lacking eukaryotes. BMC Evol Biol. 2008;8:151. 1372. Rüdinger M, Volkmar U, Lenz H, Groth-Malonek M, Knoop V. Nuclear DYW-type PPR gene families diversify with increasing RNA editing frequencies in liverworth and moss mitochondria. J Mol Evol. 2012;74:37–51. 1373. Knoop V, Rüdinger M. DYW-type PPR proteins in a heterolobosean protist: Plant RNA editing factors involved in an ancient horizontal gene transfer? FEBS Lett. 2010;584:4287–91. 1374. Robbins JC, Heller WP, Hanson MR. A comparative genomics approach identifies a PPR-DYW protein that is essential for C-to-U editing of the Arabidopsis chloroplast accD transcript. RNA. 2009;15:1142–53. 1375. Rüdinger M, Fritz-Laylin L, Polsakiewicz M, Knoop V. Plant-type mitochondrial RNA editing in the protist Naegleria gruberi. RNA. 2011;17:2058–62. 1376. Zehrmann A, Verbitsky D, van der Merwe JA, Brennicke A, Takenaka M. S DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana. Plant Cell. 2009;21:558–67. 1377. Solgi R, Niyyati M, Haghighi, Mojarad EN. Occurrence of thermotolerant Hartmannella vermiformis and Naegleria spp in hot springs of Ardebil province, Northwest Iran. Iran. J Parasitol. 2012;7:47–52. 1378. Zbikowska E, Walczak M, Krawiec A. Distribution of Legionella pneumophila bacteria and Naegleria and Hartmanella amoebae in thermal saline baths used in balneotherapy. Parasitol Res. 2012;112:77–83. 1379. Brugerolle G, Simpson AG. The flagellar apparatus of heteroloboseans. J Eukaryot Microbiol. 2004;51:96–1071384. 1380. Desmond E, Brochier-Armanet C, Gribaldo S. Phylogenomics of the archaeal flagellum: rare horizontal transfer in a unique motility structure. BMC Evol Biol. 2007;7:106. 1381. Diniz MC, Pacheco AC, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci. 2012. 1382. Elias M, Archibald JM. The RJL family of small GTPases is an ancient eukaryotic intervention probably functionally associated with flagellar apparatus. Gene. 2009;442:63–72. 1383. Heiss AA, Walker G, Simpson AG. The ultrastructure of Ancyromonas, a eukaryote without supergroup affinities. Protist. 2011;162:373–93. 1384. Ng SY, Chaban B, Jarrell KF. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J Mol Microbiol Biotechnol. 2006;11:167–91. 1385. Vonderviszt F, Sajó R, Dobó J, Závodszky P. The use of a flagellar export signal for the secretion of recombinant proteins in Salmonella. Methods Mol Biol. 2012;824:131–43. 730 References

1386. Graham SP, Honda Y, Pallé R, Mwangi DM, Glew EJ, de Villiers EP, Shah T, Bishop R, van der Bruggen P, Nene V, Taracha EL. A novel strategy for the identification of antigens that are recognized by bovine MHC class I restricted cytotoxic T cells in a protozoan infection using reverse vaccinology. Immunome Res. 2007;3:2. 1387. Hayashida K, Kajino K, Hattori M, Wallace M, Morrison I, Greene MI, Sugimoto C. MDM2 regulates a novel form of incomplete neoplastic transformation of Theileria parva infected lymphocytes. Exp Mol Pathol. 2012; pii:S0014-4800(12)00122-0. doi:10.1016/ j.yexmp.2012.08.008. 1388. Schmuckli-Maurer J, Casanova C, Schmied S, Affentranger S, Parvanova I, Kang’aS, Nene V, Katzer F, Keever D, Müller J, Bishop R, Pain A, Dobbelaere DA. Expression analysis of the Theilera parva subtelomeric-encoded variable secreted protein gene family. PLoS One. 2009;4(3):4839. doi:10.1371/journal.pone.0004839. 1389. Steinaa L, Saya R, Awino E, Toye P. Cytotoxic T lymphocytes from cattle immunized against Theileria parva exhibit pronounced cross-reactivity among different strain-specific epitopes of the Tp1 antigen. Vet Immunol Immunopathol. 2012;145:571–81. 1390. von Schubert C, Xue G, Schmuckli-Maurer J, Woods KL, Nigg EA, Dobbelaere DA. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells. PLoS Biol. 2010;8(9):pii: e10000499. 1391. Farley RD. Ultrastructure of book gill development in embryos and first instars of the horseshoe crab Limulus polyphemus L (Chelicerate, Xiphosura). Front Zool. 2012;9:4. doi:10.1186/1742-9994-9-4. 1392. Way M, Sanders M, Chafel M, Tu YH, Knight A, Matsudaira P. beta-Scruin, a homologue of the actin crosslinking protein scruin, is localized to the acrosomal vesicle of Limulus sperm. J Cell Sci. 1995;108:3155–62. 1393. Kamenz C, Staude A, Dunlop JA. Sperm carriers in Silurian sea scorpions. Naturwissenschaften. 2011;98:889–96. 1394. Rehm P, Pick C, Bomer J, Markl J, Burmester T. The diversity and evolution of chelicerate hemocyanins. BMC Evol Biol. 2012;12:19. 1395. Wirkner CS, Prendini L. Comparative morphology of the haemolymph vascular system in scorpions – a survey using corrosion casting, MicroTC, and 3D-reconstruction. J Morphol. 2007;268:401–13. 1396. Klußmann-Fricke BJ, Prendini L, Wirkner CS. Evolutionary morphology of the hemolymph vascular system in scorpions: a character analysis. Arthropod Struct Dev. 2012; pii: S1467-8039(12)00056-4. doi:10.1016/j.asd.2012.06.002. 1397. Coates CJ, Whalley T, Naim J. Phagocytic activity of Limulus polyphemus amoebocytes in vitro. J Invertebr Pathol. 2012;111:205–10. 1398. Kawabata S. Immunocompetent molecules and their response network in horseshoe crabs. Adv Exp Med Biol. 2010;708:122–36. 1399. Kawabata S, Muta T. Sadaaki Iwanaga: Discovery of the lipopolysaccharide- and beta-1,3-D-glucan-mediated proteolytic cascade and unique proteins in invertebrate immunity. J Biochem. 2010;147:611–8. 1400. Braverman H, Leibovitz L, Lewbart GA. Green algal infection of American horseshoe crab (Limulus polyphemus) exoskeletal structures. J Invertebr Pathol. 2012;111:90–3. 1401. Milsom WK. New insights into gill chemoreception: receptor distribution and roles in water and air breathing fish. Respir Physiol Neurobiol. 2012;184:326–39. 1402. Turko AJ, Cooper CA, Wright PAS. Gill remodeling during terrestrial acclimation reduces aquatic respiratory function of the amphibious fish Kryptolebias marmoratus. J Exp Biol. 2012;215:3973–80. 1403. Val AL. Oxygen transfer in fish: morphological and molecular adjustments. Brazil J Med Biol Res. 1995;28:1119–27. References 731

1404. Pan TC, Burggren WW. Onset and early development of hypoxic ventilator response and branchioal neuroepithelial cells in Xenopus laevis. Comp Biochem Physiol A Mol Integr Physiol. 2010;157:382–91. 1405. Eo SH, Doyle JM, Hale MC, Marra NJ, Ruhl JD, DeWoody JA. Comparative transcriptomics and gene expression in larval tiger salamander (Ambystoma tigrinum) gill and lung tissues as revealed by pyrosequencing. Gene. 2012;492:329–38. 1406. Chen AK, Hedrick MS. Role of glutamate and substance P in the amphibian respiratory network during development. Respir Physiol Neurobiol. 2008;162:24–31. 1407. Torday JS, Ihida-Stansbury K, Rehan VK. Leptin stimulates Xenopus lung development: evolution in a dish. Evol Dev. 2009;11:219–24. 1408. Brundage CM, Cartagena CM, Potter EA, Taylor BE. Nicotine elicits a developmentally dependent depression in bullfrog neuroventillatory response to CO2. Respir Physiol Neurobiol. 2010;170:226–35. 1409. Kertesz N, Krasnoperov V, Reddy R, Leshanski L, Kumar SR, Zozulya S, Gill PS. The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 inter- action, modulates angiogenesis, and inhibits tumor growth. Blood. 2006;107:2330–8. 1410. Pennisi A, Ling W, Li X, Khan S, Shaughnessy JD Jr, Barlogie B, Yaccoby S. The ephrinB2/EphB 4 axis is dysregulated in osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth. Blood. 2009;114:1803–12. 1411. Jürgens KD, Gros G. Phylogeny of gas exchange systems. Anesthesiol Intensivmed Notfallmed Schmerzther. 2002;37:185–98. 1412. Tickle PG, Norell MA, Codd JAR. Ventilatory mechanics from maniraptoran theropods to extant birds. J Evol Biol. 2012;25:740–7. 1413a. Codd JAR, Klein W. Breathing, locomotion and everything in between. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:301–2. 1413b. Klein W, Codd JAR. Breathing and locomotion: comparative anatomy, morphology and function. Respir Physiol Neurobiol. 2010;173S:S26–532. 1414. Perry SF, Sander M. Reconstructing the evolution of the respiratory apparatus in tetrapods. Respir Physiol Neurobiol. 2004;144:125–39. 1415. Truman JW, Riddiford LM. The origin of insect metamorphosis. Nature. 1999;401:447–52. 1416. Pandiarajan J, Cathrin BP, Pratheep T, Krishnan M. Defense role of the cocoon in the silk worm Bombyx mori. Rapid Commun Mass Spectrom. 2011;25:3203–6. 1417a. Tian L, Guo E, Diao Y, Zhou S, Peng Q, Cao Y, Ling E, Li S. Genome-wide regulation of innate immunity by juvenile hormone and 20-hydroxyecdysone in the Bombyx fat body. BMC Genomics. 2010;11:549. 1417b. Tian L, Liu S, Liu H, Li S. 20-hydroxyecdysone upregulates apoptotic genes and induces apoptosis in the Bombyx fat body. Arch Insect Biochem Physiol. 2012;79:207–19. 1418. Baum JS, Arama E, Steller H, McCall K. The drosophila caspase strica and dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ. 2007;14:1508–17. 1419. Klapper R, Stute C, Schomaker O, Strasser T, Janning W, Renkawitz-Pohl R, Holz A. The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, ans and mbc. Mech Dev. 2002;110:85–96. 1420. Susic-Jung L, Hornbruch-Freitag C, Kuckwa J, Rexer KH, Lammel U, Renkawitz-Pohl R. Multinucleated smooth muscles and mononucleated as well as multinucleated striated muscles develop during establishment of the male reproductive organs of Drosophila melanogaster. Dev Biol. 2012;370:86–97. 1421. Gaspar-Perira S, Fullard N, Townsend PA, Banks PS, Ellis EL, Fox C, Maxwell AG, Murphy LB, Kirk A, Bauer R, Caamaño JH, Figg N, Foo RS, Mann J, Mann DA, Oakley F. The NF-κB subunit c-Rel stimulates cardiac hypertrophy and fibrosis. Am J Pathol. 2012;180:929–39. 732 References

1422. Eblaghie MC, Song SJ, Kim JY, Akita K, Tickle C, Jung HS. Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos. J Anat 204;205:1-13. 1423. Takeuchi JK, Koshiba-Takeuchi K, Suzuki T, Kamimura M, Ogura K, Ogura T. Tbx5 and Tbx4 trigger limb initiation through activation of the Wnt/Fgf signaling cascade. Development. 2003;130:2729–39. 1424. Liss AS, Tiwari R, Kralova J, Bose HR. Jar. Cell transformation by v-Rel reveals distinct roles of AP-1 family members in Rel/κNF-B oncogenesis. Oncogene. 2010;29:4925–37. 1425. Lee HH, Norris A, Weiss JB, Frasch M. Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature. 2003;425:507–12. 1426. Inoue H, Imamura T, Ishidou Y, Takase M, Udagawa Y, Oka Y, Tsuneizumi K, Tabata T, Miyazono K, Kawabata M. Interplay of signal mediators of decapentaplegic (Dpp): molecular characterization of mothers against dpp, Medea, and daughters against vdpp. Mol Biol Cell. 1998;9:2145–56. 1427. Akong K, McCartney BM, Peifer M. Drosophila APC2 and APC1 have overlapping roles in the larval brain despite their distinct intracellular localizations. Dev Biol. 2002;250:71–90. 1428. Pyatkov KI, Shostak NG, Zelentsova ES, Lyozin GT, Melekhin MI, Finnegan DJ, Kidwell MG, Evgen’ev MB. Penelope retroelements from Drosophila virilis are active after transformation of Drosophila melanogaster. Proc Natl Acad Sci USA. 2002;99:16150–5. 1429. Volff JN, Hornung U, Schartl M. Fish retrotransposons related to the Penelope element of Drosophila virilis define a new group of retrotransposable element. Mol Genet Genomics. 2001;265:711–20. 1430. Gordon SD, Stand MR. The polyembryonic wasp Copidosoma floridanum produces two castes by differentially parceling the germ line to daughter embryos during embryo proliferation. Dev Genes Evol. 2009;219:445–54. 1431. Smith MS, Milton J, Strand MR. Phenotypically plastic traits regulate caste formation and soldier function in polyembryonic wasps. J Evol Biol. 2010;23:2677–84. 1432. Mukherjee K, Fischer R, Vilcinskas A. Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection. Front Zool. 2012;9(1):25. doi:10.1186/1742-9994-9-25. 1433. Jiang H, Vilcinkas A, Kanost MR. Immunity in lepidopteran insects. Adv Exp Med Biol. 2010;708:181–204. 1434. Sabri A, Hance T, Leroy PD, Frère I, Haubruge E, Destain J, Compère P, Thonart P. Placenta-like structure of the aphid endoparasitic Aphidius ervi: a strategy of optimal resources acquisition. PLoS One. 2011;6(4):e18847. doi:10.1371/journal. pone.0018847. 1435. Ambros V. The functions of animal microRNAS. Nature. 2004;431:350–5. 1436. Zhang X, Zheng Y, Jagadeeswaran G, Ren R, Sunkar R, Jiang H. Identification and developmental profiling of conserved and novel microRNAs in Manduca sexta. Insect Biochem Mol Biol. 2012;42:381–95. 1437. Kemp NE. Ameloblastic secretion and calcification of the enamel layer in shark teeth. J Morphol. 1985;184:215–30. 1438. Nanci A, Bringas P Jr, Samuel N, Slavkin HC. Selachian tooth development: III. Ultrastructural features of secretory amelogenesis in Squalus acanthias. J Craniofac Genet Dev Biol. 1983;3:53–73. 1439. Sawada T, Inoue S. Mineralization of basement membrane mediates dentogingival adhesion in mammalian and nonmammalian vertebrates. Calcif Tissue Inf. 2003;73:186–95. References 733

1440. Ibarretxe G, Aurrekoetxea M, Crende O, Badiola I, Jimenez-Rojo L, Nakamura T, Yamada Y, Unda F. Epiprofin/Sp6 regulates Wnt-BMP signaling and the establishment of cellular junctions during the bell stage of tooth development. Cell Tissue Res. 2012;350:95–107. 1441. DeVilliers P, Suggs C, Simmons D, Murrah V, Wright JT. Microgenomics of ameloblastoma. J Dent Res. 2011;90:463–9. 1442. Spaulding M, O’Learyb MA, Gatesy J. Relationship of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS One. 2009;4(9)e7062. doi:10.1371/journal.pone.0007062. 1443. Shen T, Xu S, Wang X, Yu W, Zhou K, Yang G. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans. BMC Evol Biol. 2012;12:39. 1444. Milinkovitch MC, Meyetr A, Powell JAR. Phylogeny of all major groups of cetaceans based on DNA sequences from the mitochondrial genes. Mol Biol Evol. 1994;11:939–48. 1445. Boisserie JR, Fisher RE, Lihoreau F, Weston EM. Evolving between land and water: key questions on the emergence and history of the Hippopotamidae (Hippopotamidea, Cetancodonta, Cetartiodactyla). Biol Rev Camb Philos Soc. 2011;86:601–25. 1446. Orliac M, Boisserie JR, Maclatchy L, Lihoreau F. Early Miocene hippopotamids (Cetartiodactyla) constrain the phylogenetic and spatiotemporal settings of hippopotamid origin. Proc Natl Acad Sci USA. 2010;107:11871–6. 1447. Carney RM, Vinther J. Shawkey MD. D’Alba L, Ackermann J. New evidence on the colour and nature of the isolated Archaeopteryx feather. Nat Commun 2012;3:637. doi:10.1038/ncomms1642. 1448. Erickson GM, Rogers KC, Yerby SA. Dinosaurian growth patterns and rapid avian growth rates. Nature. 2001;412:429–33. 1449. Bhullar BA, Marugán-Lobón J, Racimo F, Bever GS, Rowe TB, Norell MA, Abzhanov A. Birds have paedomorphic dinosaur skulls. Nature. 2012;487:223–6. 1450. Matke A, Churakov G, Berkes P, Arms EM, Kelsey D, Brosius J, Kriegs JO, Schmitz J. insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era. Mol Biol Evol. 2012;29:1497–501. 1451. Hickford D, Frankenberg S, Shaw G, Renfree MB. Evolution of vertebrate interferon inducible transmembrane proteins. BMC Genomics. 2012;13:155. doi:10.1186/1471- 2164-13-155. 1452. Li Q, Gao KQ, Meng Q, Clarke JA, Shawkey MD, D’Alba L, Pei R, Ellison M, Norell MA, Vinther J. Reconstruction of microraptor and the evolution of iridescent plumage. Science. 2012;335:1215–9. 1453. Longrich NR, Takaryk T, Field DJ. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary. Proc Natl Acad Sci USA. 2011;108:15253–7. 1454. Werner J, Griebeler EM. Reproductive biology and its impact on body size: comparative analysis of mammalian, avian and dinosaurian reproduction. PLoS One. 2011;86(12): e28442. 1455. Wang Z, Dong D, Ru B, Young RL, Han N, Guo T, Zhang S. Digital gene expression tag profiling of bat digits provides robust candidates contributing to wing formation. BMC Genomics. 2010;11:619. 1456. Zeng J, Xiang, Jiasng L, Jones G, Zheng Y, Liu B, Zhang S. Moth wing scales slightly increase the absorbance of bat echolocation calls. PLoS One. 2011;6(11):e27190. 1457. Cooper KL, Tabin CJ. Understanding of bat wing evolution takes flight. Genes Dev 208;22:121–124. 1458a. Muijres FT, Henningsson P, Stuiver M, Hedenström A. Aerodynamic flight performance in flap-gliding birds and bats. J Thor Biol 306:120–128. 734 References

1458b. Muijres FT, Johansson LC, Bowlin MS, Winter Y, Hedenström A. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds. PLoS One. 2012;7(5):e37335. 1459. Thomas DB, Ksepka DT, Fordyce RE. Penguin heat-retention structures evolved in a greenhouse Earth. Biol Lett. 2011;7:461–4. 1460. Williams CL, Sato K, Shiomi K, Ponganis PJ. Muscle energy stores and stroke rates of emperor penguins: implications for muscle metabolism and dive performance. Physiol Biochem Zool. 2012;85:120–33. 1461. Ksepka DT, Thomas DB. Multiple Cenozoic invasions of Africa by penguins (Aves, Sphenisciformes). Proc Biol Sci. 2012;279:1027–32. 1462. Reichert H. Drosophila neural stem cells: cell cycle control of self-renewal, differen- tiation, and termination in brain development. Results Probl Cell Differ 201;53:529-546. 1463. Wang H, Somers GW, Bashirullah A, Heberlein U, Yu F, Chia W. Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 2006;20:3453–63. 1464. Gleason J, Eisenmann DM. Wnt signaling controls the stem cell-like asymmetric division of the epithelial seam cells during C. elegans larval development. Dev Biol. 2010;384:58–66. 1465. Perez-Reyes R. Life cycle of Trypanosoma montezumae, a frog flagellate parasite with asymmetric division. Rev Latinoan Microbiol Parasitol (Mexico). 1969;11:57–60. 1466a. Fisk JC, Sayegh J, Zurita-Lopez C, Menon S, Presnyak V, Clarke SG, Read LK. A type III protein arginine methyltransferase from the protozon parasite Trypanosoma brucei. J Biol Chem. 2009;284:11590–600. 1466b. Fisk JC, Zurita-Lopez C, Sayegh J, Tomasello DL, Clarke SG, Read LK. TbPRMT6 is a type I protein arginine methyltransferase that contributes to cytokinesis in Trypanosoma brucei. Eukaryot Cell. 2010;9:866–77. 1467. Pasternack DA, Sayegh J, Clarke S, Read LK. Evolutionarily divergent type II protein arginine methyltransferase in Trypanosoma brucei. Eukaryot Cell. 2007;6:1665–81. 1468. Fan Q, Miao J, Cui L, Cui L. Characterization of PRMT1 from Plasmodium falciparum. Biochem J. 2009;421:107–18. 1469. Takahashi Y, Daitoku H, Hirota K, Tamiya HJ, Yokoyama A, Kako K, Nagashima Y, Nakamura A, Shimada T, Watanabe S, Yamagata K, Yasuda K, Ishii N, Fukamizu A. Asymmetric arginine dimethylation determines life span in C. elegans by regulating forkhead transcription factor DAF-16. Cell Metab. 2011;13:505–16. 1470. Mitchell TRH, Glenfield K, Jevanthan K, Zhun XD. Arginine methylation regulates telomere length and stability. Mol Cell Biol. 2009;29:4918–34. 1471. Baldwin RM, Morettin A, Paris G, Goulet I, Côté J. Alternatively spliced protein arginine methyltransferase 1 isoform PRMT1v2 promotes the survival and invasiveness of breast cancer cells. Cell Cycle. 2012;11(24). 1472. Kleinschmidt MA, de Graaf P, van Teeffelen HA, Timmers HT. Cell cycle regulation by the PRMT 6 arginine methyltransferase through repression of cyclin-dependent kinase inhibitors. PLoS One. 2012;55:7978–87. 1473a. Gu Z, Li Y, Lee P, Liu T, Wan C, Wang Z. Protein arginine methyltransferase 5 functions in opposite ways in the cytoplasm and nucleus of prostate cancer cells. PLoS One. 2012;7(8):e44033. doi:10.1371/journal.pone.0044033. 1473b. Gu Z, Gao S, Zhang E, Wang Z, Ma W, Davis RE, Wang Z. Protein arginine methyltransferase 5 is essential for growth of lung cancer cells. Biochem J. 2012;446: 235–41. 1474. Kim JD, Kako K, Kakiuchi M, Park GG, Fukamizu A. EWS is a substrate of type I protein arginine methyltransferase, PRMT8. Int J Mol Med. 2008;22:309–15. 1475. Kirk DL. Germ-soma differentiation in volvox. Dev Biol. 2001;238:213–23. References 735

1476. Nozak H, Takahara M, Nakazawa A, Kita Y, Yamada T, Takano H, Kawano S, Kato M. Evolution of rbcL group IA introns and intron open reading frames within the colonial volvocales (Chlorophyceae). Mol Phylogenet Evol. 2002;23:326–38. 1477. Blifernez O, Wobbe L, Niehaus K, Kruse O. Protein arginine methylation modulates light-harvesting antenna translation in Chlamydomonas reinhardtii. Plant J. 2011;65:119–30. 1478. Cheng Q, Fowler R, Tam LW, Edwards L, Miller SM. The role of GIsA in the evolution of asymmetric cell divisions in the green alga Volvox carteri. Dev Genes Evol 003;213:328–335. 1479a. Herron MD, Michod RE. Evolution of complexity in the volvocine algae: transitions in individuality through Darwin’s eye. Evolution. 2008;62:436–51. 1479b. Dick JM, Shock EL. A metastable equilibrium model for the relative abundances of microbial phyla in a hot spring. PLoS One. 2013;8(9):72395. 1480. Debec ZA, Sullivan W, Bettencourt-Dias M. Centrioles: active players or passengers during mitosis? Cell Mol Life Sci. 2010;67:2173–94. 1481. Fábián Á, VerébG,Szöllősi J. The hitchhikers guide to cancer stem cell theory: pathways and therapy. Cytometry A. 2013;83:62-71. doi:10.1002/cyto.a.22206. 1482. Molina-PeñaR,Álvarez MM. A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth. PLoS One. 2012;7 (2):e26233. 1483. Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T, Repass J, Zaehres H, Shen JJ, Tang DG. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene. 2011;30:3833–45. 1484. Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, Lv CH, Tan, Xiang R, Li N. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer. J Mol Cell Biol. 2011;3:230–8. 1485. Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, Calhoun-Davis T, Li H, Palapattu GS, Pang S, Lin K, Huang J, Ivanov I, Li W, Suraneni MV, Tang DG. The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor propagating cells that resist castration. Cell Stem Cell. 2012;10:556–69. 1486. Takahashi K, Narita M, Yokura M, Ichisaka T, Yamanaka S. Human induced pluripotent stem cells on autologous feeders. PLoS One. 2009;4(12):e8067. 1487. Petty AP, Wright SE, Rewers-Felkins KA, Yederrozos MA, Vorderstrasse BA, Lindsey JS. Targeting migration inducing gene-7 inhibits carcinoma cell invasion, early primary tumor growth, and stimulates monocyte oncolytic activity. Mol Cancer Ther. 2009;8:2412–23. 1488. Lin Ci DuJ, Shen WT, Whang EE, Donner DB, Griff N, He F, Jar Moor FD, Clark OH, Ruan DT. Mitogen-inducible gene-6 is a multifunctional adaptor protein with tumor suppressor-like activity in papillary thyroid cancer. J Clin Endocrinol Metab. 2011;96: E554–65. 1489. Shih IM. Trophoblastic vasculogenic mimicry in gestational choriocarcinoma. Mod Pathol. 2011;24:646–52. 1490. Döme B, Hendrix MJ, Paku S, Tóvári J, Tímár J. Alternative vascularization mechanism in cancer: pathology and therapeutic implications. Am J Pathol. 2007;170:1–15. 1491. Hess AR, Seftor EA, Seftor RE, Hendrix MJ. Phosphoinosite 3-kinase regulates membrane type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res. 2003;63:4757–62. 1492. Karroum A, Mirshahi P, Faussat AM, Therwath A, Mishahi M, Hatmi M. Tubular network formation by adriamycin-resistant MCF-7 breast cancer cells is closely linked to MMP-9 and VEGFR-2/VEGF-3 over-expression. Eur J Pharmacol. 2012;685:1-7. 1493. Vartanian A, Stapanova E, Grigorieva I, Solomko E, Baryshnikov A, Lichinitser M. VEGFR1 and PKCα signaling control melanoma vasculogenic mimicry in a VEGFR2 kinase-independent manner. Melanoma Res. 2011;21:91–8. 736 References

1494. Frank NY, Schatton T, Kim S, Zhan Q, Wilson BJ, Ma J, Saab KR, Osherov V, Widlund V, Gasser M, Waage-Gasser AM, Kupper TS, Murphy GF, Frank MH. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res. 2011;71:1474–85. 1495a. Valyi-Nagy K, Kormos B, Ali M, Shukla D, Valyi-Nagy T. Stem cell marker CD271 is expressed by vasculogenic mimicry-forming uveal melanoma cells in three-dimensional cultures. Mol Vis. 2012;18:588–92. 1495b. Valyi-Nagy K, Dosa S, Kovacs SK, Bacsa S, Voros A, Shukla D, Folberg R, Valyi-Nagy T. Identification of virus resistant tumor cell subpopulations in three-dimensional uveal melanoma cultures. Cancer Gene Ther. 2010;127:223–34. 1496. Wu X, Zhou J, Rogers AM, Jänne PA, Benedettini E, Loda M, Hodi FS. C-Met, epidermal growth factor receptor, and insulin-like growth factor-1 receptor are important for growth in uveal melanoma and independently contribute to migration and metastatic potential. Melanoma Res. 2012;22:123–32. 1497. Desbois-Mouthon C, Baron A, Blivet-Van Eggelpoël MJ, Fartoux L, Venot C, Bladt F, Housset C, Rosmorduc O. Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin-like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma. Clin Cancer Res. 2008;15:5445–56. 1498. Paznekas WA, Okajima K, Schertzer M, Wood S, Jabs EW. Genomic organization, expression, and chromosome location of the human SNAIL gene (SNAI1) and a related processed pseudogene (SNAI1P). Genomics. 1999;62:42–9. 1499. Rangel MC, Karasawa H, Castro NP, Nagaoka T, Salomon DS, Bianco C. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer. Am J Pathol. 2012;189:2188–200. 1500. Yoon CH, Kim MJ, Lee H, Kim RK, Lim DEJ, Too KC, Cui YH, Oh YS, Gye MC, Lee YY, Park IC, An S, Hwang SG, Park MJ, Suh Y, Lee SJ. PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J Biol Chem. 2012;287:19516–27. 1501. Sinkovics JG, Györkey F, Kusyk C, Siciliano MJ. Growth of human tumor cells in established cultures. In: Busch H, editor. Methods in cancer research. Vol XV. New York: Academic Press; 1978. pp 243–323. 1501a. DiSaia PJ, Sinkovics JG, Rutledge FN, Smith JP. Cell-mediated immunity to human malignant cells. A brief review and further studies with two gynecologic tumors. Am J Obstet Gynecol. 1972;114:979–89. 1502. Fong MY, Kakar SS. The role of cancer stem cells and the side population in epithelian ovarian cancer. Histol Histopathol. 2010;25:113120. 1503. Shah PP, Kakatr SS. Pituitary tumor transforming gene induces epithelial to mesenchy- mal transition of Twist, Snail, Slug, and E-cadherin. Cancer Lett. 2011;311:66–76. 1504. Sun T, Sun BC, Zhao XK, Zhao N, Dong XY, Che N, Yao Z, Ma YM, Gu Q, Zong WK, Liu ZY. Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology. 2011;54:1690–709. 1505. Arzumanyan A, Friedman T, Kotei E, Ng IO, Lian Z, Feitelson MA. Epigenetic repression of E-cadherin expression by hepatitis B virus X antigen in liver cancer. Oncogene. 2012;31:563–72. 1506a. Ogunwobin OO, Liu C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clin Exp Metastasis. 2011;28:721–31. 1506b. Ogunwobin OO, Wang T, Zhang L, Liu C. Cyclooxygenase-2 and Akt mediate multiple growth-factor-induced epithelial-mesenchymal transition in human hepatocellular carci- noma. J Gastroenterol Hepatol. 2012;27:566–78. References 737

1506c. Ogunwobin OO, Liu C. Therapeutic and prognostic importance of epithelial-mesenchymal transition in liver cancers: insights from experimental models. Crit Rev Oncol Hematol. 2012;83:319–28. 1507. Tong ZT, Cai MY, Wang XG, Kong LL, Mai SJ, Liu YH, Zhang HB, Liao YJ, Zheng F, Zhu W, Bian XW, Guan XY, Lin MC, Zeng MS, Zeng YX, Kung HF, Xie D. EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin. Oncogene. 2012;31:583–94. 1508. Luo GQ, Li JH, Cao L, Zho YH, Wen JF. Activator protein-1 involvement in proliferation inhibition by gene silencing of Twist in gastric cancer cells. Pathology. 2011;43:697–701. 1509. Ishida M, Miyamoto M, Naitoh S, Tatsuda D, Hasegawa T, Nemoto T, Yokozeki H, Nishioka K, Matsukage A, Ohki M, Ohta T. The SYT-SSX fusion protein down-regulates the cell proliferation regulator COM1 in t(x;18) synovial sarcoma. Mol Cell Biol. 2007;27:134–1355. 1510. Lubieniecka JM, de Bruijn DR, Su L, van Dijk AH, Subramanian S, van de Rijn M, Poulin N, van Kessel AG, Nielsen TO. Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor growth response 1 in synovial sarcoma. Cancer Res. 2008;68:4303–10. 1511. Suehara Y, Tochigi N, Kubota D, Kikuta K, Nakavama R, Seki K, Yoshida A, Ichikawa H, Hasegawa T, Kaneko K, Chuman H, Beppu Y, Kawai A, Kondo T. Sacernin-1 as a novel prognostic biomarker candidate of synovial sarcoma revealed by proteomics. J Proteomics. 2011;74:829–42. 1512. Shirley SH, Greene VR, Duncan LM, Cabala CA, Grimm EA, Kusewitt DF. Slug expression during melanoma progression. Am J Pathol. 2012;180:2479–89. 1513. Pierrat MJ, Marsaud V, Mauviel A, Javelaud D. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β. J Biol Chem. 2012;287:17996–8004. 1514. Hao L, Ha JR, Kuzel P, Garcia E, Persad S. Cadherin switch from E- to N-cadherin in melanoma progression is regulated by the PI3K/PTEN pathway through Twist and Snail. Br J Dermatol. 2012;166:1184–97. 1515. Poell JB, Van Haastert RJ, de Gunst Schultz IJ, Gommans WM, Verheul M, Cerisoli F, van Noort PI, Prevost GP, Cuppen E. A functional screen identifies specific microRNAs capable of inhibiting human melanoma cell viability. PLoS One. 2012;7(8):e43569. doi:10.1371/journal.pone.0043569. 1516. Blumenschein GR, Mills GB, Gonzalez-Angulo AM. Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J Clin Oncol. 2012;30:3287–96. 1517. Stites EC. The response of cancers to BRAF inhibition underscores the importance of cancer systems biology. Sci Signal. 2012;5(246):46. doi:10.1126/scisignal.2003354. 1518. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4. 1519. Cui JJ, McTigue, Nambu M, Tran-Dubé M, Pairish M, Shen H, Jia L, Cheng H, Hoffman J, Le P, Jalale M, Goetz GH, Ryan K, Grodsky N, Deng YL, Parker M, Timofeevski S, Murray BW, Yamazaki S, Aguirre S, Li Q, Zou H, Christensen J. Discovery of a novel class of exquisitely selective mesenchymal-epithelial transition factor (cMET) protein kinase inhibitors and identification of the clinical candidate 2-(4-(1-(quinolin-6-methyl)- 1H-[1,2,3]triazolol[4,5-b]pyrazin-6yl)-1H-pyrazol-1-ethanol (PF-04217903) for the treat- ment of cancer. J Med Chem. 2012;55(18):8091–8109. Erratum 2012;55(22):1031. doi:10.1021/JM3014647. 738 References

1520. Yang SP, Zhang XW, Ai J, Gan LS, Xu JB, Wang Y, Su ZS, Wang L, Ding J, Geng MY, Yue JM. Potent HGF/c-MET axis inhibitors from Eucalyptus globules: the coupling of phloroglucinol and sesquiterpenoid is essential for the activity. J Med Hem. 2012;55:8183–7. 1521. Lue HW, Yang X, Wang R, Qian W, Xu RZ, Lyes R, Osunkova AQ, Zhou BP, Vessella RL, Zayzafoon M, Liu ZR, Zhau HE, Chung LW. LIV-1 promotes prostate cancer epithelial-to-mesencymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One. 2011;6(11):e27720. 1522. Unno J, Satoh K, Hirota M, Kanno A, Hamada S, Masamune A, Tsukamoto N, Motoi F, Egawa S, Unno M, Horiii A, Shimosegawa T. Liv-1 enhances the aggressive phenotypes through the induction of epithelial to mesenchymal transition in human pancreatic carcinoma cells. Int J Oncol. 2009;35:813–21. 1523. Albino D, Longoni N, Curti L, Mello-Grand M, Pinton S, Civenni G, Thalmann G, D’Ambrosio G, Sarti M, Sessa F, Chiorino G, Catapano CV, Carbone GM. ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Res. 2012;72:2889–900. 1524. Powell MJ, Casimiro MC, Cordon-Cardo C, He X, Yeow WS, Wang C, McCue PA, McBurney MW, Pestell RG. Disruption of a Sirt1-dependent autophagy checkpoint in the prostate results in prostate intraepithelial neoplasia lesion formation. Cancer Res. 2011;71:964–75. 1525. Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV, Dai Y. SIRT-1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration metastasis. Oncogene. 2012;31:4619–29. 1526. Kurahara H, Takao S, Maemura K, Mataki Y, Kuwahata T, Maeda K, Ding Q, Sakoda M, Lino S, Ishigami S, Ueno S, Shinchi H. Natsugoe S. Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. J Surg Oncol. 2012;105:655–61. 1527. Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M, Wu H. PTEN loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012;72:1878–89. 1528. Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao WQ, Settleman J, Johnson L. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 2012;72:527–36. doi:10.1158/0008-5472.CAN-11-3004. 1529. Slabáková E, Pernicová Z, Slavičková E, Staršichová A, Kozubik A, Souček K. TYGF- β1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug. Prostate. 2011;71:1332–43. 1530a. Liu DF, Wub JT, Wang JM, Liu QZ, Zl Gao, Liu YX. MicroRNA expression profile analysis reveals diagnostic biomarker for human prostate cancer. Asian Pac J Cancer Prev. 2012;13:3313–7. 1530b. Liu J, Huang J, He Y, Liu J, Liao B, Liao G. Genetic variants in the integrin gene predicted microRNA-binding sites were associated with the risk of prostate cancer. Mol Carcinog. 2012; doi:10.1002/mc.21973. 1531a. Shankar S, Chen Q, Siddiqui I, Sarva K, Srivastava RK. Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3,4’,5 trihydroxystilbene): molecular mechanisms and therapeutic potential. J Mol Signal. 2007;2:7. 1531b. Shankar S, Siddiquin I, Srivastava RK. Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem. 2007;304:273–85. 1532. Phillip CJ, Giardina CK, Bilir B, Cutler DJ, Lai YH, Kucuk O, Moreno CS. Genistein cooperates with histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells. BMC Cancer. 2012;12:145. doi:10.1186/1471-2407-12-145. References 739

1533. Chua HL, Bhat-Nakashatri P, Clare SE, Morimiya A, Badve S, Nakshatri H. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene. 2007;26:711–24. 1534. Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest. 2012;122:1469–96. 1535. Moes M, Le Béchec A, Crespo I, Laurini C, Halavatyl A, Vetter G, Del Sol A, Friederich E. A novel network integrating a miRNA-203/SNAI1 fedback loop which regulates epithelial to mesenchymal transition. PLoS One. 2012;7(4):e35440. 1536a. Han M, Liu M, Wang Y, Mo Z, Bi X, Liu Z, Fan Y, Chen X, Wu C. Re-expression of miR-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells. Mol Cell Biochem. 2012;363:427–36. 1536b. Han M, Wang Y, Liu M, Bi X, Bao J, Zeng N, Zhu Z, Mo Z, Wu C, Chen X. miR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1α expression in third-sphere forming breast cancer stem cells. Cancer Sci. 2012;103:1058–64. 1536c. Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, Zhao L, Qu H, Fan Y, Wu C. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One. 2012;7(6): e39520. 1537a. Conley SJ, Wicha MS. Antiangiogenic agents: fueling cancer’s hypoxic roots. Cell Cycle. 2012;11:1265–6. 1537b. Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG, Wicha MS. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA. 2012;109:2784–9. 1538. Polyak K, Vogt PK. Progress in breast cancer research. Proc Natl Acad Sci USA. 2012;109:2715–7. 1539a. Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH, Radisky DC, Ferrone S, Knutson KL. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69:2887–95. 1539b. Santisteban M, Reynolds C, Barr Fritcher EG, Frost MH, Vierkant RA, Anderson SS, Degnim AC, Visscher DW, Pankratz VS, Hartmann LC. Ki67: a time-varying biomarker of risk of breast cancer in atypical hyperplasia. Breast Cancer Res Treat. 2010;121:431–7. 1540a. Morel A-P, Liévre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3(8): e2888. 1540b. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3:e28888. 1541. DittmarT, Zänker KS, authors/editors. Cell fusion in health and disease, II. Cell fusion in disease. Advances in experimental medicine and biology. Vol 714. New York: Springer;2011. p. 1–208. 1542. Fan Y, Bergmann A. The cleaved-caspase-3 antibody is a marker of caspase-9-like DRONC activity in drosophila. Cell Death Differ. 2010;17:534–9. 1543. Lee TV, Fan Y, Wang S, Srivastava M, Broemer M, Meier P, Bergmann A. Drosophila IAP1[-mediated ubiquitylation controls activation of the initiator caspase DRONC independent of protein degradation. PLoS Genet. 2011;7(9):e1002261. doi:10.1371/ journal.pgen.1002261. 1544. Bender CE, Fitzgerald P, Tait SW, Llamni F, McStay GP, Tupper DO, Pellettier J, Sánchez-Alvarado A, Salversden GS, Green DR. Mitochondrial pathway of apoptosis is ancestral in metazoans. Proc Natl Acad Sci USD. 2012;109:4904–9. 740 References

1545. Dichtel-Danjoy ML, Ma D, Dourien P, Chatelain G, Napoletano F, Robin M, Corbet M, Levet C, Hafsi H, Hainaut P, Ryoo HD, Bourdon JC, Mollereau B. Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation. Cell Death Differ. 2013;20:108–16. 1546. Dorstyn L, Kumar S. A biochemical analysis of the activation of the drosophila caspase DRONC. Cell Death Differ. 2008;15:461–70. 1547. Rutkowski R, Hofman K, Gartner A. Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol. 2010;2(7):a001131. 1548. Snipas SJ, Drag M, Stennice HR, Salversen GS. Activation mechanism and substrate specificity of the drosophila initiator caspase DRONC. Cell Death Differ. 2008;15:938–45. 1549. Zmasek CM, Zhang Q, Ye Y, Godzik A. Surprising complexity of the ancestral apoptosis network. Genome Biol. 2007;8:R226. doi:10.1186/gb-2007-8-10-r226. 1550. Chen J, Xie F, Zhang L, Jiang WG. iASPP is over-expressed in human non-small cell lung cancer and regulates the proliferation of lung cancer cells. BMC Cancer. 2010;10:694. doi:10.1186/1471-2407-10-694. 1551. González JM, Esteban M. A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history. Virol J. 2010;7:59. doi:10.1186/1743-422X-7-59. 1552. Douglas AE, Corbett KD, Berger JM, McFadden G, Handel TM. Structure of M121L: a myxoma virus structural homolog of the apoptosis inhibitor, Bcl-2. Protein Sci. 2007;16:695–703. 1553. Deng X, Li X, Shen Y, Qiu Y, Shi Z, Shao DF, Jin Y, Chen H, Ding C, Li L, Chen P, Ma Z. The Meq oncoprotein of Marek’s disease virus interacts with p53 and inhibits its transcriptional and apoptotic activities. Virol J. 2010;7:348. doi:10.1186/ 1743-422X-7-348. 1554. Inoue Y, Iemura S, Natsume T, Miyazawa K, Imamura T. Suppression of p53 activity through the cooperative action of Ski and histone deacetylase SIRT1. J Biol Chem. 2011;286:6311–20. 1555. Gyöngyösi E, Szalmás A, Ferenczi A, Kónya J, Gergely L, Veress G. Effects of human papillomavirus (HPV) type 16 oncoproteins on the expression of involucrin in human keratinocytes. Virol J. 2012;9:36. doi:10.1186/1743-422X-9-36. 1556. Karunakaran K, Mehlitz A, Rudel T. Evolutionary conservation of infection-induced cell death inhibition among Chlamydia. PLoS One. 2011;6(7):e22528. doi:10.1371/journal. pone.0022528.1557. 1557. Sinkovics JG, Horvath JC, Kay HD. NKT cells emerge to restrain the trophoblast: Tumor cells imitating the trophoblast evoke NKT cell reactions. In: Cancer immunity: challenges for the next decade. Program & abstracts. The 56th annual symposium on Fundamental Cancer Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 14–17 Oct 2003. p. 117, I-33. 1558. Sinkovics JG, Horvath JC. The evolution of natural killer cells for the practice of antiviral and anti-cellular defense. In: Abstracts, The 20th annual clinical virology symposium & annual meeting PanAmerican Society for Clinical Virology, Department of Clinical Microbiology & Immunology, The University of South Florida College of Medicine, Clearwater, FL 25–28 April 2004. #M20. 1559. Berencsi III GY, editor. Maternal fetal transmission of human viruses and their influence on tumorigenesis. Dordrecht: Springer Science;2012. p. v–vi, 1–463. 1560. Momand J, Villegas A, Belyi VA. The evolution of the MDM2 family genes. Gene. 2011;486:23–38. 1561. Feng XL, Liu QT, Cao RB, Zhou B, Ma ZY, Deng WL, Wei JC, Qiu YE, Wang FQ, Gub JY, Wang FJ, Zheng QS, Ishag H, Chen PY. Identification and characterization of novel immunomodulatory bursal-derived pentapepti de-II (BPP-II). J Biol Chem. 2012;287:3798–807. References 741

1562. Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, Levine J. The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol. 2010;2(6): a001198. doi:10.1101/cshperspect.a001198. 1563. Feng Z, Zhang C, Kang HJ, Sun Y, Wang H, Nagvi A, Frank AK, Rosenwaks Z, Murphy ME, Levine AJ, Hu W. Regulation of female reproduction by p53 and its family members. FASEB J. 2011;25:2245–55. 1564. Hu W, Feng Z, Atwal GS, Levine AJ. P53: a new player in reproduction. Cell Cycle. 2008;7:848–52. 1565. Gu L, Zhu N, Findley HW, Zhou M. MDM2 antagonist nutin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2. Leukemia. 2008;22:730–9. 1566. Renouf B, Hollville E, Pujals A, Tétaud C, Garibal J, Wiels J. Activation of p53 by MDM2 antagonist has differential apoptotic effects on Epstein-Barr virus (EBV)-positive and EBV-negative Burkitt’s lymphoma cells. Leukemia. 2009;23:1557–63. 1567. Miyachi M, Kakazu N, Yagyu S, Katsumi Y, Tsubai-Shimizu S, Kikuchi K, Tsuchiya K, Iehara T, Hosoi H. Restoration of p53 pathway by nutlin-3 induces cell cycle arrest and apoptosis in human rhabdomyosarcoma cells. Clin Cancer Res. 2009;15:4077–84. 1568. Muttray AF, O’Toole TF, Morrill W, Van Beneden RJ, Baldwin SA. An invertebrate mdm homolog interacts with p53 and is differentially expressed together with p53 and ras in neoplastic Mytilus trossulus haemocytes. Comp Biochem Physiol Biochem Mol Biol. 2010;156:298–306. 1569. Wojcik IO, Szybka M, Golanska E, Rieske P, Blonski JZ, Robak T, Bartkowiak J. Abnormalities of the P53, MDM2, BCL2 and BAX genes in acute leukemias. Neoplasma. 2005;52:318–24. 1570. Walker CW, Böttger SA. A naturally occurring cancer with molecular connectivity to human disease. Cell Cycle. 2008;7:2286–9. 1571. Jessani N, Niessen S, Mueller BM, Cravatt BE. Breast cancer cells grown in vivo. Cell Cycle. 2005;5:253–5. 1572. Brinkley BR, Beall PT, Wible LJ, Mace ML, Turner DS, Cailleau RM. Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro. Cancer Res. 1980;40:3118–29. 1573a. Sinkovics JG, Reeves WJ, Cabiness JR. Cell- and antibody-mediated immune reactions of patients to cultured cells of breast carcinoma. J Natl Cancer Inst. 1972;48:1145–9. 1573b. Sinkovics JG, Ahmed N, Cabiness JR, Reeves WJ. Serum factors specifically antagonistic or synergistic with cytotoxic lymphocytes in patients with neoplastic disease. In: Proceedings of 63rd annual meeting of American Association for Cancer Research. 4–6 May, 1072 , MA, 1972;13:109 #436. 1573c. Sinkovics JG, Reeves WJ, Cabiness JAR. Reactions of leukocytes and sera of patients with cultured tumor cells. In: Ceglowski W, Friedman H, editors. Conference on virus tumorigenesis and immunogenesis. New York: Academic Press;1973. p. 373–386. 1574. Walker C, Böttger SA, Mulkern J, Jerszyk E, Litvaitis M, Lesser M. Mass culture and characterization of tumor cells from a naturally occurring invertebrate cancer model: applications for human and animal disease and environmental health. Biol Bull. 2009;216:23–39. 1575a. Editorial. Special issue in honour of Stanley J. Korsmeyer. Cell Death Differ. 2006;13:1245–142. 1575b. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74:609–19. 1576. Wolenski FS, Garbati MR, Lubinski J, Traylor-Knowles N, Dresselhaus E, Stefanik DJ, Goucher H, Finnerty JAR, Gilmore TD. Characterization of the core elements of the NF- κB signaling pathway of the sea anemone Nematostella vectensis. Mol Cell Biol. 2011;31:1076–87. 742 References

1577. Srivastava N, Manvati Srivastava A, Pal R, Kalaiarasan P, Chattopadhyay S, Gochhait S, Dua R, Bamezai ENK. miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptosis gene BCL-2: a potential for therapeutic intervention. Breast Cancer Res. 2011;13(2):R39. doi:10.1186/ bcr2861. 1578. Roberts AW, Seymour JE, Brown JR, Wierda WG, Kipps TJ, Khaw SL, Carney DA, He SZ, Huang DC, Xiong H, Cui Y, Busman TA, McKeegan EM, Krivoshik AP, Enschede SH, Humerickhouse R. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition; results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012;30:488–96. 1579. Hampl V, Silberman JD, Stechmann A, Diaz-Triviño S, Johnson PJ, Roger Aj. Genetic evidence for a mitochondriate ancestry in the ‘amitochondriate’ flagellate Trimastix pyriformis. PLoS One. 2008;3(1):e1383. doi:10.1371/journal.pone.0001383. 1580. Walensky LD. From mitochondrial biology to magic bullet: navitoclax disarms BCL-2 in chronic lymphocytic leukemia. J Clin Oncol. 2012;30:554–7. 1581. Erdélyi P, Borsos E, Takács-Vellai K, Kovács T, Kovács AL, Sigmond T, Hargitai B, Pásztor L, Sengupta T, Dengg M, Pécsi I, Tóth J, Nilsen H, Vértessy BG, Vellai T. Shared developmental roles and transcriptional control of autophagy and apoptosis in Caenorhabditis elegans. J Cell Sci. 2011;124:1510–8. 1582. Goehe RW, Bristol ML, Wilson EN, Gewirtz DA. Autophagy, senescence, and apoptosis. Methods Mol Biol. 2013;962:31–48. 1583. Walsh CM, Edinger AL. The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol Rev. 2010;236:95–109. 1584. Yuan H, Perry CN, Huang C, Iwai-Kanai E, Carreira RS, Glembotski CC, Gottlieb RA. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol. 2009;296:H470–9. 1585. Heath RJ, Xavier RJ. Autophagy, immunity and human disease. Curr Opin Gastroenterol. 2009;25:512–20. 1586. Blagosklonny MV. Hypoxia. MTOR and autophagy. Autophagy. 2013;9:1–3. 1587. Coppé JF, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J. Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem. 2011;286:36396–403. 1588. Capparelli C, Chiavarina B, Whitaker-Menenzes D, Pestell TG, Pestell FG, Hulit J, Andó, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-asociated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neoangiogen- esis. Cell Cycle. 2012;11:3599–610. 1589. Kang HT, Lee KB, Kim HR, Park SC. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One. 2011;6(8):e23367n. doi:10.1371/ journal.pone.0023387. 1590. Kongara S, Karantza V. The interplay between autophagy and ROS in tumorigenesis. Front Oncol. 2012;2:171. doi:10.3389/foncv.2012.00171. 1591. Yue ZY, Jin SK, Yang CW, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003;100:15077–82. 1592. Mohapatra P, Preet R, Das D, Satapathy SR, Choudhuri T, Wyatt MD, Kundu CN. Quinacrine-mediated autophagy and apoptosis in colon cancer cells is through a p53- and p21-dependent mechanism. Oncol Res. 2012;20:81–91. 1593. Chaabane W, User SD, El-Gazzah M, Jaksik R, Saijadi E, Rzeszowska-Wolny J, Los MJ. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp (Wroclav/Warszow). 2013;61:43–58. References 743

1594. Nehs MA, Lin CI, Kozono DE, Whang EE, Cho NL, Zhu K, Moalem J, Moore FD, Ruan DT. Necroptosis is a novel mechanism of radiation-induced thyroid and adrenocortical cancers. Surgery. 2011;150:1032–9. 1595. Han W, Xie J, Fang Y, Wang Z, Pan H. Nec-1 enhances shikonin-induced apoptosis in leukemia cells by inhibition of RIP-1 and ERK1/2. Int J Med Sci. 2012;13:7212–25. 1596. Qased AB, Yi H, Liang N, Ma S, Qiao S, Liu X. MicroRNA-18a upregulates autophagy and ataxia telangiectasia mutated gene expression in HCT116 colon cancer cells. Mol Med Report 2012; doi:10.3892/mmr.2014. 1597. Golden EB, Pelliciotta I, Demaria S, Barcellos-Hoff MH, Formenti SC. The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol. 2012;2:88. doi:10.3389/fonc.2012.0008. 1598. Hegyi H, Buday L, Tompa P. Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins. PLoS Comput Biol. 2009;5910:e1000552. doi:10.1371/ journal.pcbi.100055. 1599. Bateman A, Birney E, Durin R, Eddy SR, Howe KL, Sonnhammer EL. The Pfam protein families database. Nucl Acids Res 2000;28:263–6. 1600. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD. The Pfam protein families database. Nucl Acids Res. 2012;50:D290–301. 1601. Billington WD. The immunological problem of pregnancy: 50 years with the hope of progress. A tribute to Peter Medawar. J Reprod Immunol. 2003;60:1–11. 1602. Chakraborty S, Valiya Veetti M, Sadagopan S, Paudel N, Chandran B. c-Cbl-mediated selective virus-receptor translocations into lipid rafts regulate productive Kaposi’s sarcoma-associated herpesvirus infection in endothelial cells. J Virol. 2011;85:12410–30. 1603. Jain SK, Langdon WY, Varticovski L. Tyrosine phosphorylation of p120cbl in BCR/abl transformed hematopoietic cells mediates enhanced association with phosphatidyl inositol 3-kinase. Oncogene. 1997;14:1127–2228. 1604. Goga A, McLaughlin J, Afar DE, Safran DC, Witte ON. Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell. 1995;82:981–8. 1605. Kao HW, Sanada M, Liang DC, Lai CL, Lee EH, Kuo MC, Lin TL, Shib YS, Wu JH, Huang CF, Ogawa S, Shih LY. A high occurrence of acquisition and/or expansion of C-CBL mutant clones in the progression of high-risk myelodysplastic syndrome to acute myeloid leukemia. Neoplasia. 2011;13:1035–42. 1606a. Weinkauf C, Pereiraperrin M. Trypanosoma cruzi promotes neuronal and glial cell survival through the neurotrophic receptor TrkC. Infect Immun. 2009;77:1368–75. 1606b. Weinkauf C, Salvador R, PreiraPerrin M. Neurotrophin receptor TrkC is an entry receptor for Trypanosoma cruzi in neural, glial, and epithelial cells. Infect Immun. 2011;79:4081–7. 1607. Sasahira T, Ueda N, Yamamoto K, Bhawal UK, Kurihara M, Kirita T, Kuniyasu H. Trks are novel oncogenes involved in the induction of neovascularization, and nodal metastasis in oral squamous cell carcinoma. Clin Exp Metastasis 2013;30:165–76. doi:10.1007/s10585=012-0525-x. 1608. Dutton-Regester K, Aoude LG, Nancarrow DJ, Stark MS, O’Connor L, Lanagan C, Pupo GM, Tembe V, Carter CD, O’Rourke M, Soolyer RA, Mann GJ, Schmidt CW, Herington A, Hayward NK. Identification of TGF (TRK-fused gene) as a putative metastatic melanoma tumor suppressor gene. Genes Chromosomes Cancer. 2012;51:452–61. 1609. Poell JB, van Haastert RJ, de Gunst T, Schultz IJ, Gommans WM, Verheul M, Cerisoli F, Prevost GP, Schaapveld RQJ, Cuppen E. A functional screen identifies specific microRNAs capable of inhibiting human melanoma cell viability. PLoS One. 2012;7(8): e43569. doi:10.1371/journal.pone.0043569. 1610. Kelly BL, Singh G, Alyar A. Molecular and cellular characterization of an AT-hook protein from Leishmania. PLoS One. 2011;6(6):e21412. doi:10.1371/journal.pone. 00214112. 744 References

1611. Yun J, Kim YS, Jung JH, Seo PJ, Park CM. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying flowering locus T chromatin in Arabidopsis. J Biol Chem. 2012;287:15307–16. 1612. Moliterno AR, Resar LMS. AKNA: another AT-hook transcription factor “hooking-up” with inflammation. Cell Res. 2011;21:1528–30. 1613. Perales G, Burguete-García AI, Dimas J, Bahena-Román M, Bermúdez-Morales VH, Moreno J, Madrid-Marina V. A polymorphism in the AT-hook motif of the transcriptional regulator AKNA is a risk factor for cervical cancer. Biomarkers. 2010;15:470–4. 1614. Takeuchi I, Takaha N, Nakamura T, Hongo F, Mikami K, Kamoi K, Okihara K, Kawauchi A, Miki T. High mobility group protein AT-hook 1 (HMGA1) is associated with the.development of androgen independence in prostate cancer cells. Prostate. 2012;72:1124–32. 1615. Murga-Penas EM, Callet-Bauchu E, Ye H, Gazzo S, Berger F, Schilling G, Albert-Konetzny N, Vettorazzi E, Salles G, Wlodarska I, Du MQ, Bokemeyer C, Dierlamm J. The t(134;18)(q32;q21)/IGH-MALT 1 translocation in MALT lymphoma contains template nucleotide insertions and a major breakpoint region similar to follicular and mantle cell lymphoma. Blood. 2010;115:2214–9. 1616. Baró C, Espinet B, Salidom M, Garcia M, Sánchez B, Florensa L, Bellosillo S, Solé F. Cryptic IGH/BCL2 rearrangements with variant FISH patterns in follicular lymphoma. Leuk Res. 2011;35:256–9. 1617. Nambiar M, Raghavan SC. Mechanism of fragility at BCL2 gene minor breakpoint cluster region during t(14:;18) chromosomal translocation. J Biol Chem. 2012;287:8688–701. 1618. Khanim F, Dawson C, Meseda CA, Dawson J, Mackett M, Young LS. BHRF1, a viral homologue of the Bcl-2 oncogene, is conserved at both the sequence and functional level in different Epstein-Barr virus isolates. J Gen Virol. 1997;78:2987–99. 1619. Jing YZ, Wang Y, Jia YP, Luo B. Polymorphisms of Epstein-Barr virus BHRF-1 gene, a homologue of bcl-2. Chin J Cancer. 2010;12:1000–5. 1620. Bisogno G, Soloni P, Conte M, Podda M, Ferrari A, Garaventa A, Luksch R, Cecchetto G. Esthesioneuroblastoma in pediatric and adolescent age. A report from the TREP project in cooperation with the Italian Neuroblastoma and Soft Tissue Sarcoma Committee. BMC Cancer. 2012;12:117. doi:10.1186/1471-2407-12-117. 1621. Corvi R, Amier LC, Savelyeva L, Gehring M, Schwab M. MYCN is retained in single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells. Proc Natl Acad Sci USA. 1994;91:5523–7. 1622. Gostissa M, Ranganath S, Bianco JM, Alt FW. Chromosomal location targets different MYC family gene members for oncogenic translocations. Proc Natl Acad Sci USA. 2009;106:2265–70. 1623. Szabó PM, Pintér M, Szabó DR, Zsippai A, Patócs A, Falus A, Rácz K, Igaz P. Integrative analysis of neuroblastoma and pheochromocytoma genomics data. BMC Med Genomics. 2012;5:48. doi:10.1186/1755-8794-5-48. 1624. Choudhury SR, Karmakar S, Banik NL, Ray SK. Targeting angiogenesis for controling neuroblastoma. J Oncol. 2012;2012:782020. doi:10.1155/2012/782020. 1625. Stallings RL, Foley NH, Bray IM, Das S, Buckley PG. MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation. Semin Cancer Biol. 2011;21:283–90. 1626. Zheng B, Han M, Y-n Shu, Y-j Li, S-b Miao, X-h Zhang, H-j Shi, Zhang T, Wen J-K. HDAC2 phosphorylation-dependent Llf5 deacetylation and RARα acetylation induced by RAR agonist switch the transcription regulatory programs of p21 in VSMCs. Cell Res. 2011;21:12487–1508. References 745

1627. Maresca G, Natoli M, Nardella M, Arisi I, Trisciuglio D, Desideri M, Brandi R, D’Aquanno S, Nicotra MR, D’Onofriom M, Urbani A, Del Bufalo D, Felsani A, D’Agnano I. LMNA knock-down affects differentiation and progression of human neuroblastoma cells. PLoS One. 2012;7(9):e45513. doi:10.1371/journal.pone.0045513. 1628. Pollack S, Heppner G, Brawn RJ, Nelson K. Specific killing of tumor cells in vitro in the presence of normal lymphoid cells and sera from host immune to the tumor antigens. Int J Cancer. 1972;9:316–23. 1629. Pollack S, Nelson K. Specific, “arming” of normal lymph-node cells by sera from tumor-bearing mice. Early appearance of a lymphoid arming factor and cytotoxic lymph-node cells after tumor induction. Int J Cancer. 1974;14:522–9. 1630a. Sinkovics JG, Dryer DA, Shirato S, Cabiness JR, Shullenberger CC. Cytotoxic lymphocytes. I. Destruction of neoplastic cells by lymphocytes of human origin. Texas Rep Biol Med. 1971;29:227–42. 1630b. Sinkovics JG, Ahmed N, Cabiness JR, Hrgovcic MJ, Wilbur JR. Cytotoxic lymphocytes. II. Antagonism and synergism between serum factors and lymphocytes of patients with sarcoma, as tested against cultured tumor cells. Texas Rep Biol Med. 1972;30:347–60. 1631a. Sinkovics JG, Cabiness JR, Shullenberger CC. Monitoring in vitro of immune reactions to solid tumors. In: 7th annual San Francisco cancer symposium “the interrelationship of the immune response and cancer.” Front Radiat Ther Oncol Karger Basel New York1972;7:141–154. 1631b. Sinkovics JG, Cabiness JR, Shullenberger CC. In vitro cytotoxicity of lymphocytes to human sarcoma cells. Bibliotheca Haematologica. 1973;39:846–51. 1632. Sinkovics JG, Cabiness JR, Shullenberger CC. Disappearance after chemotherapy of blocking serum factors as measured in vitro with lymphocytes cytotoxic to tumor cells. Cancer. 1972;30:1428–37. 1633. Sinkovics JG. Monitoring in vitro of cell-mediated immune reactions to tumors. Methods Cancer Res. 1973;8:107–175 (Harris Bush editor New York: Academic Press). 1634. Sinkovics JG, Campos LT, Kay HD, Loh KK, Cabiness JR, Ervin F. The concept of immunotherapy of human sarcomas: the need for an in vitro monitoring assay. Ann Clin Lab Sci. 1973;3:414–23. 1635. Sinkovics JG, Williams DE, Campos LT, Kay HD, Romero JJ. Intensification of immune reactions of patients to cultured sarcoma cells: attempts at monitored immunotherapy. Sem Oncol. 1974;1:351–65. 1636. Sinkovics JG, Thota H, Loh KK, Gonzalez F, Campos LT, Romero JJ, Kay HD, King D. Prospectives for immunotherapy of human sarcomas. In: The 19th annual clinical conference “cancer chemotherapy: fundamental concepts and recent advances”. The University of Texas M.D. Anderson Hospital and Tumor Institute, Houston TX. Year Book Medical Publisher, Chicago. 1975;417–443. 1637a. Sinkovics JG, Plager C, McMurtrey M, Romero JJ, Romsdahl MM. Immunotherapy of human sarcomas. In: The 21st annual clinical conference on cancer, 1976, The University of Texas System Cancer Center M.D. Anderson Hospital and Tumor Institute, Houston, Texas. Year Book Medical Publishers, Chicago London. 1977;361–410. 1637b. Sinkovics JG, Plager C, Papadopoulos N, McMurtrey MJ, Romero JJ, Waldinger RR, Romsdahl MM. Immunology and immunotherapy of human sarcomas. In: Immunotherapy of Human Cancer. 22nd Annual Clinical Conference, 1977. The University of Texas M.D. Anderson Hospital and Tumor Institute, Houston, TX. Raven Press, New York 1978; 267–288. 1638. Tarek N, Le Luduec JB, Gallagher MM, Zheng J, Venstrom JM, Chamberlain E, Modak S, Heller G, Dupont B, Cheung NK, Hsu KC. Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J Clin Invest. 2012;122:3260–70. 746 References

1639. Koehn TA, Trimble LL, Alderson KL, Erbe AK, McDowell KA, Grzywacz B, Hank JA, Sondel PM. Increasing the clinical efficacy of NK and antibody-mediated cancer immunotherapy : potential predictors of successful clinical outcome based on observa- tions in high-risk neuroblastoma. Front Pharmacol. 2012;3:91. doi:10.3389/fphar.2012. 00091. 1640. Cheung IY, Hsu K, Cheung NK. Activation of peripheral-blood granulocytes is strongly correlated with patient outcome after immunotherapy with anti-GD2 monoclonal antibody and granulocyte-macrophage colony stimulating factor. J Clin Oncol. 2012;30:426–32. 1641. Sheard MA, Asgharzadeh S, Liu Y, Lin TY, Wu HW, Groshen S, Lee DA, Seeger RC. Membrane-bound TRAIL supplements natural killer cell cytotoxicity against neuroblas- toma cells. J immunother. 2013;36:319–29. 1642. Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST, Rajaram V, de Fátima Bonaldo M, Wang D, Goldman S, Tomita T, Soares MB. Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One. 2011;6(10):e25114. doi:10. 1371/journal.pone.0025114. 1643. Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, Pounds SB, Rand V, Leary SES, White E, Eden C, Hogg T, Northcott P, Mack S, Neale G, Wang Y-D, Coyle B, Atkinson J, DeWire M, Kranenburg TA, Gillespie Y, Allen JC, Merchant T, Boop FA, Sanford RA, Gajjar A, Ellison DW, Taylor ND, Grundy RG, Gilbertson RJ. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature. 2010;466:632–6. 1644. Yeung JT, Hamilton RL, Okada H, Jakacki RI, Pollack IF. Increased expression of tumor-associated antigens in pediatric and adult ependymomas: implication for vaccine therapy. J Neurooncol. 2013;111:103–11. 1645. Lu Z, Zhang Y, Li Z, Yu S, Zhao G, Li M, Wang Z, Wang Q, Yang Y. Overexpression of the B-types Eph and ephrin genes correlates with progression and pain in human pancreatic cancer. Oncol Lett. 2012;3:1207–12. 1646. Nakada M, Anderson EM, Demuth T, Nakada S, Reavie LB, Drake KL, Hoelzinger DB, Berens ME. The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int J Cancer. 2010;126:1155–65. 1647. Mateo Dopeso H, Lozano S, Mazzolini R, Rodrigues P, Lagares-Tena L, Ceron J, Romero J, Esteves M, Landolfi S, Hernández-Losa J, Castaño J, Wilson AJ, Ramon Y, Cajal S, Mariadason JM, Schwartz S Jr, Arango D. The receptor tyrosine kinase EPHB4 has tumor suppressor activities in intestinal tumorigenesis. Cancer Res. 2009;69:7430–8. 1648. MacQuarrie KL, Yao Z, Fong AP, Diede SJ, Rudzinski ER, Hawkins DS, Tapscott SJ. Comparison of genome-wide binding of MyoD in normal human myogenic cells and rhabdomyosarcomas identifies regional and local suppression of pro-myogenic transcription factors. Mol Cell Biol. 2013;33:773–84. 1649. Murata T, Noda C, Saito S, Kawashima D, Sugimoto A, Isomura H, Kanda T, Yokoyama KK, Tsurumi T. Involvement of Jun dimerization protein 2 (JDP2) in the maintenance of Epstein-Barr virus latency. J Biol Chem. 2011;286:22007–16. 1650. Magnusson S, Gisselsson D, Wiebe T, Kristofferson U, Borg Å, Olsson H. Prevalence of germline TP53 mutations and history of Li-Fraumeni syndrome in families with childhood adrenocortical tumors, choroid plexus tumors, and rhabdomyosarcoma: a population-based survey. Pediatr Blood Cancer. 2012;50:846–53. 1651. Ladanyi M, Cha C, Lewis R, Jhanwar SC, Huvos AG, Healey JH. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res. 1993;53:16–8. 1652. Keleti J, Quezado MM, Abaza MN, Raffeld M, Tsokos M. The MDM2 oncoprotein is overexpressed in rhabdomyosarcoma cell lines and stabilizes ld-type p53 protein. Am J Pathol 1996;149:143–51. References 747

1653. Schwienbacher C, Sabbioni S, Campi M, Veronese A, Bernardi G, Menegatto A, Hatada I, Mukai T, Ohashi H, Barbanti-Brodano G, Croce CM, Negrini M. Transcriptional map of 170-kb region at chromosome 11p15.5: identification and mutational analysis of the BWR1A gene reveals the presence of mutations in tumor samples. Proc Natl Acad Sci USA 1998;95:3873–3878. 1654. Walter D, Satheesa S, Albrecht P, Bornhauser BC, D’Alessandro V, Oesh SM, Rehrauer H, Leuschner J, Koscielniak E, Gengler C, Moch H, Bernasconi M, Niggli FK, Schäfer BW. CWS, Study Group. CD133 positive embryonal rhabdomyosarcoma stem-like cell population is enriched in rhabdosphere. PLoS One. 2011;65:e19506. doi:10.1371/journal.pone.0019506. 1655. Langenau DM, Keefe MD, Storer NY, Guyon JAR, Kutok JL, Le X, Goessling W, Neuberg DS, Kunkel LM, Zon Li. Effects of Ras on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 2007;21:1382–95. 1656. Rao PK, Missiaglia E, Shields L, Hyde G, Yuan B, Shepherd CJ, Shipley J, Kodish HF. Distinct roles for miR-1and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. FASEB J. 2010;24:3427–37. 1657. Chang L, Kiriazis H, Gao XM, Du XJ, El-Osta A. Cardiac genes show contextual SWI/SNF interactions with distinguishable gene activities. Epigenetics. 2011;6:760–8. 1658. Chew CS, Chen X, Parente JA Jr, Tarrer S, Okamoto C, Qin HY. Lasp-1 binds to non-muscle F-actin in vitro and is localized within multiple sites of dynamic actin assembly in vivo. J Cell Sci. 2002;115:4787–99. 1659a. Grunewald TG, Kammerer U, Kapp M, Eck M, Dietl J, Butt E, Honig A. Nuclear localization and cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast carcinoma. BMC Cancer. 2007;7:198. 1659b. Grunewald TG, Butt E. The LIM and SH3 domain protein family: structural proteins or signal transducers or both? Mol Cancer. 2008;7:31. doi:10.1186/1476-4598-7-31. 1660. Hamelin M, Scott Ian M, Wayb JC, Culottin JG. The mec-7 β-tubulin gene of Caenorhabditis elegans is expressed primarily in the touch receptor neurons. EMBO J. 1992;11:2885–2893. 1661. Jayo A, Parsons M, Adams JC. A novel Rho-dependent pathway that drives interactions of fascin-1 p-Lin-11/Isl-1?Mec-3 kinases (LIMK) 1/2 to promote fascin-1/actin binding and filopodi stability. BMC Biol. 2012;10:72. doi:10.1186/1741-7007-10-72. 1662. Liu J, Walp ER, May CL. Elevation of transcription factor Islet-1 levels in vivo increases β-cell function but not β-cell mass. Islets. 2012;4:199–206. 1663. Marri S, Gupta BP. Dissection of lin-11 enhancer region in Caenorhabditis elegans and other nematodes. Dev Biol. 2009;325:402–11. 1664. Savage N, Linn D, McDonough C, Donohoe JM, Franco A, Reuter A, Biddinger PW, Eaton KW, Biegel JA, Sharma S. Molecularly confirmed primary malignant rhabdoid tumor of the urinary bladder: implications of accurate diagnosis. Ann Diagn Pathol. 2012;16:504–7. 1665. Wahlström G, Vartianen M, Yamamoto L, Mattila PK, Lappalainen P, Heino TI. Twinfilin is required for actin-dependent developmental processes in drosophila. J Cell Biol. 2001;155:787–96. 1666. San Juan BP, Andrade-Zapata Baonza A. The bHLH factors Dpn and members of the E (spl) complex mediate the function of Notch signaling regulating cell proliferation during wing S-disc development. Biol Open. 2012;1:667–76. 1667. Heisig J, Weber D, Englberger E, Winkler A, Kneitz S, Sung WK, Wolf E, Eilers M, Wei CL, Gessler M. Target gene analysis by microarrays and chromatin immunopre- cipitation identifies HEY proteins as highly redundant bHLH repressors. PLoS Genet. 2012;8(5):e1002728. doi:10.1371/journal.pgen.1002728. 748 References

1668. Johnsen SA, Güngör C, Prenzel T, Riethdorf S, Riethdorf L, Taniguchi-Ishigaki N, Rau T, Tursun B, Furlow JD, Sauter G, Scheffner M, Pantel K, Gannon E, Bach I. Regulation of estrogen-dependent transcription by the LIM cofactors CLIM and RLIM in breast cancer. Cancer Res. 2009;69:128–36. 1669. Numata M, Morinaga S, Watanabe T, Tamagawa H, Yamamoto N, Nakamura Y, Kamea Y, Okawa S, Rino Y, Akaike M, Masuda M, Miyagi Y. The clinical significance of SWI/SNF complex in pancreatic cancer. Int J Oncol. 2013;42:403–10. doi:10.3892/ijo.2012.1723. 1670. Raman D, Sai J, Neelm NF, Chew CS, Richmond A. LIM and SH3 protein-1 modulates CXCR2-mediated cell migration. PLoS One. 2010;5(4):e10050. 1671. Hanashima A, Kubokawa K, Kimura S. Characterization of amphioxus nebulin and the similarity to human nebulin. J Exp Biol. 2009;212:668–72. 1672. Sumegi J, Nishio J, Nelson M, Frayer RW, Perry D, Bridge JA. A novel t(4;22)(q31;q12) produces an EWSR1-SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mol Pathol. 2011;24:333–42. 1673. Bourdeaut F, Biéche I. Chromatin remodeling defects and cancer: the SWI/SNF example. Bull Cancer. 2012;99:1133–40. 1674. Wang X, Sansam CS, Cs Thom, Metzger D, Evans JA, Nguyen PTL, Roberts CWM. Oncogenesis caused by loss of the SNF 5 tumor suppressor is dependent upon activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res. 2009;69:8094–101. 1675. Naidu SR, Love IM, Imbalzano AN, Grossman SR, Androphy EJ. The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene. 2009;28:2492–501. 1676. Bryant KE, Colgrove RC, Knipe DM. Cellular SNF2H chromatin-remodeling factor promotes herpes simplex virus 1 immediate-early gene expression and replication. MBio. 2011;2(1):e00330–10. doi:10.1128/mBio.00330-10. 1677. Wang L, Pal S, Sif S. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol. 2008;28:6262–77. 1678. Caldas H, Holloway MP, Hall BM, Qualman SJ, Altura RA. Survivin-directed RNA interference cocktail is a potent suppressor of tumour growth in vivo. J Med Genet. 2006;43:119–28. 1679. Kang Z, Sun SY, Cao L. Activating death receptor DR5 as a therapeutic strategy for rhabdomyosarcoma. ISRN Oncol. 2012;2012:395952. doi:10.5402/2012/395952. 1680. Ramírez-Peinado S, Alcázar-Limones F, Lagares-Tena L, Mjiyad NE, Caro-Maldonado A, Tirado OM, Muñoz-Pinedo C. 2-Deoxyglucose induces noxa-dependent apoptosis in alveolar rhabdomyosarcoma. Cancer Res. 2011;71:6796-806 doi:10.1158/0008-5472. CAN-11-0759. 1681. MacFarlane M, Robinson GL, Cain K. Glucose—a sweet way to die. Cell Cycle. 2012;11:3919–25. 1682. Robinson GL, Dinsdale D, MacFarlane M, Cain K. Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle lymphoma cells to TRAIL. Oncogene. 2012;31:4996–5006. 1683. Rooswinkel RW, van de Kooij B, Verheij M, Borst J. Bcl-2is a better ABT737 target than Bcl-xL or Bcl-w and only Noxa overcomes resistance mediated by Mcl-1, Bfl-1, or Bcl-B. Cell Death Dis. 2012;3(8):e366. 1684. Fulda S. Cell death pathways as therapeutic targets in rhabdomyosarcoma. Sarcoma. 2012;2012:326210. 1685. Fulda S. Targeting c-FLICE-like inhibitory protein (CFLAR) in cancer. Expert Opin Ther Targets. 2012;17:195–201. 1686. Regenbrecht CR, Jung M, Lehrbach H, Adjave J. The molecular basis of genistein-induced mitotic arrest and exit of self-renewal in embryonal carcinoma and primary cancer cell lines. BMC Med Genomics. 2008;1:49. doi:10.1186/1755-8794-1-49. References 749

1687. Kuci S, Rettinger E, Voß, Weber G, Stais M, Kreyenberg H, Willasch A, Kuci Z, Koscielniak E, Klöss S, von Laer D, Klinbebiel T, Bader T. Efficient lysis of rhabdomyosarcoma cells by cytokine-induced killer cells: implications for adoptive immunotherapy after allogeneic stem cell transplantation. Haematologica. 2010;95:1579–1586. 1688. Rettinger E, Meyer V, Kreyenberg H, Volk A, Kuci S, Willasch S, Koscielniak E, Fulda S, Wels WS, Boenig H, Klingebiel T, Bader P. Cytotoxix capacity of IL-15-stimulated cytokine-induced killer cells against human acute myeloid leukemia and rhabdomyosarcoma in humanized preclinical mouse model. Front Oncol. 2012;2:32. doi:10.3389/fonc.2012.00032. 1689. Kong Y, Cao W, Xi X, Ma C, Cui L, He W. The NKG2D ligand ULBVP4 binds to TCRγ9/б2 and induces cytotoxicity to tumor cells through both TCRγб and NKG2D. Blood. 2009;114:310–7. 1690. Guo H, Wang L, Peng L, Zhou ZH, Deng H. Open reading frame 33 of gammaherpesvirus encodes a tegument protein essential for virion morphogenesis and egress. J Virol. 2009;83:10582–95. 1691. Toth Z, Maglinte DT, Lee SH, Lee H-R, Wong L-Y, Brulois KF, Lee s, Buckley J, Laird PW, Marquez VE, Jung JU. Epigenetic analysis of KSHV latent and lytic genomes. PLoS Pathog 201;6(7):e1001013. doi:10.137/journal.ppat.1001013. 1692. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 2011;476:228–31. 1693. Müller S, Zocher G, Steinle A, Stehle T. Structure of the HCMV UL16-MICB complex elucidates select binding of a viral immunoevasion to diverse NKGD2D ligands. PLoS Pathog. 2010;6(1):e1000723. 1694. Orentas RJ, Lee DW, Mackall C. Immunotherapy targets in pediatric cancer. Front Oncol. 2012;2:3. doi:10.3389/fonc.2012.00003. 1695. Lai JP, Robbins PF, Raffeld M, Aung PP, Tsokos M, Rosenberg SA, Miettinen MM, Lee CC. NY-ESO-1 expression in synovial sarcoma and other mesenchymal tumors: significance for NY-ESO-1-based targeted therapy and differential diagnosis. Mod Pathol. 2012;25:854–8. 1696. Lubieniecka JM, de Bruin DR, Su L, van Dijk AH, Subramanian S, van de Rijn M, Poulin N, van Kessel AG, Nielsen TO. Histone deacetylase inhibitors reverse SS128-SSX-mediated polycomb silencing of the tumor suppressor early growth response in synovial sarcoma. Cancer Res. 2008;68:4303–10. 1697a. Ohta H, Hashii Y, Yoneda A, Takizawa S, Kusuki S, Tokimasa S, Fukuzawa M, Tsuboi A, Murao A, Oka Y, Oji Y, Aozasa K, Nakatsuka S, Sugiyama H, Ozono K. WT1 (Wilms tumor1) peptide immunotherapy for childhood rhabdomyosarcoma: a case report. Pediatr Hematol Oncol. 2009;26:74–83. 1697b. Krishnadas KD, Shapiro T, Lucas K. Complete remission following decitabin/dendritic cell vaccine for relapsed neuroblastoma. Pediatrics. 2013;131:331–41. 1698. Chou J, Voong LN, Mortales CL, Towlerton AM, Pollack SM, Chen X, Yee C, Robbins PF, Warren EH. Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother. 2012;35:131–41. 1699. Cho D, Shook DR, Shimasaki N, Chang Y-H, Fujisaki H, Campana D. Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res. 2010;16:3901–9. 1700. Pérez-Martinez A, de Prada Vicente I, Fernández L, González-Vicent M, ValentínJ, Martin R, Maxwell H, Sevilla J, Vicario JL, Díaz MÁ. Natural killer cells can exert a graft-vs-tumor effect in haploidentical stem cell transplantation for pediatric solid tumors. Exp Hematol. 2012;40:882–91. 750 References

1701. Moretta A, Pende D, Locatelli F, Moretta L. Activating and inhibitory killer immunoglobulin-like receptors (KIR) in haploidentical haematopoietic stem cell transplantation to cure high-risk leukaemias. Clin Exp Immunol. 2009;157:325–31. 1702. Simon-Keller K, Paschen A, Eichmüller S, Gattenlöhner S, Barth S, Koscieliak E, Leuschner I, Stöbel P, Hombach A, Abken H, Marx A. Adoptive T-cell therapy of rhabdomyosarcoma. Pathologe. 2010;S2:215–20. 1703. Herrmann D, Seitz G, Fuchs J, Armeanu-Ebinger S. Susceptibility of rhabdomyosarcoma cells to macrophage-mediated cytotoxicity. Oncoimmunology. 2012;1:279–86. 1704. Marshall AD, Grosveld GC. Alveolar rhabdomyosarcoma—the molecular drivers PAX3/7-FOXO1-induced tumorigenesis. Skeletal Muscle. 2012;2:25. doi:10.1186/ 2044-5040-2-25. 1705. de Souza RR, Oliviera ID, Caran EM, Alves MT, Abib SD, Toledo SR. Investigation of PAX3/7-FKHR fusion genes and IGF2 gene expression in rhabdomyosarcoma tumors. Growth Horm IGF Res. 2012;22:245–9. 1706. Armeanu-Ebinger S, Herrmann D, Bonin M, Leuschner I, Warmann SW, Fuchs J, Seitz G. Differential expression of miRNAS in rhabdomyosarcoma and malignant rhabdoid tumor. Exp Cell Res. 2012;318:2567–77. 1707. Liu L, Wang YD, Wu J, Cui J, Chen T. Carnitine palmytoyltransferase 1A (CPT1A): a transcriptional target of PAX3-FKHR and mediates PAX3-FKHR-dependent motility in alveolar rhabdomyosarcoma cells. BMC Cancer. 2012;12:154. doi:10.1186/1471-2407- 12-154. 1708. Burnet FM. The concept of immunological surveillance. Proc Exp Tumor Res. 1970;13:1–27. 1709. Barkan D, Green JE, Chamber AF. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer. 2010;46:1181–8. 1710. Bragado P, Sosa MS, Keely P, Condeelis J, Aquirre-Ghiso JA. Microenvironment dictating tumor cell dormancy. Recent Res Cancer Res. 2012;195:2539. 1711. Layden MJ, Boekhout M, Martindale MQ. Nematostella vectensis achaete-scute homolog NvAshA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development. 2012;139:1013–22. 1712. Lu TM, Luo YJ, Yu JK. BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development. 2012;139:2020–30. 1713a. Borello U, Coletta M, Tajbakhsh S, Leyns L, De Romerts EM, Buckingham M, Cossu G. Transplacental delivery of the Wnt antagonist Frzb1 inhibits development of caudal paraxial mesoderm and skeletal myogenesis in mouse embryo. Development. 1999;126:4247–4255. 1713b. Borello U, Berarducci B, Murphy P, Bajard L, Buffa V, Piccolo S, Buckingham M, Cossu G. The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development. 2006;133:3723–32. 1714. Liu LF, Shen WJ, Zhang ZH, Wang LJ, Kraemer FB. Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARγ and adiponectin. J Cell Physiol. 2010;225:837–45. 1715. Kamimura K, Ueno K, Nakagawa J, Hamada R, Saitone M, Maedea N. Perlecan regulates bidirectional Wnt signaling at the drosophila neuromuscular junction. J Cell Biol. 2013;200:219–33. doi:10.1083/jcb.201207036. 1716. Eichhorn PJ, Rodón L, Gonzáles-Juncá A, Dirac A, Gili M, Martinez-Sáez E, Aura C, Barba I, Peg V, Prat A, Cuartas I, Jimenez J, Garcia-Dorado D, Sahuguillo J, Bernards R, Baselga J, Seoane J. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med. 2012;18:429–35. References 751

1717. Kawamata S, Matsuzaki K, Murate M, Seki T, Matsuoka K, Iwao Y, Hibi T, Okazaki K. Monogenic Smad3 signaling induced by chronic inflammation is an early event in ulcerative colitis-associated carcinogenesis. Inflamm Bowel Dis. 2011;17:683–95. 1718. Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG. TGF-beta signaling in colon carcinogenesis. Cancer Lett. 2012;314:1–7. 1719. Tarasewicz E, Jeruss JS. Phospho-specific Smad 3 signaling impact on breast oncogenesis. Cell Cycle. 2012;11:2443–51. 1720. Horrocks P, Kilbey BJ. Physical and functional mapping of the transcriptional start sites of Plasmodium falciparum proliferating cell nuclear antigen. Mol Biochem Parasitol. 1996;82:207–15. 1721. Juhasz S, Balogh D, Hajdu I, Burkovics P, Vilamil MA, Zhuang Z, Haracska L. Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance. Nucl Acids Res. 2012;40:10795–808. 1722. Takawa M, Chon HS, Hayami S, Tohyokawa G, Kogure M, Yamane Y, Iwai Y, Maejuima K, Ueda K, Masuda A, Dohmae N, Field HI, Tsunoda T, Kobayashi T, Akasu T, Sugiyama M, Ohnuma S, Atomi Y, Ponder BA, Nakamura Y, Hamamoto R. Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression. Cancer Res. 2012;72:3217–27. 1723. Gloor JW, Balakrishnan L, Campbell JL, Bambara RA. Biochemical analyses indicate that binding and cleavage specificities define the ordered processing of human Okazaki fragments by Dna2 and FEN1. Nucl Acids Res. 2912;40:6774–6786. 1724. Masuda-Sasa T, Imamura O, Campbell JL. Biochemical analysis of human Dna2. Nucl Acids Res. 2006;34:1865–75. 1725. Zheng L, Shen B. Okazaki fragment maturation: nucleases take center stage. J Mol Cell Biol. 2011;3:23–30. 1726. Zhang Z, Zhang S, Lin SH, Wangb X, Wu L, Lee EY, Lee MY. Structure of monoubiquitinated PCNA: implications for DNA polymerase switching and Okazaki fragment maturation. Cell Cycle. 2012;11:2128–36. 1727. Liu L, Zhou C, Zhou L, Peng L, Li D, Zhang X, Zhou M, Kuang P, Yuan Q, Song X, Yang M. Functional FEN1 genetic variants contribute to risk of hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer. Carcinogenesis. 2012;33:119–23. 1728. Falini B, Flenghi L, Fagioli M, Stein H, Schwarting R, Riccardi C, Manocchio I, Pileri S, Pelicci PG, Lanfrancone L. Evolutionary conservation in various mammalian species of the human proliferation-associated epitope recognized by the K-67 monoclonal antibody. J Histochem Cytochem. 1989;37:1471–8. 1729. Gerdes J. Ki-67 and other proliferation markers useful for immunohistological diagnostic and prognostic evaluations in human malignancies. Semin Cancer Biol. 1990;1:199–206. 1730. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22. 1731. Silva CTM, dos Santos Souza S, de Almeida TF, Andrade ZA. Ki-67 is expressed in multiplying forms of Schistosoma mansoni, but not in snail host tissues. Memór Instituto Oswaldo Cruz. 2007;102:651–3. 1732. Sundara YT, Jordanova ES, Hernowo BS, Gandamihardja S, Fleuren GJ. Decidual infiltration of FoxP3+ regulatory T cells, CD58+ decidual natural killer cells and Ki-67 trophoblast cells to hydatidiform mole compared to normal and ectopic pregnancies. Mol Med Report. 2012;5:275–81. 1733. Winking H, Gerdes J, Traut W. Expression of the proliferation marker Ki-67 during early mouse development. Cytogenet Genome Res. 2004;105:251–6. 752 References

1734. Santisteban M, Reynolds C, Barr Fritscher EG, Frost MH, Vierkant RA, Anderson SS, Degnim AC, Visscher DW, Pankratz VS, Hartmann LC. Ki-67: a time-varying biomarker of risk of breast cancer in atypical hyperplasia. Breast Cancer Res Treat. 2010;212:431–7. 1735. Ali HR, Dawson SJ, Blows FM, Provenzano E, Leung S, Nielsen T, Pharoah PD, Caldas C. A Ki67/BCL2 index based on immunohistochemistry is highly prognostic in ER-positive breast cancer. J Pathol. 2012;226:97–107. 1736. Mineta H, Miura K, Ogino T, Takebayashi S, Misawa K, Ueda Y. Vascular endothelial growth factor (VEGF) expression correlates with p53 and Ki-67 expression in tongue squamous cell carcinoma. Anticancer Res. 2002;22:1039–44. 1737. Liu J, Fang L, Cheng Q, Li L, Su C, Zhang B, Pei D, Yang J, Li W, Zheng J. Effects of G250 promoter controlled conditionally replicative adenovirus expressing K67-siRNA on renal cancer cell. Cancer Sci. 2012;103:1880–8. 1738. Fisk JC, Li J, Wang H, Aletta JM, Qu J, Read LK. Proteomic analysis reveals diverse classes of arginine methylproteins in mitochondria of trypanosomes. Mol Cell Proteomics. 2012;12:302–211. 1739. Guo W, Yang D, Xun H, Zhang Y, Huang J, Yang Z, Chen X, Huang Z. Mutations in the D-loop region and increased copy number of mitochondrial DNA in human laryngeal squamous cell carcinoma. Mol Biol Rep. 2013;40:13–20. 1740. Lin CS, Lee HT, Lee SY, Shen YA, Wang LS, Chen Yj, Wei YH. High mitochondrial DNA copy number and bioenergetic function are associated with tumor invasion of esophageal squamous cell carcinoma cell lines. Int J Mol Sci. 2012;13:11228–46. 1741. Ding C, Li R, Wang P, Jin P, Li S, Guo Z. Identification of sequence polymorphism in the D-loop region of mitochondrial DNA as a risk factor of lung cancer. Mitochondrial DNA. 2012;23:251–4. 1742. Lu TM, Luo YJ, Yu JK. BMP and delta/Notch signaling control the development of amphioxus epidermal sensory neurons; insights into the evolution of the peripheral sensory system. Development. 2012;139:2020–30. 1743. Grens A, Mason E, Marsh JL, Bode HR. Evolutionary conservation of a cell fate specification gene: the Hydra achaete-scute homolog has proneural activity in Drosophila. Development. 1995;121:4027–35. 1744. Bergmann A, Steller H. Apoptosis, stem cells, and tissue regeneration. Sci Signal. 2010;3 (145):8. doi:10.1126/scisignal.3145re8. 1745. Fraune J, Alsheimer M, Volff JN, Busch K, Fraune S, Bosch TC, Benavente R. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans. Proc Natl Acad Sci USA. 2012;109:16588–93. 1746. Plickert G, Frank U, Müller WA. Hydractinia, a pioneering model for stem cell biology and reprograming somatic cells to pluripotency. Int J Dev Biol. 2012;56:519–34. 1747. Pankow S, Bamberger C. The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS One. 2007;2 (9):e782. 1748. Simionato D, Kerner P, Dray NJ, Le Gouar M, Ledent V, Arendt D, Vervoort M. Achaete-scute-related genes in the Platynereis dumeilii: insights into the evolution of neural basic helix-loop-helix genes. BMC Evol Biol. 2008;8:170. doi:10.1186/1471- 2148-8-170/. 1749. Zhou Q, Zhang T, Xu W, Yu L, Yi Y, Zhang Z. Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family. BMC Genet. 2008;9:24. doi:10.1186/1471-2156-9-24. 1750. Fromental-Ramain C, Taquet N, Ramain P. Transcriptional interactions between two pannier isoforms and the cofactor U-shaped during neural development in Drosophila. Mech Dev. 2010;127:442–57. References 753

1751. Cordes B, Williams MD, Tirado Y, Bell D, Rosenthal DI, Al-Dharhri SF, Hanna EY, El-Naggar AK. Molecular and phenotypic analysis of poorly differentiated sinonasal neoplasms: an integrated approach for early diagnosis and classification. Hum Pathol. 2009;40:283–92. 1752. Rostomily RC, Bermingham-McDonogh O, Berger MS, Tapscott SJ, Reh TA, Olson JM. Expression of neurogenic basic helix-loop-helix genes in primitive neuroectodermal tumors. Cancer Res. 1997;57:3526–31. 1753. Carney ME, O’Reilly RC, Sholevar B, Bujakova OI, Lowry LD, Keane WM, Margolis FL, Rothstein JL. Expression of the human achaete-scute 1 gene in olfactory neuroblastoma (esthesioneuroblastoma). J Neurooncol. 1995;26:35–43. 1754. Mhawech P, Berczy M, Asaly M, Hermann F, Bouzourene H, Allal AS, Dulguerov P, Schwaller J. Human achaete-scute homologue (hASH1) mRNA level as a diagnostic marker to distinguish esthesioneuroblastoma from poorly differentiated tumor arising in the sinonasal tract. Am J Clin Pathol. 2004;122:100–5. 1755. Jiang T, Collins BJ, Jin N, Watkins DN, Brock MV, Matsu W, Nelkin BD, Ball DW. Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res. 2009;69:845–54. 1756. Zhu R, Yang Y, Tian Y, Bai J, Zhang X, Li X, Peng Z, Chen Y, Qian C, Bian X, Wang R. Ascl2 knockdown results in tumor growth arrest by miRNA-302b-related inhibition of colon cancer progenitor cells. PLoS One. 2012;7(2):e32170. 1757. Osada H, Tomida S, Yatabe Y, Tatematsu Y, Takeuchi T, Murakami H, Kondo Y, Sekido Y, Takahashi T. Roles of achaete-scute homologue 1 in DKK1 and E-cadherin repression and neuroendocrine differentiation in lung cancer. Cancer Res. 2008;68:1647–55. 1758a. Wang H, Lambowitz AM. The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to the reverse transcriptase and DNA polymerase progenitor. Cell. 1993;75:1071–81. 1758b. Kennell JC, Wang H, Lambowitz AM. The Mauriceville plasmid of Neurospora spp. uses novel mechanisms for initiating reverse transcription in vivo. Mol Cell Biol. 1994;14:3094–107. 1758c. Chiang CC, Lambowitz AM. The Mauriceville retroplasmid reverse transcriptase initiates cDNA synthesis de novo at the 3’ end of tRNA. Mol Cell Biol. 1997;17:4526–35. 1758d. Chen B, Lambowitz AM. De novo and DNA primer-mediated initiation of cDNA synthesis by the Mauriceville retroplasmid reverse transcriptase involve recognition of a 3’ CCA sequence. J Mol Biol. 1997;271:311–32. 1759. Antal Z, Manczinger L, Kredics L, Kevel F, Nagy E. Complete DNA sequence and analysis of a mitochondrial plasmid in the mycoparasitic Trichoderma harzarium strain T95. Plasmid. 2002;47:1348–152. 1760. Simpson EB, Ross SL, Marchetti SE, Kenell JC. Relaxed primer specificity associated with reverse transcriptases by the pFOXC retroplasmids of Fusarium oxysporum. Eukaryot Cell. 2004;3:1589–600. 1761. Belfort M, Curcio MJ, Lue NF. Telomerase and retrotransposons: reverse transcriptase that shaped genomes. Proc Natl Acad Sci USA. 2011;108:20304–10. 1762. Beauregard A, Curcio MJ, Belfort M. The take and give between retrotransposable elements and their hosts. Annu Rev Genet. 2008;42:587–617. 1763. Gladyshev EA, Arkhipova IR. A widespread class of reverse transcriptase-related cellular genes. Proc Natl Acad Sci USA. 2011;108:20311–6. 1764. Woodrow P, Ciarmiello LF, Fantaccione S, Annunziata MG, Pontecorvo G, Carillo P. Ty1-copia group retrotransposons and the evolution of retroelements in several angiosperm plants: evidence of horizontal transmission. Bioinformation. 2012;8:267–71. 1765. Barry JD, Hall JPJ, Plenderleith L. Genome hyperevolution and the success of a parasite. Ann N Y Acad Sci. 2012;1267:11–7. 754 References

1766. Pardue ML, DeBaryshe PG. Drosophila telomeres: two transposable elements with important roles in chromosomes. Genetica. 1999;107:189–96. 1767. Beilstein MA, Bruinegar AE, Shippen DE. Evolution of the Arabidopsis telomerase RNA. Front Genet. 2012;3:188. 1768. Wojtyla A, Gladych M, Rubis B. Human telomerase activity regulation. Mol Biol Rep. 2011;38:3339–49. 1769. Das R, Shimamoto T, Zahid Hosen SM, ArIfuzzaman M. Comparative study of different msDNA (multicopy single-stranded DNA) structures and phylogenetic comparison of reverse transcriptases (RTS): evidence for vertical inheritance. Bioinformation. 2011;7:176–9. 1770. Zhaxybayeva O, Swithers KS, Foght J, Green AG, Bruce D, Detter C, Han S, Teshima H, Han J, Woyke T, Pitluck S, Nolan M, Ivanova N, Pati A, Land ML, Dlutek M, Doolittle WF, Noll KM, Nesbe CL. Genome sequence of the mesophilic Thermotogales bacterium Mesotoga prima MesG1.Ag.4.2 reveals the largest Thermotogales genome to date. Genome Biol Evol. 2012;4:700–708. 1771. Wiedenheft B, Stedman K, Roberto F, Willits D, Gleskev AK, Zoeller L, Snyder J, Douglas T, Young M. Comparative genomic analysis of hyperthermophilic archaeal Fuselloviridae viruses. J Virol. 2004;78:1954–61. 1772. Geslin C, Gaillard M, Flament D, Roault K, Le Romancer M, Prieur D, Erauso G. Analysis of the first genome of a hyperthermophilic marine virus-like particle, RAV1, isolated from Pyrococcus abyssi. J Bacteriol. 2007;189:4510–9. 1773. Gorlas A, Koonin EV, Benven N, Prieur D, Geslin C. TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ Microbiol. 2012;14:503–16. 1774. Chalopin D, Galiana D, Volff JN. Genetic innovation in vertebrates: gypsy integrase genes and other genes derived from transposable elements. Int J Evol Biol 2012:724519. doi:10.1155/2012/724519. 1775. Campillos M, Doerks T, Shah PK, Bork P. Computational characterization of multiple Gag-like human proteins. Trends Genet. 2006;22:585–9. 1776. Williams AJ, Blacklow SC, Collins. The zinc finger-associated SCAN box is a conserved oligomerization domain. Mol Cell Biol. 1999;19:8526–35. 1777. Zwolinska K. Retroviruses-derived sequences in the human genome. Human endogenous retroviruses (HERVs). Postepy Hig Med Dosw. 2006;60:637–6521774. 1778a. Sinkovics JG, Horvath JC. Transposons → Retrotransposons → Retro(lenti)viruses: their role in genomics and proteomics during evolution, ontogenesis, and morbidity. In: 18th clinical virology symposium annual meeting, PanAmerican Society Clinical Virology, University South FL Department Medical Microbiology & Immunology, Clearwater, FL, May 2002;#M17. 1778b. Sinkovics JG, Horvath JC. Acqusition of new genomic sequences by retro(lenti)viruses and by advanced mutated transposons-retrotransposons. In: 92nd annual meeting American Association Cancer Research, New Orleans, LA, March 2001, Proceedings 2001;42:115 #622. 1779. Sinkovics J, Molnár E. Specific paralysis of antibody production in mice infected with lymphocytic choriomeningitis virus (in Hungarian). Kisérletes Orvostudomány Exp Med Sci. 1955;6:647–53. 1780. Punkosdy GA, Blain M, Glass DD, Lozano MM, O’Mara L, Du JP. Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. Proc Natl Acad Sci USA. 2011;108:3677–382. 1781. Sutkowski N, Conrad B, Thorley-Lawson DA, Hubert BT. Eptein-Barr virus transac- tivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity. 2001;15:579–89. 1782. Rodriguez AJ, Seipel SA, Hamill DR, Romancino DP, Di Carlo D, Suprenant KA. Seawi — a sea urchin piwi/argonaute family member is a component of MT-RNP complexes. RNA. 2005;11:646–56. References 755

1783. Klingel S, Morath I, Strietz J, Menzel K, Holstein TW, Gradl D. Subfunctionalization and neofunctionalization of vertebrate Lef/Tcf transcription factors. Dev Biol. 2012;368:44–53. 1784. Mao CD, Byers SW. Cell-context dependent TCF/LEF expression and function: alternative tales of repression, de-repression and activation potentials. Crit Rev Eukaryot Gene Exp. 2011;21:207–36. 1785. Lavra L, Rinaldo C, Ulivieri A, Luciani E, Fidanza P, Giacomelli L, Bellotti C, Ricci A, Trovato M, Soddu S, Bartolazzi A, Sciacchitano S. The loss of the p53 activator HIPK2 is responsible for galectin-3 overexpression in well differentiated thyroid carcinomas. PLoS One. 2011;6(6):e20665. doi:10.1371/journalmpone.0020665. 1786. Resch AM, Palakodeti D. Small RNA pathways in Schmidtea mediterranea. Int J Dev Biol. 2012;56:67–74. 1787. Holder T, Basquin C, Ebert J, Randel N, Jollivet D, Conti E, Jékely G, Bono F. Deep-transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability. Biok ir. 2013;8:2. doi:10.1186/1745-6150-6-2. 1788. Darricarrère N, Liun N, Watanabde T, Lin H. Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity. Proc Natl Acad Sci USA. 2013. 1789. Olovnikov I, Aravin AA, Fejes-Toth K. Small RNA in the nucleus: the RNA-chromatin ping-pong. Curr Opin Genet Dev. 2012;22:164–71. 1790. Vagin VV, Hannonn GJ, Aravin AA. Arginine methylation as a molecular signature of the Piwi small RNA pathway. Cell Cycle. 2889;15:4003–4004. 1791. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011;12:246–58. 1792a. Watari A, Iwabe N, Masuda H, Okada M. Functional transition of Pak proto-oncogene during early evolution of metazoans. Oncogene. 2010;29:3815–26. 1792b. Watari A. Nature of cancer explored from the perspective of the functional evolution of proto-oncogenes. Yakugaku Zasshi. 2012;132:1165–70. 1793. Kumar A, Molli PR, Pakala SB, Nguyen TB, Rayala SK, Kumar R. PAK thread from amoeba to mammals. J Cell Biochem. 2009;107:579–85. 1794. Koga H, Matsui S, Hirota T, Takebayashi S, Okumura K, Saya H. A human homolog of drosophila lethal(3)malignant brain tumor (I(3)mbt) protein associates with condensed mitotic chromosomes. Oncogene. 1999;18:3799–809. 1795. Manning G, Young SL, Miller WT, Zhai Y. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci USA. 2008;105:9674–9. 1796. Segawa Y, Suga H, Iwabe N, Oneyama C, Akagi T, Miyata T, Okada M. Functional development of Src tyrosine kinase during evolution from a unicellular ancestor to multicellular animals. Proc Natl Acad Sci USA. 2006;103:12921–121026. 1797. de Mendoza A, Suga H, Ruiz-Trillo I. Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol Biol. 2010;10:93. doi:10.1186/1471-2148-10-93. 1798. Roberts S, Delury C, Marsh E. The PDZ protein discs-large (DLG): the ‘Jekyll and Hyde’ of the epithelial polarity proteins. FEBS J. 2012;279:3549–58. 1799. Bonilla-Delgado J, Bulut G, Liu X, Cortés-Malagón EM, Schlegel R, Flores-Maldonado C, Contreras RG, Chung SH, Lambert PF, Uren A, Gariglio P. The E6 oncoprotein from HPV16 enhances the canonical Wnt/β-catenin pathway in skin epidermis in vivo. Mol Cancer Res. 2012;10:250–8. 1800. Pim D, Bergant M, Boon SS, Ganti K, Kranjec C, Massimi P, Subbaiah VK, Thomas VK, Tomaić V, Banks L. Human papillomavirus and the specificity of PDZ targeting. FEBS J. 2012;279:3530–7. 1801. Baumgartner M, Radziwill G, Lorger M, Weiss A, Moelling K. c-Src-mediated epithelial cell migration and invasion regulated by PDZ binding site. Mol Cell Biol. 2008;28:642–55. 756 References

1802. Hou SW, Zhi HY, Pohl N, Loesch M, Qi XM, Li RS, Basir Z, Chen G. PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction. Cancer Res. 2010;70:2901–10. 1803. Subbaiah VK, Kranjec C, Thomas M, Banks L. PDZ domains: the building blocks regulating tumorigenesis. Biochem J. 2011;439:195–205. 1804. Sensui N, Yoshida M, Tachibana K. Role of Mos/MEK/ERK cascade and Cdk12 in Ca2 + oscillations in fertilized ascidian eggs. Dev Biol. 2012;367:208–15. 1805a. Dumollard R, Levasseur M, Hebras C, Huttorei P, Carroll M, Chambon JP, McDougall A. Mos limits the number of meiotic divisions in urochordate eggs. Development. 2011;138:885–95. 1805b. McDougall A, Chenevert J, Lee KW, Hebras C, Dumollard R. Cell cycle in ascidian eggs and embryos. Results Probl Cell Differ. 2011;53:153–69. 1806a. Moloney JB. Biological studies on a lymphoid-leukemia virus extracted from Sarcoma 31. I. Original and introductory investigations. J Natl Cancer Inst. 1960;24:933–51. 1806b. Moloney JB. A virus-induced rhabdomyosarcoma in mice. Natl Cancer Inst Monogr. 1966;22:139–42. 1807a. Schlom J, Moloney JB, Groupé V. Immunological and pathological manifestations of Moloney sarcoma virus (Moloney) infections. Cancer Res. 1970;30:2955–61. 1807b. Schlom J, Moloney JB, Groupé V. Evidence for the rapid decrease in leukemogenic potential of Rauscher leukemia virus in . Cancer Res. 1971;31:260–4. 1808a. Sinkovics JG, Howe CD, Shullenberger CC. Studies on virus attenuation in mouse leukemia.In: International symposium on comparative Leukemia Research, Paris, 1967. Bibliotheca Haematol (Karger, Basel) 1968;31:73–76. 1808b. Sinkovics JG, Gyorkey F, Groves GF, Gyorkey P. Malignant transformation in a tissue culture infected with a mouse leukemia virus. Arch ges Virusforsch. 1968;23:169–74. 1809. Caubet JF, Mathieu-Mahul D, Bernheim A, Larsen CJ, Berger R. Human proto-oncogene c-mos maps to 8q11. EMBO J. 1985;4:2245–8. 1810a. Sinkovics JG, Horvath JC. Cell-free human sarcoma fluids induced temporary focus formation (FF) and antigenic conversion (AC) in cultured human embryonic cells (CHEC). Does siRNA inhibit retroviral or cellular oncogenes encoding fusion oncoproteins in this system? In: Twenty-first annual clinical virology symposium; annual meeting PanAmerican Society Clinical Virology; University of South FL College of Medicine. Clearwater FL, 8–11 May 2005;Abstracts TA49 & TA50. 1810b. Sinkovics JG, Horvath JC. A retroviral paradox: sarcomagenic retroviruses related to those of animals have not been isolated (as yet) from human sarcomas. In: International Symposium. Association Comparative Research Leukemia & Related Diseases. Heidelberg, Germany, 2–6 July 2005;Abstract #49 p 58. 1811. Polyak K. Heterogeneity in breast cancer. J Clin Invest. 2011;121:3786–37. 1812. Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvan P, Ohshiro K, Cyanam D, Nair S, Fugua SAW, Polyak K, Florea LD, Kumar R. RNA sequencing of cancer reveals novel splicing alterations. Sci Rep. 2013;3:1689. 1813a. SzalmásA,Gyöngyösi E, Ferenczi A, László B, Karosi T, Csomor P, Gergely E, Veress G, Kónya J. Activation of Scr, Fyn and Yes non-receptor tyrosine kinases in keratinocytes expressing human papillomavirus (HPV) type 16 E7 oncoprotein. Virol J. 2013;10:79. doi:10.1186/1743-422X-10-79. 1813b. Ferenczi A, Gyöngyösi E, Szalmás A, Hernádi Z, Tóth Z, Kónya J, Veress G. Sequence variation of human papillomavirus type 31 long control region: phylogenetic and functional implications. J Med Virol. 2013;85:852–9. 1814. Li YC, Deng YH, Guo ZH, Zhang MM, Zhu J, Pu CL, Xiang CP, Guo CB. Prognostic value of hedgehog signal component expressions in hepatoblastoma patients. Eur J Med Res. 2010;15:468–74. References 757

1815. Gupta K, Rane S, Das A, Marwaha RK, Menon P, Rao KL. Relationship of β-catenin and postchemotherapy histopathologic changes with overall survival in patients with hepatoblastoma. J Pediatr Hematol Oncol. 2012;34(8):e320–8. doi:10.1097/MPH. 0b013e318280471. 1816. Purcell R, Childs M, Maibach R, Miles C, Turner C, Zimmermann A, Sullivan M. HGF/c-Met related activation of β-catenin in hepatoblastoma. J Exp Clin Cancer Res. 2011;30(1):96. doi:10.1186/1756-9966-30-96. 1817. Chattopadhyay S, Mukherjee S, Boler A, Sharma A, Biswas SK. Hepatoblastoma in the neonatal period. An unusual presentation. J Cytol. 2012;29:252–4. 1818. Lovvorn HN III, Ayers D, Zhao Z, Hilmes M, Prasad P, Shinall MC Jr, Berch B, Neblett WW III, O’Neill JA Jr. Defining hepatoblastoma responsiveness to induction therapy as measured by tumor volume and serum α-fetoprotein kinetics. J Pediatr Surg 201;45:121–129. 1819. Black CT, Cangir A, Choroszy M, Andrassy RJ. Marked response to preoperative high-dose cis-platinum in children with unresectable hepatoblastoma. J Pediatr Surg. 1991;26:1070–3. 1820. Malogolowkin MH, Katzenstein H, Krailo MD, Chen Z, Bowman L, Reynolds M. Intensified platinum therapy is an ineffective strategy for improving outcome in pediatric patients with advanced hepatoblastoma. J Clin Oncol. 2006;24:2879–84. 1821. Collett GP, Goh XF, Linton EA, Redman CW, Sargent IL. RhoE is regulated by cyclic AMP and promotes fusion of human BeWo choriocarcinoma cells. PLoS One. 2012;7 (1):e30453. doi:10.1371/journal.pone.0030453. 1822. Xu F, Wang H, Zhang X, Liun T, Liu Z. Cell proliferation and invasion ability of human choriocarcinoma cells lessened due to inhibition of Sox2 expression by microRNA-145. Exp Ther Med. 2013;5:77–84. 1823. Pang RTK, Leung CON, Lee C-L, Lam KKW, Ye T-M, Chiu PCN, Yeung WSB. Micro-RNA-34a is a tumor suppressor in choriocarcinoma via regulation of Delta-like 1. BMC Cancer. 2013;13:25. doi:10.1186/1471-2407-13-25. 1824. Shih I-M, Kuo K-T. Power of the eternal youth. Am J Pathol. 2008;173:911–4. 1825. Siu MKY, Wong ESY, Chan HY, Ngan HYS, Chan KYK, Cheung ANY. Overexpression of NANOG in gestational trophoblastic disease. Am J Pathol. 2008;173:1165–72. 1826. Ferretti C, Bruni L, Dangles-Marie V, Pecking AP, Bellet D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum Reprod Update. 2007;13:121–14. 1827. Siu MKY, Yeung MCW, Zhang HJ, Kong DSH, Ho JW, Ngan HY, Chan DC, Cheung AN. p21-Activated kinase-1 promotes aggressive phenotype, cell proliferation, and invasion in gestational trophoblastic disease. Am J Pathol. 2010;176:3015–22. 1828. Zhang HJ, Siu MK, Yeung MC, Jiang LL, Mak VC, Ngan HY, Wong OG, Zhang HQ, Cheung AN. Overexpressed PAK4 promotes proliferation, migration and invasion of choriocarcinoma. Carcinogenesis. 2011;32:765–71. 1829. Mak VCY, Lee L, Siu MKY, Wong OGW, Lu X, Ngan HYS, Wong ESY, Cheung ANY. Downregulation of ASPP1 in gestational trophoblastic disease: correlation with hypermethylation, apoptotic activity and clinical outcome. Mod Pathol. 2011;24:522–32. 1830a. Mok SC, Wong KK, Chan RK, Lau CC, Tsao SW, Knapp RC, Berkowitz RS. Molecular cloning of differentially expressed genes in human epithelial ovarian cancer. Gynecol Oncol. 1994;52:247–52. 1830b. Mok SC, Chan WY, Wong KK, Cheung KK, Lau CC, Ng SW, Baldini A, Colitti CV, Rock CO, Berkowitz RS. DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer. Oncogene. 1998;16:2381–7. 758 References

1831. Fulop V, Colitti CV, Genest D, Berkowitz RS, Yiu GK, Ng SW, Szepesi J. Mok SC. DOC-2/hDAB2, a candidate tumor suppressor gene involved in the development of gestational trophoblastic disease. Oncogene. 1998;17:419–24. 1832. Asanoma K, Matsuda T, Kondo H, Kato K, Kishino T, Niikawa N, Wake N, Kato H. NECC1, a candidate choriocarcinoma suppressor gene that encodes a homeodomain consensus motif. Genomics. 2003;82:15–25. 1833. Sinkovics JG. Human chorionic gonadotropin-beta subunit gene expression in cultured human fetal and cancer cells of different types and origins. Cancer. 1996;78:184–5. 1834. Männik J, Vaas P, Rull K, Teesalu P, Laan M. Differential placental expression profile of human growth hormone/chorionic somatomammotropin genes in pregnancies with pre-eclampsia and gestational diabetes mellitus. Mol Cell Endocrinol. 2012;355:180–7. 1835. Vereczkey I, Csermák E, Olasz J, Konya Z, Szentirmay Z, Tóth E. Renal choriocar- cinoma: gestational or germ cell origin? Int J Surg Pathol. 2012;20:623–8. 1836a. Jékely G. Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biol Direct. 2008;3:31. doi:10.1186/1745-6150-3-31. 1836b. Jékely G. Origin of eukaryotic endomembranes: a critical evaluation of different model scenarios. Adv Exp Med Biol. 2007;607:38–51. 1837. Hurtado CA, Rachubinski RA. YIBMH1 encodes a 14-3-3 protein that promotes filamentous growth in the dimorphic yeast Yarrowia lipolytica. Microbiology. 2002;148:3725–35. 1838. Lightner A, Schust DJ, Chen YB, Barrier BF. The fetal allograft revisited: does the study of an ancient invertebrate species shed light on the role of natural killer cells at the maternal-fetal interface? Clin Dev Immunol. 2008;631920. doi:10.1155/2006/631920. 1839. Cichoki F, Felices M, McCullar V, Presnell SR, Al-Attar A, Lutz CT, Miller Js. Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J Immunol. 2011;187:6171–5. 1840. Yamanaka Y, Tagasawa H, Takahashi N, Watanabe A, Guo YM, Iwamoto K, Yamasita J, Saitoh H, Kameoka Y, Shimizu N, Ichinohasama R, Sawada K. Aberrant overexpression of microRNAs activate Akt signaling via downregulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 2009;114:3265–75. 1841. Paik JH, Jang JY, Jeon YK, Kim WY, Kim TM, Heo DS, Kim CW. MicroRNA-146a downregulates NFкB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin Cancer Res. 2011;17:4761–71. 1842. Várady G, Sarkadi B, Fátyol K. TTRAP is a novel component of the non-canonical TRAF6-TAK1 TGF-β signaling pathway. PLoS One. 2011;6(9):e25548. doi:10.1371/ journal.pone.0025548. 1843a. Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, Said J, Knowles DM. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood. 1996;88:645–56. 1843b. Nador RG, Cesarman E, Knowles DM, Said JW. Herpes-like DNA sequences in a body cavity-based lymphoma in an HIV-negative patient. N Engl J Med. 1996;333:943. 1844. Matolcsy A, Nádor RG, Cesarman E, Knowles DM. Immunoglobulin VH gene mutational analysis suggests that primary effusion lymphomas derive from different stages of B cell maturation. Am J Pathol. 1998;153:1609–14. 1845. Bhatt AP, Damania B. AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol. 20122;3.401. doi:10.3389/fimmu.2012.00401. 1846. Graham C, Matta H, Yang Y, Yi H, Suo Y, Tolani B, Chaudhary PM. Kaposi’s sarcoma-associated herpesvirus oncoprotein K13 protects against B cell receptor-induced growth arrest and apoptosis through NF-кB activation. J Virol. 23013;87:2242–2252. References 759

1847a. Ay E, Buzas K, Banati F, Minarovits J. Recent results on the development of fetal immune system: self, epigenetic regulation, fetal immune responses. In: Berencsi III G, author/editor. Maternal fetal transmission of human viruses and their influence on tumorigenesis. Dordrecht: Springer; 2012. p. 51–82. 1847b. Berencsi III G, Takács M. Barriers of the human organism and their Achilles’ heels. In: Berencsi III G, author/editor. Maternal fetal transmission of human viruses and their influence on tumorigenesis. Dordrecht: Springer; 2012. p. 1–50. 1848a. Lund TC, Prator PC, Medveczky MM, Medveczky PG. The Lck binding domain of herpesvirus saimiri tip-484 constitutively activates Lck and STAT3 in T cells. J Virol. 1996;73:1689–94. 1848b. Kjellen P, Amdjadi K, Lund TC, Medveczky PG, Sefton BM. The herpesvirus saimiri tip484 and tip488 proteins both stimulate lck tyrosine protein kinase activity in vivo and in vitro. Virology. 2002;297:281–8. 1848c. Hartley DA, Amdjadi K, Hurley TR, Lund TC, Medveczky PG, Sefton BM. Activation of the Lck tyrosine protein kinase by the Herpesvirus saimiri tip protein involves two binding interactions. Virology. 2000;276:339–48. 1849a. Poiesz BJ, Ruscetti W, Reitz MS, Kalyanaraman VS, Gallo RC. Isolation of a new type C retrovirus (HTLV) in primary uncultured cells of a patient with Sézary T-cell leukemia. Nature. 1981;294:268–71. 1849b. Gallo RC, Poiesz BJ, Ruscetti FW. Regulation of Human T-cell proliferation: T-cell growth factor and isolation of a new class of type-C retroviruses from human T cells. Haematol Blood Transfus. 1981;16:502–14. 1849c. Poiesz BJ, Dube S, Jones B, Bryz-Gornia V, Dean MT, Spicer T, Hengst J, Sayre K, Esteban W, Ferrer JF. Comparative performances of enzyme-linked immunoabsorbent, western blot, and polymerase chain reaction assays for human T-lymphotropic virus type II infection that is endemic among Indians of the Gran Chaco region of South America. Transfusion. 1997;37:52–9. 1849d. Poiesz BJ, Poiesz MJ, Choi D. The human T-cell lymphoma-leukemia viruses. Cancer Invest. 2003;21:253–77. 1850a. Sinkovics JG, Gyorkey F, Gyorkey P, Wang CH. Long term cultures of hairy cells. Ann Internal Med. 1976;85:532–3. 1850b. Sinkovics JG, Gyorkey F, Gyorkey P. Lekemic reticuloendotheliosis: cultured hairy cells. N Engl J Med. 1976;295:1016. 1850c. Sinkovics JG, Wang CH, Gyorkey F. Epstein-Barr virus in cultured hairy leukemia cells. Lancet. 1975;1:749–50. 1850d. Lemon SM, Pagano JS, Utsinger PD, Sinkovics JG. Infection of cultured “hairy cells” with Epstein-Barr virus: evidence of B lymphocyte origin. Ann Internal Med. 1979;90:5455. 1851a. Bhargava R, Barbashina V, Filippa DA, Teruya-Feldstein J. Epstein-Barr virus positive large B-cell lymphoma arising in a patient previously treated with cladribine for hairy cell leukemia. Leuk Lymphoma. 2004;45:1043–8. 1851b. Lenz G, Golf A, Rüdiger T, Hiermann W, Haferlach T. Epstein-Barr virus-associated B-cell non-Hodgkin lymphoma following treatment of hairy cell leukemia with cladribine. Blood. 2003;102:3457–8. 1851c. Huang AT, Silverstein L, Gonias SL, Rundles RW, Raab-Traub N. Transformation of hairy cell leukemia to EBV genome-containing aggressive B cell lymphoma. Leukemia. 1987;1:369–72. 1852. Miyoshi I, Hiraki S, Tsubota T, Hikita T, Masuji H, Nishi Y, Kimura I. Hairy cell leukemia: establishment of a cell line and its characteristics. Cancer. 1981;47:60–5. 1853. Schiller JH, Bittner G, Meisner LF, Oberley TD, Norback D, Schwabe M, Faltynek CR, Raab-Taub N. Establishment and characterization of an Epstein-Barr virus spontaneously transformed lymphocytic cell line derived from a hairy cell leukemia patient. Leukemia. 1991;5:399–407. 760 References

1854. Quesada JR, Reuben J, Hopfer RL, Mundon FK, Hersh EM. Serologic studies in hairy cell leukemia: high prevalence of Epstein-Barr and cytomegalovirus antibodies and absence of human T-cell lymphotrophic viruses antibodies. Leuk Res. 1986;10:1169–73. 1855a. Tiacci E, Liso A, Piris M, Falini B. Evolving concepts in the pathogenesis of hairy cell leukemia. Nat Rev Cancer. 2006;6:437–48. 1855b. Tiacci E, Schiavoni G, Martelli MP. Boveri E, Pacini R, Tabarrini A, Zibellini S, Santi A, Pettirossi V, Fortini E, Ascani S, Arcaini L, Inghirami G, Paulli M, Falini B. Constant activation of the RAF-MEK-ERK pathway as a diagnostic and therapeutic target in hairy cell leukemia. Haematologica. 2013; 98:635–639. 1856. Sári E, Nagy Zs , Demeter J. Recurrent somatic mutation in hairy cell leukemia. Orvosi Hetilap Budapest. 2013;154:123–7. 1857. Manns A, Blattner WA. The epidemiology of the human T-cell lymphotrophic virus type I and type II: etiologic rule in human disease. Transfusion. 1991;31:67–75. 1858a. Moreira L, Balaguer F, Lindor N, de la Chapelle A, Hampel H, Aaltonen LA, Hopper JL, Le Marchand L, Gallinger S, Newcomb PA, Haile R, Thibodeau SN, Gunawardene S, Jenkins MA, Buchanan DD, Potter JD, Baron JA, Ahnen DJ, Moreno V, Andreu M, Ponz de Leon M, Rustgi AK, Castellis A, EPICOLON Consortium. Identification of Lynch syndrome among patients with colorectal cancer. JAMA. 2012;308:1555–1565. 1858b. Bonadona V, Bonaïti B, Olschwang S, Grandjouan S, Huiart L, Longy M, Guimbaud R, Buecher B, Bignon YJ, Caron O, Colas C, Nigués C, Lejeune-Dumoulin S, Olivier-Faivre L, Polycarpe-Osaer F, Nguyen TD, Desseigne F, Saurin JC, Berthet P, Leroux D, Duffour J, Manouvrier S, Frébourg T, Sobol H, Lasset C, Banaïti-Pellié, French Cancer Genetics Network. Cancer risk associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305:2304–2310. 1859a. D’Antonio M, Pendino V, Sinha S, Ciccarelli FD. Network of cancer genes (NCG 3.0): integration and analysis of genetic and network properties of cancer genes. Nucl Acid Res. 2012; 40(database issue) D978-83. doi:10.1093/nar/gkr952. 1859b. D’Antonio M, Ciccarelli D. Modification of gene duplicability during the evolution of protein interaction network. PLoS Comput Biol. 2011;7(4):e1002029. doi:10.1371/ journal.pcbi.1002029. 1860. Tan W, Zhou W, Yu HG, Luo HS, Shen L. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo. Biochem Biophys Res Commun. 2013;4430:250–6. 1861. Wu CY, Tang ZH, Jiang L, Li XE, Jiang ZS, Liu LS. PCSK9 siRHNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem. 2012;359:347–58. 1862. Tang Y, Luo Y, Jiang Z, Ma Y, Lin CJ, Kim C, Carter MG, Amano T, Park J, Kish S, Tian XC. Jak/Stat3 signaling promotes somatic cell reprogramming by epigenetic regulation. Stem Cells. 2012;30:2645–56. 1863. Strand DW, Degraff DJ, Jiang M, Sameni M, Franco OE, Love HD, Hayward WJ, Lin-Tsai O, Wang AY, Cates JM, Sloane BF, Matusik RJ, Hayward SW. Deficiency in metabolic regulators PPARγ and PTEN cooperates to drive keratinizing squamous metaplasia in novel models of human tissue regeneration. Am J Pathol. 2013;182:449–59. 1864. Yoshimoto M, Ludkovski O, deGrace D, Williams JL, Evans A, Sircar K, Bismar TA, Nuin P, Squire JA. PTEN genomic deletions that characterize aggressive prostate cancer originate close to segmental duplications. Genes Chromosomes Cancer. 2012;51:149–60. 1865. Sayed D, He M, Hong C, Gao S, Rane S, Yang Z, Abdellatif M. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem. 2010;285:20281–90. 1866. Sun J, Zhang D, Zheng Y, Zhao Q, Zheng M, Kovacevic Z, Richardson DR. Targeting the metastasis suppressor, NDRG1, using novel iron chelators: regulation of stress fiber-mediated tumor cell migration via modulation of the ROCK1/pML:C2 signaling pathway. Mol Pharmacol. 2013;83:454–69. References 761

1867. Dixon KM, Lui GY, Kovacevic Z, Zhang, Yao M, Chen Z, Dong, Assinder SJ, Richardson DR. Dp44mT targets the AKT,TGF-β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate cells and prostate cancer cells. Br J Cancer. 2013. doi:10.1038/bjc.2012.582. 1868a. Yu Y, Suryo Rahmanton Y, Richardson DR. Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent anti-tumor efficacy. Br J Pharmacol. 2012;165:146166. 1868b. Yu Y, Gutierrez E, Kovacevic Z, Saletta F, Obeidy P, Suryo Rahmanto Y, Richardson DR. Iron chelators for the treatment of cancer. Curr Med Chem. 2012;19:2689–702. 1869. Bakrania P, Robinson DO, Bunyan DJ, Salt A, Martin A, Crolla JA, Wyatt A, Fielder A, Ainsworth J, Moore A, Read S, Uddin J, Laws D, Pascuel-Salcedo D, Avuso C, Allen L, Collin JR, Ragge NK. Sox2 anophthalmia syndrome: 12 cases demonstrating broader phenotype and high frequency of large gene deletions. Br J Ophthalm. 2007;91:1471–6. 1870. Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JAR, Howard-Peebles PN, Hayward C, Vivian AJ, Williamson K, van Heynigen V, Fitzpatrick DR. Mutations in Sox2 cause anophthalmia. Nat Genet. 2003;33:461–3. 1871. Hussenet T, du Manoir S. SOX2 in squamous cell carcinoma: amplifying a pleiotropic oncogene along carcinogenesis. Cell Cycle. 2010;9:1480–6. 1872. Williamson KA, Hever AM, Rainger J, Rogers RC, Magee A, Fiedler Z, Keng WT, Sharkey FH, McGill N, Hill CJ, Schneider A, Messina M, Turnpenny PD, Fantes JA, Van Heyningen V, Dr Fitz Patrick. Mutations in Sox2 cause anophthalmia-esophageal-genital (AEG) syndrome. Human Mol Genet. 2006;15:1413–22. 1873. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4, and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–8. 1874. Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ, Miller DS, Huang TH. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 2009;69:9038–46. 1875. Mahajan K, Mahajan NO. PI3K-independent AKT activation in cancers: a treasure trove for novel therapeutics. J Cell Physiol. 2012;227:3178–84. 1876. Clark JM, Alaksiyadis K, Martin A, McNamee K, Tharmalingam T, Williams RO, Mémel S, Cope AP. Inhibitor of kappa B epsilon (IкBε) is a non-redundant regulator of c-Rel-dependent gene expression in murine T and B cells. PLoS One. 2011;6(9): e324504. 1877. Guan H, Zhang H, Cai J, Wun J, Yuan J, Li J, Huang Z, Li M. IKBKE is over-expressed in glioma and contributes to resistance of glioma cells to apoptosis via activation of NFкB. J Pathol. 2011;223:436–45. 1878a. Guo J-P, Coppola D, Cheng JQ. PKBKE protein activates Akt independent of phosphatidylinositol 3-kinase /PDK1/mTORC2 and pleckstrin homology domain to sustain malignant transformation. J Biol Chem. 2011;186:37389–98. 1878b. Guo J, Kim D, Gao J, Kurtyka C, Chen H, Yu C, Wu D, Mittal A, Beg AA, Chellappan SP, Haura EB, Cheng JQ. IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small lung cancer. Oncogene. 2013;32:151–9. 1879. Robson JE, Eaton SA, Underhill P, Williams D, Peters J. MicroRNA 296 and 298 are imprinted and part of the GNAS/Gnas cluster and miR-296 targets IKBKE and Tmed9. RNA. 2012;18:135–44. 1880. Berencsi K, Gyulai Z, Gönczöl E, Pincus S, Cox WI, Michelson S, Kari L, Meric L, Cadoz M, Zahradnik J, Starr S, Plotkin S. A canarypox vector-expressing cytomega- lovirus (CMV) phosphoprotein 65 induces long-lasting cytotoxic T cell responses in human CMV-seronegative subjects. J Inf Dis. 2001;183:1171–9. 762 References

1881. Bernstein DI, Schleiss MR, Berencsi K, Gonczol E, Dickey M, Khoury P, Cadoz M, Meric C, Zahradnik J, Duliege AM, Plotkin S. Effect of previous or simultaneous immunization with canarypox expressing cytomegalovirus (CMV) glycoproteinB (gB) on response to subunit gB vaccine plus MF59 in healthy CMV-seronegative adults. J Infect Dis. 2002;185:686–90. 1882. Gonczol E, Berencsi K, Pincus S, Endresz V, Méric C, Paoletti E, Plotkin SA. Preclinical evaluation of an ALVAC (canarypox)-human cytomegalovirus glycoprotein B vaccine candidate. Vaccine. 1995;13:1080–5. 1883. Gonczol E, Plotkin S. Development of a cytomegalovirus vaccine: lessons from recent clinical trials. Expert Opin Biol Ther. 2001;1:401–12. 1884. Arav-Boger R, Wojcik GL, Duggal P, Ingersoll RG, Beaty T, Pass RF, Yolken RH. Polymorphisms in Toll-like receptor genes influence antibody responses to cytomega- lovirus glycoprotein B vaccine. BMC Res Notes. 2012;5:140. 1885. Stein MF, Lang S, Winkler TH, Deinzer A, Erber S, Nettelbeck DM, Naschberger E, Jochmann R, Stürzl M, Slany RK, Werner T, Steinkasserer A, Knippertz I. Multiple IRF- and NFкB-sites cooperate in mediating cell type and maturation-specific activation of the human CD83 promoter in dendritic cells. Mol Cell Biol. 2013;33:1331–44. 1886. Berencsi K, Endresz V, Klurfeld D, Kari L, Kritchevsky D, Gönczöl E. Early atherosclerotic plaques in the aorta following cytomegalovirus infection in mice. Cell Adhes Commun. 1998;5:3947. 1887. Heltai K, Kis Z, Burian K, Endresz V, Veres A, Ludwig E, Gönczöl E, Valyi-Nagy I. Elevated antibody levels against Chlamydia pneumoniae, human HSP60 and mycobac- terial HSP65 are independent risk factors in myocardial infarction and ischemic heart disease. Atherosclerosis. 2004;173:339–46. 1888. Gravel SP, Servant MJ. Roles of an IkappB kinase-related pathway in human cytomegalovirus-infected vascular smooth muscle cells: a molecular link in pathogen-induced proatherosclerotic conditions. J Biol Chem. 2005;280:7477–88. 1889. Seifert M, Schltysik R, Küppers R. Origin and pathogenesis of B cell lymphomas. Methods Mol Biol. 2013;971:1–25. 1890. Muto T, Muramatsu M, Taniwaki M, Kinoshita K, Honjo T. Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics. 2000;68:85–8. 1891a. Jardin F, Ruminy P, Bastard C, Tilly H. The BCL6 proto-oncogene: a leading role during germinal center development and lymphomagenesis. Pathol Biol (Paris). 2007;55:73–63. 1891b. Jardin F, Sahota SS, Ruminy P, Parmentier F, Piquenot JM, Rainville V, Buchonnet G, Leprêtre S, Tily H, Bastard C. Novel Ig V gene features of t(14;18) and t(3;14) de novo diffuse large B-cell lymphoma displaying germinal center B cell-like and non-germinal center B cell-like markers. Leukemia. 2006;20:2070–4. 1892. Chang PP, Barral P, Fitch J, Pratama A, Ma CS, Kallies A, Hogan JJ, Cerundolo V, Tangye SG, Bittman R, Nutt SL, Brink R, Godfrey DI, Batista FD, Vinuesa CG. Identification of BCL-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol. 2011;13:35–43. 1893. Kim J, Kim DW, Chang W, Choe J, Kim J, Park CS, Song K, Lee I. Wnt5a is secreted by follicular dendritic cells to protect germinal center B cells via Wnt/Ca2+/ NFAT/NF-kB-B cell lymphoma 6 signaling. J Immunol. 2012;188:182–169. 1894. Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF, Chapuy B, Shipp M, Chiarle R, Pagano M. FBXO11 targets BCL5 for degradation and is inactivated in diffuse large B-cell lymphoma. Nature. 2012;481:90–3. 1895. Conticello SG. Creative deaminases, self-inflicted damage, and genome evolution. Ann NY Acad Sci. 2012;1267:79–85. 1896. Shukla N, Kobos R, Renaud T, Treya-Feldstein J, Price A, McAllister-Lucas L, Steinherz P. Successful treatment of refractory metastatic histiocytic sarcoma with alemtuzumab. Cancer. 2012;118:3719–24. References 763

1897. Kondratiev S, Duraisamy, Unitt CL, Green MR, Pinkus GS, Shipp MA, Kutok JK, Drapkin RI, Rodig SJ. Aberrant expression of the dendritic cell marker TNFAIP2 by the malignant cells of Hodgkin lymphoma and primary mediastinal large B-cell lymphoma distinguishes these tumor types from morphologically and phenotypically similar lymphomas. Am J Surg Pathol. 2011;35:1531–1439. 1898. Hure MC, Elco CP, Ward D, Hutchinson L, Meng X, Dorfman DM, Yu H. Histiocytic sarcoma arising from clonally related mantle cell lymphoma. J Clin Oncol. 2912;30(5): e46-53. doi:10.1200/JCO.2011.38.8553. 1899. Shao H, Xi L, Raffeld M, Feldman AL, Ketterling RP, Knudson R, Rodriguez-Canales J, Hanson J, Pittaluga S, Jaffe ES. Clonally related histiocytic/dendritic cell sarcoma and chronic lymphocytic leukemia/small lymphocytic lymphoma: a study of seven cases. Mod Pathol. 2011;24:1421–32. 1900a. Zhang D, McGuirk J, Ganguly S, Persons DL. Histiocytic/dendritic cell sarcoma arising from follicular lymphoma involving the bone: a case report. Int J Hematol. 2009;89:529–32. 1900b. Zhang D. Histiocytic sarcoma arising from lymphomas via transdifferentiation pathway during clonal evolution. Leuk Lymphoma. 2010;51:739–40. 1901. Pruneri G, Mssullo M, Renne G, Taccagni G, Manzotti G, Luin A, Viale G. Follicular dendritic cell sarcoma of the breast. Wirchows Arch. 2002;44:194–9. 1902. Shimizaki K, Ohsima K, Haraoka S, Suzumiya J, Nakamura N, Kikuchin M. Accessory cell tumor: a clinicopathological study of 16 aggressive tumours containing EBV-positive Hodgkin and Reed-Sternberg-like giant cells. Histopathology. 2002;40:12–21. 1903. Wang S, Rowe M, Lundgren E. Expression of the Epstein-Barr virus transforming protein LMP1 causes rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines. Cancer Res. 1996;56:4610–3. 1904a. Sinkovics JG, Dreesman G. Monoclonal antibodies of hybridomas. Rev Inf Dis. 1983;5:9–34. 1904b. Sinkovics JG. The first observation (in the late 1960s) of fused lymphoid cells continuously secreting a specific antibody. Bull Mol Med. 2005;26:61–80. 1905. Gross L. Oncogenic viruses. 3rd ed. Oxford/Pergamon Press, Oxford. 1983; ppXi, 393 pp. 1906a. Hanafusa H, Hanafusa T. Determining factor in the capacity of Rous sarcoma virus to induce tumors in mammals. Proc Natl Acad Sci USA. 1966;55:532–8. 1906b. Hanafusa H, Baltimore D, Smoler D, Watson KF, Yaniv A, Spiegelman S. Absence of polymerase protein in virions of alpha-type Rous sarcoma virus. Science. 1972;177:1188–91. 1906c. Hanafusa H, Aoki T, Kawai S, Miyamoto T, Wilsnack RE. Presence of antigen common to avian tumor viral envelope antigen in normal chicken embryo cells. Virology. 1973;56:22–32. 1906d. Duesberg PH, Kawai S, Wang LH, Vogt PK, Murphy HM, Hanafusa H. RNA of replication-defective strains of Rous sarcoma virus. Proc Natl Acad Sci USA. 1975;72:1569–73. 1906e. Hanafusa H. Cellular origin of transforming genes of RNA tumor viruses. Harvey Lect. 1979;75:255–75. 1906f. Lerner TL, Hanafusa H. DNA sequence of the Bryan high-titer strain of Rous sarcoma virus: extent of env deletion and possible genealogical relationship with other virus strains. J Virol. 1984;49:549–56. 1907a. Varmus HE, Bishop JM, Nowinski RC, Sarker NH. Mammary tumor virus specific nucleotide sequences in mouse DNA. Nature New Biol. 1972;238:189–91. 1907b. Varmus HE, Weiss RA, Friis RR, Levinson W, Bishop JM. Detection of avian tumor virus specific nucleotide sequence in avian cell DNAs. Proc Natl Acad Sci USA. 1972;69:20–4. 764 References

1907c. Stehelin D, Varmus HE, Bishop JM, Vogt PK. DNA related to the transforming gen(e) of avian sarcoma viruses is present in normal avian DNA. Nature. 1976;260:170–3. 1908. Sinkovics JG, Horvath J. Viral contaminants of poliomyelitis vaccines. Acta Microbiol Immunol Hung. 2000;47:471–6. 1909. Rizzo P, Di Resta I, Powers A, Ratner H, Carbone M. Unique strains of SV40 in commercial poliovaccines from 1955 not readily identifiable with current testing for SV40 infection. Cancer Res. 1999;59:6103–8. 1910. Butel JS. Patterns of polyomavirus SV40 infections and associated cancers in humans: a model. Curr Opin Virol. 2012;2:508–14. 1911. Gross L. A filterable agent recovered from Ak leukemia extracts causing salivary gland carcinoma in C3H mice. Proc Soc Exp Biol Med. 1953;83:414–21. 1912. Stewart SE, Eddy BE, Gochenour AM, Borgese NG, Grubbs GE. The induction of neoplasms with a substance released from mouse tumors by tissue culture. Virology. 1957;3:380–400. 1913. Piña-Oviedo S, De León-Bojorge B, Cuesta-Mejias T, White MK, Ortiz-Hidalgo C, Khalili K, Del Valle L. Glioblastoma multiforme with small cell neuronal-like component: association with human neurotropic JC virus. Acta Neuropathol. 2006;111:388–96. 1914. Shullenberger CC, Leavens ME, Sinkovics JG. Project M23/gm 20: Viruses in malignancy-associated encephalopathies. Research Report 1974. The University of Texas Cancer Center M.D. Anderson Hospital, Houston TX. The University of Texas Press, Austin TX 1974; 455–456. 1915. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100. 1916. Kassem A, Schöpflin A, Diaz C, Weyers W, Stickeler E, Werner M, zur Hausen A. Frequent detection of Merkel cell polyomavirus in human Merkel cell carcinomas and identification of a unique deletion in the VP1 gene. Cancer Res. 2008;68:5009–13. 1917. Varga E, Kiss M, Szabó K, Kemény L. Detection of Merkel cell polyomavirus DNA in Merkel cell carcinomas. Br J Dermatol. 2009;161:930–2. 1918. Horváth KB, Pankovics P, Battyáni Z, Kálmán E, Reuter G. A probable etiological role for Merkel cell polyomavirus in the development of Merkel cell carcinoma. Orvosi Hetilap (Budapest). 2013;154:102–12. 1919. Bertrand M, Mirabel X, Desmedt E, Vercambre-Darras S, Martin de Lassalle E, Bouchindhomme B, Giuerreschi P, Martinot V, Mortier L. Merkel cell carcinoma: a new radiation-induced cancer? Ann Dermatol Venereol. 2013;140:41–45. 1920. Gomez BP, Wang C, Viscidi RP, Peng S, He L, Wu T-C, Hung C-F. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of Merkel cell polyomavirus large T antigen. Cell Biosci. 2012;2:36. doi:10. 1186/2045-3701-2-36. 1921. Iyer JG, Afanasiev OK, McClurkan C, Paulson K, Nagase K, Jing L, Marshak JO, Dong L, Carter J, Lai I, Farrar E, Byrd D, Galloway D, Yee C, Koelle DM, Nghiem P. Merkel cell polyomavirus-specific CD8+ and CD4+ T-cell responses identified in Merkel cell carcinomas and blood. Clin Cancer Res. 2011;17:6671–80. 1922. Sihto H, Joensjuu H. Tumor-infiltrating lymphocytes and outcome in Merkel cell carcinoma, a virus-associated cancer. Oncoimmunology. 2012;1:1420–1. 1923. Nokes BT, Cunliffe HE, Lafleur B, Mount DW, Livingston RB, Futscher BW, Lang JE. In vitro assessment of the inflammatory breast cancer cell line SUM149: discovery of 2 single nucleotide polymorphisms in the RNase L gene. J Cancer. 2013;4:104–16. 1924. Van Laere SJ, Ueno N, Finetti P, Vermeulen PB, Lucci A, Robertson FM, Marsen M, Iwamoto T, Krishnamurthy S, Masuda H, Van Dam PA, Woodward WA, Viens P, Cristofanilli M, Birnbaum D, Dirix LY, Reuben JM, Bertucci F. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct Affymetrix gene expression data sets. Clin Cancer Res. 2013;19:4685–96. References 765

1925. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji D, Nori S, Ikeda E, Yamanaka S, Miura K. Steps towards safe cell therapy using induced pluripotential stem cells. Circ Res. 2013;112:523–33. 1926. Duesberg P, McCormack A . Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle. 2013;12(5). 1927. Contreras CM, Akbay EA, Gallardo TD, Haynie JM, Sharma S, Tagao O, Bardeesy N, Takahashi M, Settleman J, Wong K-K, Castillon DH. Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy. Dis Model Mech. 2010;3:181–93. 1928. Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 2002;22:4309–18. 1929. Carvalho S, Raposo AC, Martins FB, Grosso AR, Sridhara SC, Rino J, Carmo-Fonseca M, de Akmeida SF. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res. 2013;41:2881–93. 1930. Chen Z, Yan CT, Dou Y, Viboolsittisen SS, Wang JH. The role of a newly identified SET domain-containing protein, SETD3, in oncogenesis. Haematologica. 2012; doi:10. 3324/haematol.2012.066977. 1931. Fog CK, Galli GG, Lund AH. PRDM proteins: important players in differentiation and disease. Bioassays. 2012;34:50–60. 1932. Pawlowski R, Mühl SM, Sulser T, Krek W, Moch H, Schraml P. Loss of PBRM1 expression is associated with renal cell carcinoma. Int J Cancer. 2013;132:E11–7. doi:10. 1002/ijz.27822. 1933. Strahl BD, Grant PA, Briggs SD, Sun Z-W, Bone JAR, Caldwell JA, Mollah S, Cook RG, Shabanowitz j, Hunt DF, Allis CD. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol. 2002;22:1298–306. 1934. Rasmussen MH, Jensen NF, Tarpgaard LS, Qvortrup C, Remer MJ, Stanwang J, Hansen TOP, Christensen LL, Lindebjerg J, Hansen F, Jensen BV, Hansen TF, Pfeiffer P, Brünner N, Orntoft TF, Andersen CL. High expression of microRNA-625-3p is associated with poor response to first-line oxaliplatin-based treatment of metastatic colorectal cancer. Mol Oncol. 2013; pil. S1574-7891(13)j00040-9. doi:10.1016/j. molonc.2013.02.016. 1935a. Acs G, Acs P, Beckwith SM, Pitts RL, Clements E, Wong K, Verma A. Erythropoietin and erythropoietin receptor expression in human cancer. Cancer Res. 2001;61:3561–5. 1935b. Acs G, Zhang PJ, McGrath PJ, Acs P, McBroom J, Mohyeldin A, Liu S, Lu H, Verma A. Hypoxia-induced erythropoietin signaling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumor progression. Am J Pathol. 2003;162:1789–1. 1936. Malenda A, Skrobanska A, Issat T, Winiarska M, Bil J, Oleszczak B, Sinski M, Firczuk M, Bujnicki JM, Chlebowska J, Staruch AD, Glodkowska-Mrowka E, Kunikowska J, Krolicki L, Szablewski L, Gaciong Z, Koziak K, Jakobisiak M, Golab J, Nowis DA. Statins impair glucose uptake in tumor cells. Neoplasia. 2012;14:311–23. 1937. Safdie F, Brandhorst S, Wei M, Wang W, Lee C, Hwang S, Conti PS, Chen TC, Longo VD. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS One. 2012;7(9):e44603. doi:10.1371/journal.pone.0044603. 1938. Ito E, Honma R, Imai J, Azuma S, Kanno T, Mori S, Yoshie O, Nishio J, Iwasaki H, Yoshida K, Gohda J, Inoue J, Watanabe S, Semba K. A tetraspanin-family protein, T-cell acut lymphoblastic leukemia-associated antigen 1, is induced by the Ewing’s sarcoma-Wilms’ tumor 1 fusion protein of desmoplastic small round cell tumor. Am J Pathol. 2003;163:2165–72. 766 References

1939. De J, Zanjani R, Hibbard M, Davis BH. Immunophenotypic profile predictive of KIT activating mutations in AML1/ETO leukemia. Am J Clin Pathol. 2007;128:550–7. 1940. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H. Identification of breakpoints in t(8:21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood. 1992;80:1825–31. 1941. Nordin SL, Anderson C, Bjermer L, Bjartell A, Mörgelin M, Egesten A. Midkine is part of the antibacterial activity released at the surface of differentiated bronchial epithelial cells. J Innate Immun. 2013;5:519–30. 1942. Obama H, Matsubara S, Guénet JL, Muramatsu T. The midkine (MK) family growth/differentiation factors: structure of an MK-related sequence in a pseudogene and evolutionary relationships among members of the MK family. J Biochem. 1994;1215:516–22. 1943. Svensson SL, Pasupuleti M, Walse B, Malmten M, Mörgelin M, Sjrgen C, Olin AI, Collin M, Schmidtchen A, Palmer R, Egesten A. Midkine and pleiotrophin have bactericidal properties: preserved antibacterial activity in a family of heparin-binding growth factors during evolution. J Biol Chem. 2010;285:16105–15. 1944. Toledano-Katchalski H, Nir R, Volohonsky G, Volk T. Post-transcriptional repression of the Drosophila midkine and pleiotrophin homolog miple by HOW is essential for correct mesoderm spreading. Development. 2007;134:3473–81. 1945. Cohen S, Shishana OY, Zelman-Toister E, Maharshak N, Binsky-Ehrenreich I, Gordin M, Hazan-Halevy I, Herishanu Y, Shvidel L, Haram M, Leng L, Bucala R, Harroch S. Shacher I The cytokine midkine and its receptor RPTPζ regulate B cell survival in a pathway induced by CD74. J Immunol. 2012;188:259–69. 1946. DaSilva JO, Amorino GP, Casarez EV, Pemberton B, Parsons SJ. Neuroendocrine-derived peptides promote prostate cancer cell survival through activation of IGF-1R signaling. Prostate. 2013;73:801–12. doi:10.1002/pros.22624. 1947. Kuo AH, Stoica GE, Riegel AT, Wellstein A. Recruitment of insulin receptor substrate-1 and activation of NF-kappaB essential for midkine growth signaling through anaplastic lymphoma kinase. Oncogene. 2007;26:859–69. 1948. Nordin A, Wang W, Welén K, Damber JE. Midkine is associated with neuroendocrine differentiation in castration-resistant prostate cancer. Prostate. 2012; doi:10.1002/pros. 22607. 1949. You Z, Dong Y, Kong X, Beckett LA, Gandour-Edwards R, Melamed J. Midkine is a NF-kappaB-inducible gene that supports prostate cancer cell survival. BMC Med Genomics. 2008;1:6. doi:10.1189/1755-87694-1-6. 1950. Dai LC, Wang X, Yao X, Lu YL, Ping JL, He JF. Antisense oligonucleotides targeting midkine induced apoptosis and increased chemosensitivity in hepatocellular carcinoma cells. Acta Pharmacol Sin. 2006;27:1630–6. 1951. Wang Q, Huang Y, Ni Y, Wanmg H, Hou Y. siRNA targeting midkine inhibits gastric cancer cells growth and induces apoptosis involved caspase 3,8,9 activation and mitochondrial depolarization. J Biomed Sci. 2007;14:783–95. 1952. Xu Y, Qu X, Zhang X, Luo Y, Zhang Y, Luo Y, Hou K, Liu Y. Midkine positively regulates the proliferation of human gastric cancer cells. Cancer Lett. 2009;279:137–44. 1953. Khan MO, Ather MH. Chromogranin A—serum marker for prostate cancer. J Pak Med Assoc. 2011;61:108–11. 1954. Voss MJ, Möller MF, Powe DG, Niggemann B, Zänker KS, Entschladen F. Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrine mechanism. BMC Cancer. 2011;11:158. doi:10.1186/1471-2407-11-158. 1955. Izerasdjene K, Hingorani SR. Targets, trials, and travails in pancreas cancer. J Natl Compr Canc NETW. 2007;5:1042–53. References 767

1956a. Pernick NL, Sarkar FH, Philip PA, Arlauskas P, Shields AF, Vaitkevicius VK, Dugan MC, Adsay NV. Clinicopathologic analysis of pancreatic adenocarcinoma in African Americans and Caucasians. Pancreas. 2003;26:28–32. 1956b. Pernick NL, Sarkar FH, Tabaczka P, Kotcher G, Frank J, Adsay NV. Fas and Fas ligand expression in pancreatic adenocarcinoma. Pancreas. 2002;25(3):e36–41. 1957. Koster R, Timmer-Bosscha H, Bischoff R, Gietema JA, de Jong S. Disruption of the MDM2-p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell Death Dis. 2011;2:e148. doi:10.1038/cddis.2011.33. 1958. Lin Y, Liu L, Zhang T, Liu J. Functional investigation of Fas ligand expression in human non-small cell lung cancer cells and its clinical implications. Ann Thorac Surg. 2013;95:412–8. 1959. Sinkovics JG, Horvath JC, Horvath E, Horak A. Fas system-generated immune-privileged state, BCL2-mediated apoptosis resistance and autocrine growth factor-guided proliferative signal transduction in human melanoma cells. 50th Annual Symposium on Fundamental Cancer Research: “Molecular Determinants of Cancer Metastasis.” The University of Texas MD Anderson Cancer Center, Houston TX, Oct 28-31, 1997 VI-111 pp 212-213. Erratum: “…FasR+ autologous host lymphocytes by apoptosis….” (in the abstract). 1960. Cai Z, Yang F, Yu Z, Jiang L, Wang Q, Yang Y, Wang L, Cao X, Wang L. Activated T cell exosomes promote tumor pathways or invasion via Fas signaling pathway. J Immunol. 2012;188:5954–61. 1961. Sinkovics JG. The cell survival pathways of ancient unicellular (Amoebae; Choanoflagellates) and multicellular (Amphioxus; Spongiae) eukaryotes were conserved in their extant descendants and serve as proto-oncogenes in vertebrate hosts. Posters, in: Illuminating Genomic Dark Matter ncRNA in Disease and Cancer. Symposia on Cancer Research. The University of Texas MD Anderson Cancer Center, Houston, TX Oct 9–10, 2014. Eur J Microbiol Immunol. 2015;5:25–43. 1962. Peng P, Yan Y, Keng S. Exosomes in the ascites of ovarian cancer patients: origin and effects on anti-tumor immunity. Oncol Rep. 2011;25:749–62. 1963. Wahlgren J, de Karlson TL, Glader P, Telemo E, Valadi H. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS One. 2012;7(11):e49723. doi:10.1371/journal.pone.0049723. 1964. Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013;41:245–51. 1965. Robinson DR, Wu YM, Kalyanap-Sundaram S, Cao X, Lonigro RJ, Sung TS, Chen CL, Zhang L, Wang R, Su F, Iyer MK, Roychowdhury S, Siddiqui J, Pienta KJ, Kunju LP, Talpaz M, Mosquera JM, Singer S, Schuetze SM, Antonescu CR, Chinnalyan A. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet. 2013;45:180–5. 1966. Wolkers MC, Gerlach C, Arens R, Janssen EM, Fitzgerald P, Schumacher TN, Medema JP, Green DR, Schoenberger SP. Nab2 regulates secondary CD8+ T-cell responses through control of TRAIL expression. Blood. 2012;119:798–804. 1967. Penel N, Amela EY, Decanter G, Robin Y-M, Marec-Berard P. Solitary fibrous tumors and so-called hamangiopericytoma. Sarcoma. 2012;690251. doi:10.1155/2012/690251. 1968. Cuello J, Brugés R. Malignant solitary fibrous tumor of the kidney: report of the first case managed with interferon. Case Rep Oncol Med. 2013:564980. doi:10.1155/2013/564980. 1969. Quek R, Wang Q, Morgan JA, Shapiro GI, Butrunski JE, Ramaiya N, Huftalen T, Jederlinic N, Manola J, Wagner AJ, Demetri GD, George S. Combination mTOR and IGF-1R inhibition: phase 1 trial of everolimus and figitumumab in patients with advanced sarcomas and other solid tumors. Clin Cancer Res. 2011;17:871–9. 768 References

1970. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JAR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88:277–85. 1971a. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29 (S16):15–8. 1971b. Folkman J. Antiangiogenesis in cancer therapy – endostatin and its mechanisms of action. Exp Cell Res. 2006;312:594–607. 1971c. Folkman J. Strategies for the discovery of endogenous angiogenesis inhibitors. Ernst W. Bertner Award Presentation and Lecture. 50th Annual Symposium on Fundamental Cancer Research. The University of Texas MD Anderson Cancer Center: Molecular Determinants of Cancer Metastasis, Houston TX Oct 28–31, 1997 pp 5–7. 1971d. Folkman J. Antiangiogenic therapy: experimental and clinical studies. 42nd Annual Clinical Conference & 52nd Annual Symposium on Fundamental Cancer Research. The University of Texas MD Anderson Comprehensive Cancer Center: Cancer Research at the Millenium. Houston TX Jan 9–12, 2000 pp 56–57. 1972. Horak A, Horvath JC, Sinkovics JG. Cancer therapy by anti-angiogenesis. 30th Annual Scientific Symposium, Hungarian Medical Association of America, Sarasota FL Oct 23– 30, 1998. Arch Hung Med Assoc Am. 1998;6/2:9. 1973. Dell’Eva R, Pfeffer U, Indraccolo S, Albini A, Noonan D. Inhibition of tumor angiogenesis by angiostatin L: from recombinant protein to gene therapy. Endothelium. 2002;9(1):3–10. 1974. Szentirmai O, Baker CH, Bullain SS, Lin N, Takahashi M, Folkman J, Mulligan RC, Carter BS. Successful inhibition of intracranial human glioblastoma multiforme xenograft via systemic adenoviral delivery of soluble endostatin and soluble vascular endothelial growth factor receptor-2: laboratory investigation. J Neurosurg. 2008;108:979–88. 1975. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Vareira I, Phillimore B, Begum S, McDonald NQ, Buler A, Jones D, Raine K, Latietr C, Santos CR, Nohadfani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downwars J, Futreal PA, Swanton C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92. 1976. Hutz JE, Manning WA, McLeod HL. Genomwide analysis of inherited variations associated with phosphorylation of PI3K/Akt/mTOR signaling proteins. PLoS One. 2011;6(9):e24873. doi:10.1371/journal.pone.0024873. 1977a. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9:563–75. 1977b. Shackelford DB, Vasquez DS, Cebeil J, Wu S, Leblanc M, Wu C-L, Vera DR, Shaw RJ. mTOR and HIF-1α-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc Natl Acad Sci USA. 2009;106:11137–42. 1978. Gill RK, Yang SH, Meerzaman D, Mechanic LE, Bowman ED, Jeon HS, Roy Chowdhuri S, Shakoori A, Dracheva T, Hong KM, Fukuoka J, Zhang JH, Harris CC, Jen J. Frequent homologous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene. 2011;30:3784–91. 1979. Diaz-Padilla I, Duran I, Clarke BA, Oza AM. Biologic rationale and clinical activity of mTOR inhibitors in gynecologic cancer. Cancer Treat Rev. 2012;38:767–75. 1980. Hill EK, Dizon DS. Medical therapy of endometrial cancer: current status and promising novel treatments. Drugs. 2012;72:705–13. 1981. Weigelt B, Banerjee S. Molecular targets and targeted therapeutics in endometrial cancer. Curr Opin Oncol. 2012;24:554–5563. 1982. Rasnick D. Aneuploidy theory explains tumor formation, the absence of immune surveillance, and the failure of chemotherapy. Cancer Genet Cytogenet. 2002;136:66-72. References 769

1983. Heffner DK. Chaotic tumors and 2 mistakes of molecular oncologists. Ann Diagn Pathol. 2005;9:61–7. 1984. Huse JT, Phillips HS, Brennan CW. Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia. 2011;59:1190–9. 1985. Zimonic D, Brooks MW, Popescu N, Winberg RA, Hahn WC. Derivation of human tumor cells without widespread genomic instability. Cancer Res. 2001;61(8838):8844. 1986. Burrell RA, McClelland SE, Endesfelder D, Groth P, Wellar MC, Shaikh N, Domingo E, Kanu N, Dewhurst SM, Gronroos E, Chew SK, Rowan AJ, Schenk A, Sheffer M, Howell M, Kschischo M, Behrens A, Helleday T, Bartek J, Tomlinson IP, Swanton C. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494:492–6. 1987. Okazaki N, F-Kikuno R, Ohara R, Inamoto S, Koseki H, Hiraoka S, Saga Y, Seino S, Nishimura M, Kaisho T, Hoahino K, Kitamura H, Nagase T, Ohara O, Koga H. Prediction of the coding sequences of mouse homologues of KIAA gene: IV. The complete nucleotide sequences of 500 moist KIAA-homologous cDNAs identifies by screening of terminal sequences of CDNA clones randomly sampled from size-fractionated libraries. DNA Res. 2004;11:205–18. 1988. Sakai T, Inom K, Wada S, Maeda H. Identification of the DNA binding specificity of the human ZNF219 protein and its function as a transcription repressor. DNA Res. 2003;10:155–65. 1989. Rymarkis LA, Webster BR, Stern DB. The nucleus-encoded factor MCD4 participates in degradation of nonfunctional 3’ UTR sequences by cleavage of pre-mRNA in Chlamydomonas chloroplasts. Mol Genet Genomics. 2007;277:329–40. 1990. Röttinger E, Besnardeau L, Lepage T. Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus. Gene Expr Patterns. 2006;6:864–72. 1991. Guzmán B, Cormand B, Ribasés M, González-Núñez D, Botey A, Poch E. Implications of chromosome 18 in the hypertension by sibling pair and association analyses: putative involvement of the RKHD2 gene. Hypertension. 2006;48:883–91. 1992. Morse MA, Chapman R, Powderly J, Blackwell K, Keler T, Green J, Riggs R, He LZ, Ramakrishna V, Vitale L, Zhao B, Butler SA, Hobelka A, Osada T, Davis T, Clay T, Lyerly HK. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients. Clin Cancer Res. 2011;17:4844–53. 1993a. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, Joyce RM, Wellenstein K, Keefe W, Schickler M, Rotem-Yehudar R, Kufe D, Avigan D. PDF-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother. 2011;34:409–18. 1993b. Rosenblatt J, Vasir B, Uhl L, Blotta S, Macnamara C, Somaiya P, Wu Z, Joyce R, Levine JD, Dombagoda D, Yuan YE, Francoeur K, Fitzgerald K, Richardson P, Weller E, Anderson K, Kufe D, Munshi N, Avigan D. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood. 2011;117:393–402. 1994. Mansilla C, Berraondo P, Durantez M, Martinez M, Casares N, Arrbillaga L, Rudilla F, Fioravanti J, Lozano T, Villanueva L, Sarobe P, Borrás P, Leclerc, Prieto J, Lasarte JJ. Eradication of large tumors expressing human papilomavirus E7 protein by therapeutic vaccination with E7 fused to the domain a from fibronectin. Int J Cancer. 2012;131:641–51. 1995. Paolini F, Massa S, Manni I, Franconi R, Venuti A. Immunotherapy in new pre-clinical models of HPV-associated oral cancers. Hum Vaccin Immunother. 2013;9(3). 1996. Kawana K, Adachi K, Kojima S, Kozuma S, Fuji T. Therapeutic human papillomavirus (HPV) vaccines: a novel approach. Open Virol J. 2012;6:264–9. 770 References

1997. Bellier B, Klatzmann D. Virus-like particle-based vaccines against hepatitis C virus infection. Expert Rev Vaccines. 2013;12:143–54. 1998. Baumont E, Poingeard P. Prospects for prophylactic hepatitis c vaccines based on virus-like particles. Hum Vaccin Immunother. 2013;9(5). 1999. Lauer GM. Immune responses to hepatitis C virus (HCV) infection and the prospects for an effective HCV vaccine or immunotherapies. J Infect Dis. 2013;207:S1–12. 2000. Hui E, Taylor GS, Jia H, Ma BB, Chan SL, Ho R, Wong W, Wilson S, Johnson BF, Edwards C, Stocken DD, Rickinson AB, Steven NM, Chan AT. Phase 1 trial of recombinant modified vaccinia Ankara (MVAS) encoding Epstein-Bar viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res. 2013;73:1676–88. 2001a. Yaddanapudi K, Mitchell RA, Eaton JW. Cancer vaccines. Oncoimmunology. 2013;2(3): e23403. 2001b. Man S. Back to the future: learning from cancer vaccine trials in Cardiff. Z Appl immunohistochem Mol Morphol. 2013;21:113–6. 2002. Krishnadas DK, Shapiro T, Lucas K. Complete remission following decitabine/dendritic cell vaccine for relapsed neuroblastoma. Pediatrics. 2013;1312:e336–41. 2003a. Toolan HW, Moore A. Oncolytic effect of Egypt virus on a human epidermoid carcinoma grown in X-irradiated rats. Proc Soc Exp Biol Med. 1952;79:697–701. 2003b. Moore AE. Present status of oncolytic viruses and their effect on tumors in mouse, man and tissue culture. Acta Unio Int Contra Cancrum. 1956;12:491–4. 2004a. Sinkovics JG. Enhancement of the carcinostatic activity of Newcastle disease virus (NDV) associated with adaptation of NDV to suckling mouse brain. Bact Proc. 1957;57, 96. 2004b. Sinkovics J. Studies on the biological characteristics of the Newcastle disease virus (NDV) adapted to the brain of newborn mice. Arch ges Virusforsch. 1957;7:242–57. 2004c. Sinkovics JG, Horvath JC (authors/editors). Viral therapy of human cancers. New York: Marcel Dekker. 2005. Vähä-Koskela MJ, Heikkila JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett. 2007;254:178–216. 2006a. Kaufman JK, Bossow S, Grossardt C, Sawall S, Kupsch J, Erbs P, Hassel JC, van Kalle C. Enk AH, Nettelbeck DM, Ungerechts G. Chemovirotherapy of malignant melanoma with a targeted and armed oncolytic measles virus. J Invest Dermatol. 2012; doi:10.1038/jid.2012.459. 2006b. Kaufman JK, Bines SD. OPTIM trial: a phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol. 2010;6 (6):941-949. doi:10.22117/fon.10.66. 2007. Patel MR, Kratzke RA. Oncolytic virus therapy for cancer: the first wave of translational clinical trials. Transl Res. 2013;pii:S1931-5244(12)OO446-X. doi:10.1016/k.trsl.2012. 12.o10. 2008. Zeyaullah M, Patro M, Ahmad I, Ibraheem K, Sultan P, Nehal M, Ali A. Oncolytic viruses in the treatment of cancer: a review of current strategies. Pathol Oncol Res. 2012;18:771–87. 2009. Ferguson MS, Lemoine NR, Wang Y. Systemic delivery of oncolytic viruses: hopes and hurdles. Adv Virol. 2012;2012:805629. doi:10.1155/2012/805629. 2010. Wojton J, Kaur B. Impact of tumor microenvironment on oncolytic viral therapy. Cytokine Growth Factor Rev. 2010;21:127–34. 2011. Wong HH, Lemoine NR, Wang Y. Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses. 2010;2:78–106. 2012. von Rikxoort M, Michaelis M, Wolschek M, Muster T, Egorov A, Seipelt J, Doerr HW, Cinatl Jr. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS. 2012;7(5):e36506. doi:10.1371/journal.pone.0036506. References 771

2013a. Fournier P, Bian H, Szeberényi J, Schirrmacher V. Analysis of three properties of Newcastle disease virus for fighting cancer: tumor-selective replication, antitumor cytotoxicity, and immunostimulation. Methods Mol Biol. 2012;797:177-204. 2013b. Fournier P, Arnold A, Wilden H, Schirrmacher V. Newcastle disease virus induces pro-inflammatory conditions and type I interferon for counter-acting Treg activity. Int J Oncol. 2012;40:840-850. 2013c. Mansour M, Palese P, Zamarin D. Oncolytic specificity of Newcastle disease virus is mediated for selectivity for apoptosis-resistant cells. J Virol. 2011;85:6015-6023. 2013d. Sinkovics JG, Howe CD. Superinfection of tumors with viruses. Experientia. 1969;25:733–434. 2014a. Sinkovics JG. Glioblastoma multiforme. In: Sinkovics JG, Horvath JC, authors, editors. Viral therapy of human cancers. New York: Marcel Dekker; 2005. p. 410–451. 2014b. Sinkovics JG, Horvath JC. The molecular biology and immunology of glioblastoma multiforme (GBM) with the presentation of an immunotherapy protocol for a clinical trial. Acta Microbiol Immunol Hung. 2006;53:367–429. Erratum. Due to error, the mislabeled Figure 1 should be invalidated. 2015a. Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter 8: Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters and humans. Adv Cancer Res. 2012;115:265–31. 2015b. Cerullo V, Vähä-Koskela M, Hemminki A. Oncolytic adenoviruses. A potent form of immunovirotherapy. Oncoimmunology. 2012;1(6):979–98. 2016. Ding M, Cao X, Xu HN, Fan JK, Huang HL, Yang DQ, Li YH, Wang J, Li R, Liu XY. Prostate cancer-specific and potent antitumor effect of a DD3-controlled oncolytic virus harboring the PTEN gene. PLoS One. 2012;7(4):e35153. doi:10.1371/journal.pone. 0035153. 2017. Somerville RP, Devillier L, Parkhurst MR, Rosenberg SA, Dudley ME. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the Wave℗ bioreactor. J Transl Med. 2012; doi:10.118/1479-5876-10-69. 2018. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73. doi:10.1126/ scitranslmed.3002842. 2019. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphocytic leukemia. N Engl J Med. 2011;365:725–33. 2020. Érsek B, Molnár V, Balogh A, Matkó J, Cope AP, Buzás EI, Falus A, Nagy G. CD3ζ- chain expression of human T lymphocytes is regulated by TNF via Src-like adaptor protein-dependent proteasomal degradation. J Immunol. 2012;189:1602–10. 2021. Roszik J, Sebestyén Z, Govers C, Guri Y, Szöor A, Pályi-Krekk Z, Vereb G, Nagy P, Szöllősi J, Debets R. T-cell synapse formation depends on antigen recognition but not CD3 interaction: studies with TCRζ, a candidate transgene forTCR gene therapy. Eur J Immunol. 2011;41:1288–97. 2022. Radvanyi LG, Bernatchez C, Zhang M, Fox PS, Miller P, Chacon J, Wu R, Lizee G, Mahoney S, Alvarado G, Glass M, Johnson VE, McMannis JD, Shpall E, Prieto V, Papadopoulos N, Kim K, Homsi J, Bedikian A, Hwu WJ, Patel S, Ross MI, Lee JE, Gershenwald JE, Lucci A, Royal R, Cormier JN, Davies MA, Mansaray R, Fulbright OJ, Toth C, Ramachandran R, Wardell S, Gonzalez A, Hwu P. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2012;18:6758–70. 2023. Yao S, Zhu Y, Chen L. Advances in targeting cell surface signaling molecules for immune modulation. Nature Rev. 2013;12:130–46. 772 References

2024a. Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, Quintás-Cardama A, Larson SM, Sadelain M. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res. 2007;13:5426– 5435. 2024b. Brentjens RJ, Curran HJ. Novel cellular therapies for leukemia. CAR-modified T cells targeted to the CD19 antigen. Hematology Am Soc Hematol Educ Program. 2012;2012:143–151. doi:10.1182/asheducatiion-2012.1,143. 2024c. Brentjens RJ, DavilaML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He O, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M. CD-19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transpl Med. 2013;5(177):177ra38. doi:10.1126/scitranslmed.3005930. 2025. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JAR, Nahvi AV. HelmanLJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917–24. 2026. Clancy LE, Blyth E, Simms R, Micklethwaite KP, Kris Ma CK, Burgess J, Antonenas V, Shaw P, Gottlieb DJ. CMV-specific cytotoxic T lymphocytes can be efficiently expanded from G-CSF mobilized haemopoietic progenitor cell products ex vivo and safely transferred to stem cell transplant recipient to facilitate immune reconstruction. Biol Blood Marrow Transpl. 2013; pii:S1083-8791(13)00057–8. 2027. Papadopoulos EB, Ladanyi M, Emanuel D, Mackinnon S, Boulad F, Carabasi MH, Castro-Malaspina H, Childs BH, Gillio AP, Small TN, et al. Infusion of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330:1185–91. 2028a. Cotton RGH. The road to monoclonal antibodies. In: Gordon S, editor. The legacy of cell fusion. Oxford: Oxford University Press; 1994. p 153-166. 2028b. Sinkovics JG, Groves G, Bertin B, Shullenberger CC. A system of tissue cultures for the study of a mouse leukemia virus. J Infect Dis. 1969;119:19-38. 2029. Bender BC, Schaedeli-Stark F, Koch R, Joshi A, Chu YW, Rugo H, Krop IE, Girish S, Friberg LE, Gupta M. A population pharmacokinetic/pharmacodynamic model of thrombocytopenia characterizing the effect of trastuzumab emtansine (T-DM1) on platelet counts in patients with Her2-positive metastatic breast cancer. Cancer Chemother Pharmacol. 20122;70:591–601. 2030. Junttila TT, Li G, Parsons K, Phillips GL, Slikowksi MX. Trastuzumab –M1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib in sensitive breast cancer. Breast Cancer Res Treat. 2011;128:347–56. 2031. Hurvitz SA, Kakkar R. The potential for trastusumab emtansine in human epidermal growth factor receptor 2 positive metastatic breast cancer: latest evidence and ongoing studies. Ther Adv Med Oncol. 2012;4:235–45. 2032. Tarhini AA, Cherian J, Moschos SJ, Tawbi HA, Shuai Y, Gooding WE, Sander C, Kirkwood JM. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J Clin Oncol. 2012;30:322–8 Erratum. J Clin Oncol 2012;30:3903. 2033. Hersh EM, O’Day SJ, Powderly J, Khan KD, Pavlick AC, Cranmer LD, Samlowski WE, Nichol GM, Yellin MJ, Weber JS. A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naïve patients with advanced melanoma. Invest New Drugs. 2011;29:489–96. 2034a. Weber J. Ipilimumab: controversies in its development, utility and autoimmune adverse effects. Cancer Immunol Immunother. 2009;58:823–830. References 773

2034b. Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer-preclinical background: CTLA-4 and PD0-1 blockade. Semin Oncol. 2010:37:430–439. 2034c. Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30:2691–2697. 2035. Bakacs T, Mehrishi JN, Moss RW. Ipilimumab (Yervoy) and the TGN1412 catastrophe. Immunobiology. 2012;217:583–9. 2036. Elias MH, Baba AA, Husin A, Sulong S, Hassan R, Sim GA, Wahid SFA, Ankathil R. HOXA4 gene promoter hypermethylation as an epigenetic mechanism mediating resistance to imatinib mesylate in chronic myeloid leukemia patients. Biomed Res Int. 2012;2013:129715. doi:10.1155/2013/129715. 2037. HegedűsC,Özvegy-Laczka C, Apáti AÁ, Magócsi M, Német K, Orfi L, Kéri G, Katona M, Takáts Z, Váradi A, Szakács G, Sarkadi B. Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Brit J Pharmacology. 2009;158:1153–64. 2038. Mullard A. FDA drug approvals. Nature Rev. 2012;2913(12):87–91. 2039. Nestal de Moraes G, Souza PS, Costas F, Vasconcelos FC, Reis FR, Maia RC. The interface between BCR-ABL-dependent and -independent resistance signaling pathways in chronic myeloid leukemia. Leuk Res Treatment. 2012;2012:671702 article ID 671702. doi:10.1155/2012/671702. 2040. Mikhael JAR, Schuster SR, Jimenez-Zepeda VH, Bello N, Spong J, Reeder CB, Stewart AK, Bergsagel PL, Fonseca R. Cyclophosphamide-bortezomib-dexamethasone (CtBorD) produces rapid and complete hematological response in patients with AL amyloidosis. Blood. 2012;110:4391–43942034. 2041. Armanous H, Gekiebart P, Anand M, Belch A, Lai R. Constitutive activation of metalloproteinase ADAM19 in mantle cell lymphoma promotes cell growth and activates the TNFα/NFкB pathway. Blood. 2011;117:6237–46. 2042. Obrador-Hevia AQ, Serra-Sitjar M, Rodriguez J, Villalonga P. Fernández de Matos S. The tumour suppressor FOXO3 is a key regulator of mantle cell lymphoma proliferation and survival. Br J Haematol. 2012;156:334–45. 2043. Hill BT, Rybicki L, Smith S, Dean R, Kalaycio M, Pohlman B, Sweetenham J. Tench, Sobecks R, Andresen S, Copelan E, Bolwell BJ. Treatment with hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone combined with cytara- bine and methotrexate results in poor mobilization of peripheral blood stem cells in patients with mantle cell lymphoma. Leuk Lymphoma. 2011;52:986–93. 2044a. Romaguera JE, Fayad LE, F eng L, Hartig K, Weaver P, Rodriguez MA, Hagemeister FB, Pro B, McLaughlin P, Younes A, Samaniego F, Goy A, Cabanillas F, Kantarjian H, Kwak L, Wang M. Ten year follow up after intense chemoimmunotherapy with rituximab, hyperCVAD alternating with rituximab-high dose methotrexate /cytarabine (R-MA) and without stem cell transplantation in patients with untreated aggressive mantle cell lymphoma. Br J Haematol. 2010;150:200-208. Erratum. Br J Haematol. 2010;151;111. 2044b. Romaguera JE, Fayad LE, McLaughlin P, Pro B, Rodriguez A, Wang M, Weaver P, Hartig K, Kwak L-W, Feldman T, Smith J, Ford P, Goldberg S, Pecora A, Goy A. Phase I trial of bortezomib in combination with rituximab-hyperCVAD alternating with rituximab, methotrexate and cytarabine for untreated aggressive mantle cell lymphoma. Br J Haematol. 2010;151:47–53. 2045. Brett LK, Williams ME. Current and emerging therapies in mantle cell lymphoma. Curr Treat Options Oncol. 2013;14:198–211. 2046. Kim A, Park S, Lee JE, Jang WS, Lee WS, Kang HJ, Lee SS. The dual PI3K and mTOR inhibitor NVP-BEZ235 exhibits anti-proliferative activity and overcomes bortezomib resistance in mantle cell lymphoma cells. Leuk Res. 2012;36:912–20. 774 References

2047. Civallero M, Cosenza M, Marcheselli L, Pozzi S, Sacchi S. NVP-BEZ235 alone and in combination in mantle cell lymphoma: an effective therapeutic strategy. Expert Opin Investig Drugs. 2012;21:1597–606. 2048. Saveur-Michel M, Pecchin S, Huang A, Burger M, Knapp M, Sterker D, Schnell C, Guthy D, Nagel T, Wiesman M, Brachman S, Fritsch C. Dorsch, Chéne P, Shoemaker K, De Over A, Menezes D, Martiny-Baronm G, FabbroD, Wilson CJ, Schlegel R, Hofmann F, Garcia-Echevarria C, Sellers WR, Voliva CF. Identification and character- ization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther. 2012;11:317. doi:10.1158/1535-7163.MCT-11-0474. 2049a. Somaiah N, von Mehren M. New drugs and combinations for the treatment of soft-tissue sarcoma: a review. Cancer Manag Res. 2012;4:397–411. 2049b. Demetri GD, Chawla SP, Ray-Coquard I, Le Cesne A, Staddon AP, Milhem MM, Penel N, Riedel RF, Bui-Nguyen B, Cranmer LD, Reichardt P, Bompas E, Alcindor T, Rushing D, Song Y, Lee R-m, Ebbinghause S, Eid JE, Loewy JW, Haluska FG, Dodion PF, Bay J-Y. Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J Clin Oncol. 2013;31:2485–2492. 2050a. Germano G, Frapolli R, Frapolli R. Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res. 2010;70:2235–2244. 2050b. Grohar PJ, Griffin LB, Yeung C, Chen QR, Pommier Y, Khanna C, Khan J, Helman LJ. Ecteinascidin 743 interferes with the activity of EWS-FLI1 in Ewing sarcoma cells. Neoplasia. 2011;13:145–153. 2050c. Schuler MK, Rickter S, Platzek I, Beuthien-Baumann B, Wieczorek K, Hamann C, Mohm J, Ehninger G. Trabectidin in the neoadjuvant treatment of high-grade pleomorphic sarcoma: report of a rare case and literature review. Case Reports Oncol Med. 2013;ID320797. 2051. Pal SK, Stain CA, Sartor O. Enzalutamide for the treatment of prostate cancer. Expert Opin Pharmacother. 2013;14:679–85. 2052. Venkannagari S, Fiskus W, Peth K, Atadia P, Hidalgo M, Maitra A, Bhalla KN. Superior efficacy of co-treatment with dual PI3K/mTOR inhibitor NVP-BEZ235 and pan-histone deacetylase inhibitor against human pancreatic cancer. Oncotarget. 2012;3:1416–27. 2053. Dabrovska A, Kim S, Salamone RJ, Walker JAR, Maira SM, García-Echevarria C, Schultz PG, Reddy VA. The role of PTEN/AKT/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell population. Proc Natl Acad Sci USA. 2009;106:268–73. 2054. Aguda BD, Kim Y, Piper-Hunter C, Friedman A, Marsh CB. MicroRNA regulation of cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA. 2008;105:19678–83. 2055a. Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ, Miller DS, Huang TH. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 2009;69:9038-9046. 2055b. Huang YW, Ruiz CR, Eyler EC, Lin K, Meffert MK. Dual regulation of mRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell. 2012;148:933-946. 2056. Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 2010;15:673–82. 2057. He M, Liu Y, Deng X, Qi S, Sun X, Liu G, Liu Y, Liu Y, Zhao M. Down-regulation of miR-200b-3p by low p73 contributes to the androgen-independence of prostate cancer cells. Prostate. 2913; doi:10.1002/pros.22652. References 775

2058. Ishteiwy RA, Ward TM, Dykxhoom DM, Burnstein KL. The microRNA-23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cell. PLoS One. 2012;7(12)e52106. doi:10.1371/journal.pone.0052106. 2059. Qu F, Cui X, Hong Y, Wang J, Li Y, Chen L, Liu Y, Gao Y, Xu D, Wang Q. MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Mol Cell Biochem. 2013;377:121–30. 2060. Fan X, Chen X, Deng W, Zhong G, Cai Q, Lin T. Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostatic cancer cells metastasis by modulating FNDC3B expression. BMC Cancer. 2013;13(1):61. 2061. Hirata H, Ueno K, Shahryan V, Deng G, Tanaka Y, Tabatacai ZL, Hinoda Y, Dahiya R. MicroRNA-182-5p promotes cell invasion and proliferation by down-regulating FOXF, RECK and MTSS1 genes in human prostate cancer. PLoS One. 2013;8(1)e455592. doi:10.1371/journal.pone.0055502. 2062. Qu Y, Li WC, Hellem MR, Rostad K, Popa M, McCormack E, Oyan AM, Kalland KH, Ke XS. MiR-182 and miR-203 induce mesenchymal to epithelial transition and self sufficiency of growth signals via repressing SNAI2 in prostate cells. Int J Cancer. 2012; doi:10.1002/IJC.28056/. 2063. Han HB, Gu J, Zuo HJ, Chen ZG, Zhao W, Li M, Ji DB, Lu YY, Zhang ZQ. Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. J Pathol. 2012;226:544–55. 2064. Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J, Yao J, Yan M, Li J, Yao M, Ng IO, He X. MicroRNA-125b suppressed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology. 2010;52:1731–40. 2065. Xiong S, Zheng Y, Jiang P, Liu R, Liub X, Chu Y. MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int J Biol Sci. 2011;7:805–8142021. 2066. Di Martino MT, Gullá A, Cantafio ME, Lionetti M, Leone E, Amodio N, Guzzi PH, Foresta U, Conforti F, Cannataro M, Neri A, Giordano A, Tagliaferro P, Tassone P. In vitro and in vivo anti-tumor activity of miR-221-222 inhibitors in multiple myeloma. Oncotarget. 2013;4:242–55. 2067. Fortson WS, Kayarthodi S, Fujimura Y, Xu H, Matthews R, Grizzle WE, Rao VN, Bhat GK, Reddy ES. Histone deacetylase inhibitors, valproic acid and trichostatin-A induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells. Int J Oncol. 2011;39:111–9. 2068. Zhou X, Yang XY, Popescu NC. Synergistic antineoplastic effect of DLC1 tumor suppressor protein and histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), on prostate and liver cancer cells: perspectives for therapeutics. Int J Oncol. 2019;36:999–1005. 2069. Rosenbaum E, Hoque MO, Cohen Y, Zahurak M, Eisenberger MA, Epstein JI, Partin AW, Sidransky D. Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin Cancer Res. 2005;11:8321. doi:10.1158/1078-0432.CCR-05-1183. 2070. Sinkovics JG. Oncogenes and growth factors. CRC Crit Rev Immunol. 1988;8:217–98. 2071. Liu YH, Xue SP. Potency of induced differentiation in vitro of a human promyelocytic leukemia cell mutant (HL-60-AR) with characteristics of resistance to 8-AG and deficiency in HGPRT. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1986;8:461–5. 2072. Wu X, Wang X, Qien X, Liu H, Ying J, Yang Z, Yaom H. Four years’ experience with the treatment of all-trans retinoic acid in acute promyelocytic leukemia. Am J Hematol. 1993;43:183–9. 2073. de Melo JV, de Melo V, Abad MH. Clinical and radiological response with FOLFOXIRI and bevacizumab as third-line therapy after FOLFOXx6 and FOLFIRI failure. Anticancer Drugs. 2011;S2:S19-20. 776 References

2074. Fornaro L, Vasile E, Masi G, Loupakis F, Baldi GG, Allegrini G, Salvatore L, Cupini S, Cortesi E, Tuzi A, Granetto C, Brunetti IM, Ricci S, Falcone A. Outcome of second-line treatment after first-line chemotherapy with the GONO FOLFOXIRI regimen. Clin Colorectal Cancer. 2012;11:71–6. 2075. Stein A, Clockzin G, Wienke A, Arnold D, Edelmann T, Hildbrandt B, Hollerbach S, Illerhaus G, Königsrainer A, Richter M, Schlitt HJ, Schmoll HJ. Treatment with bevacizumab and FOLFOXIRI in patients with advanced colorectal cancer: presentation of two novel trials (CHARTA and PERIMAX) and review of the literature. BMC Cancer. 2012;12:356. doi:10.1186/1471-2407-12-356. 2076. Domingo-Espin J, Vazquez E, Ganz J, Conchillo O, García-Fruitós E, Cedano J, Unzueta U, Petegnief V, Gonzalez-Montalbán N, Planas AM, Daura X, Peluffo H, Ferrer-Miralles N, Villaverde A. Nanoparticle architecture of protein-based artificial viruses is supported by protein-DNA interactions. Nanomedicine. 2011;6:1047–61. 2077. Llorens C, Munoz-Pomer A, Bernad L, Botella H, Moya A. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct. 2009;4:41. doi:10. 1186/17645-6150-4-41. 2078. Pritham EJ, Feschotte C, Wessler SR. Unexpected diversity and differential success of GNA transposons in four species of Entamoeba protozoans. Mol Biol Evol. 2005;22:1751–63. 2079. Duncan L, Bouckaert K, Yeh F, Kirk DL. Kangaroo, a mobile element from Volvox carteri, is a member of a newly recognized third class of retrotransposons. Genes. 2002;162:1617–30. 2080. Esnault C, Casella JF, Heidmann T. A Tetrahymena thermophila ribozyme-based indicator gene to detect transposition of marked retroelements in mammalian cells. Nucleic Acids Res. 2002;30(11):e49. 2081. Zerbato M, Holic N, Moniot-Frin S, Ingrao D, Galy A, Perea J. The brown alga PI.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities. PLoS One. 2013;8(3):e58263. 2082. Affolter M, Rindisbacher L, Braun R. The tubulin gene cluster of Trypanosoma brucei starts with an intact beta-gene and ends with a truncated beta-gene interrupted by a retrotransposons-like sequence. Gene. 1989;80:177–83. 2083. Laha T, Kewgrai N, Loukas A, Brindley P.J. Characterization of SR3 reveals abundance of non-LTR retrotransposons of the RTE clade in genome of the human blood fluke, Schistosoma mansoni. BMC Genomics. 2005;g:154. doi:10.1186/1471-2164-6-154. 2084. Cai P, Piao X, Hou N, Liu S, Wang H, Chen Q. Identification and characterization of argonaute protein, AGO2 and its associated small RNAs in Schistosoma japonicum. PLoS Negl Trop Dis. 2012;6(7):e1745. doi:10.1371/journal.pntd.0001745. 2085. Jacinto DS. Muniz Hdos S, Venancio TM, Wilson RA, Verjovski-Almeida S, Demarco R. Curupira-1 and curupira-2, two novel mutator-like DNA transposons from the genomes of human parasites Schistosoma mansoni and Schistosoma japonicum. Parasitology. 2011;138:1124–33. 2086. Ferguson AA, Jiang N. Mutator-like elements with multiple long terminal inverted repeats in plants. Comp Fund Genomics. 2012;2912:695827. doi:10.1155/2012/695827. 2087. Jiang N, Ferguson AA, Slotkin RK, Lisch D. Pack-Mutator-like transposable elements (Pack-MULES) induce directional modification of genes. Proc Natl Acad Sci USA. 2011;108:1537–42. 2088. Moradi M, Babin V, Roland C, Sagui C. Reaction path ensemble of the B-Z-DNA transition: a comprehensive atomistic study. Nucleic Acids Res. 2013;41:33–43. 2089. Lopes FR, Silva JC, Benchimol M, Costa GG, Preira GA, Carareto M. The protist Trichomonas vaginalis harbors multiple lineages of transcriptionally active Mutator-like elements. BMC Genomics. 2009;10:330. doi:10.1156/1471-2164-10-330. References 777

2090. Carr M, Nelson M, Leadbeater BS, Baldauf SL. Three families of LTR retrotransposons are present in the genome of the choanoflagellate Monosiga brevicollis. Protist. 2008;159:579–90. 2091. Albalat R, Permanyer J, Cañestro C, Martinez-Mir A, González-Angulo O, González-Duarte R. The first non-LTR retrotransposons characterized in the cephalo- chordate amphioxus, BfCR1, shows similarities to CR1-like elements. Cell Mol Life Sci. 2003;60:803–9. 2092. Ramulu HG, Raoult D, Pontarotti P. The rhizome of life: what about metazoan? Front Cell Infect Microbiol. 2012;2.50. doi:10.3389/fcimb.2012.00050. 2093a. Fox EJ, Loeb LA. Lethal mutagenesis: targeting the mutator phenotype in cancer. Semin Cancer Biol. 2010;20:353–359. 2093b. Prindle MJ, Fox EJ, Loeb LA. The mutator phenotype in cancer: molecular mechanisms and targeting strategies. Curr Drug Targets. 2010;11:1296–1303. 2094. Swart EC, Bracht JAR, Magrini V, Minx P, Chen X, Zhou Y, Khurana JS, Goldman AD, Nowacki M, Schotanus K, Jung S, Fulton RS, Ly A, McGrath S, Haub K, Wiggins JL, Storton D, Matese JC, Parsons L, Chang WJ, Bowen MS, Stover NA, Jones TA, Eddy SR, Herrick GA, Doak TG, Wilson RK. Mardis Er, Landweber LF. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol. 2013;11(1):e1001473. doi:10.1371/journal.pbio.1001473. 2095. Horvath MP. Evolution of telomere-binding proteins. In: Nosek J, Tomáska L, editors. Origin and evolution of telomeres. Austin, TX: Landes Bioscience; 2008. p. 83–99. 2096. Fang W, Wang X, Bracht JAR, Nowacki M, Landweber LF. Piwi-interacting RNAs protect DNA against loss during Oxytricha genome rearrangement. Cell. 2012;151:1243–55. 2097. Cartinhour SW, Herrick GA. Three different macronuclear DNAs in Oxytricha fallax share a common sequence block. Mol Cell Biol. 1984;4:931–8. 2098. Jang E, Chung DC. Hereditary colon cancer: Lynch syndrome. Gut Liver. 2010;4:151–69. 2099. Nicolaev SI, Sotiriou SK, Pateras IS, Santoni F, Sougioultzis S, Edgren H, Almusa H, Robyr D, Guipponi M, Saarela J, Gorgoulis VG, Antonarakis SE, Halazonetis TD. A single-nucleotide substitution mutator phenotype revealed by exome sequences of human colon adenomas. Cancer Res. 2012;72:6279–89. 2100. Tili E, Michaile JJ, Wernicke D, Alde H, Costinean S, Volinia S, Croce CM. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci USA. 2011;108:4908–13. 2101. Yang D, Hurley LH. Structure of the biologically relevant bG-quadruplex in the c-Myc promoter. Nucleosides Nucleotides Nucleic Acids. 2006;25:951–68. 2102. van der Kuyl AC, Dekker JT, Goudsmit J. Discovery of a new endogenous type C retrovirus (FcEV) in cats. Evidence for RD-114 being an FcEVgagpol/baboon endogenous virus BaEVEnv recombinant. J Virol. 1999;73:7994–8002. 2103. Søe K, Andersen TL, Hobolt-Pedersen AS, Bierregaard B, Larsson LI, Delaissé JM. Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion. Bone. 2011;48:837–46. 2104. Antony JM, Deslauriers AM, Bhat RK, Ellestad KK, Power C. Human endogenous retroviruses and multiple sclerosis: innocent bystanders or disease determinants? Biochim Biophys Acta. 2011;1812:162–76. 2105a. Pogo BG, Holland JF, Levine OH. Human mammary tumor virus in inflammatory breast cancer. Cancer. 2010;116S:295–297. 2105b. Pogo BG, Melana SM, Moran F, Holland JF. Presence of MMTV-like env gene sequences in human breast cancer. Breast Cancer Res Treat. 2011;125:295–297. 2106. Nelson PN, Hooley P, Ejtehadi HD, Rylance P, Warren P, Martin J, Murray PG. Molecular Immunology Research Group. Human endogenous retroviruses: transposable elements with potential? Clin Exp Immunol. 2004;138:1–9. 778 References

2107. Dabrowska A, Kim N, Aldovini A. Tat-induced FOXO3a is a key mediator of apoptosis in HIV-1-infected human CD4+ lymphocytes. J Immunol. 2008;181:8460–77. 2108. Eizert H, Bander P, Bagossi P, Sperka T, Miklóssy G, Boross P, Eber IT, Tözsér J. Amino acid preference of retroviral proteases for amino-terminal positions in a type 1 cleavage site. J Virol. 2998;82:10111–10117. 2109a. Huliák I, Sike A, Zencir S, Boros IM. The objectivity of reporters: interference between physically unlinked promoters affects reporter gene expression in transient transfection experiments. DNA Cell Biol. 2012;31:1580–1584. 2109b. Imaizumi Y, Sugita S, Yamamoto K, Imanishi D, Kohno T, Tomonaga M, Matsuyama T. Human T cell leukemia virus type-I Tax activates human macrophage inflammatory protein-3a/CCL20 gene transcription via the NF-κB pathway. Int Immunol. 2002;14:147–155. 2110. Kim Y, Hollenbaugh JA, Kim D-H, Kim B. Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat. PLoS One. 2011;6 (7):e21781. doi:10.1371/journal.pone.0021781. 2111a. Nagy K, Barabás É,Várkonyi V, Horváth A. Determination of HIV-1 subtypes in Hungary by synthetic peptides representing the V3 loop of env. Pathol Oncol Res. 1996;2:268–271. 2111b. Nagy K, Young M, Baboonian C, Merson J, Whittle P, Oroszlán S. Antiviral activity of human immunodeficiency virus type 1 protease inhibitors in a single cycle of infection: evidence for a role in the early phase. J Virol. 1994;68:757–765. 2112a. Perl A, Banki K. Genetic and metabolic control of the mitochondrial transmembrane potential and reactive oxygen intermediate production in HIV disease. Antioxid Redox Signal. 2000;2:551–573. 2112b. Perl A. Role of endogenous retroviruses in autoimmune diseases. Rheum Dis Clin North Am. 2003;29:123–143. 2112c. Perl A. Fernandez D, Telarico T, Phillips PE. Endogenous retroviral pathogenesis in lupus. Curr Opin Rheumatol. 2010;22:483–492. 2112d. Caza TN, Fernandez DR, Talaber G, Oaks Z, Haas M, Madaio MP, Lai Z-w, Miklossy G, Singh RR, Chudakow DM, Malorni W, Middleton F, Banki K, Perl A. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann Rheum Dis. 2014;73:1888–97. 2113. Arjan-Odedra S, Swanson CM, Sherer NM, Wolinsky SM, Malim MH. Endogenous MOV19 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses. Retrovirology. 2012;9:53 doi:10.1186/1742- 4690-9-53. 2114a. Kiss-László Z, Henry Y, Bachellerie J-P, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of ribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996;85:1077-1088. 2114b. Kiss-László Z, Henry Y, Kiss T. Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J. 1998;17:797–807. 2114c. Jády B, Ketele A, Kiss T. Human intron-encoded AluRNAs are processed and packaged into Wdr9-associated nucleoplasmic box H/ACA RNPs. Genes Dev. 2012;26:1897–1910. 2115. Teng YN, Chuang PJ, Liu YW. Nuclear factor-κB (NF-κB) regulates the expression of human testis-enriched leucine-rich repeats and WD repeat domain containing 1 (LRWD1) gene. Int J Med Sci. 2012;14:625–39. 2116. Polson A, Durrett E, Reisman D. A bidirectional promoter reporter vector for the analysis of the p53/WDR79 dual regulatory element. Plasmid. 2011;66:169–79. References 779

2117. Garcia-Closas M, Kristensen V, Langerød A, Qi Y, Yeager M, Burgett L, Welch R, Lissowska J, Peplonska B, Brinton L, Gerhard DS, Gram IT, Perou CM. Børrsen -Dale AL, Chanock S. Common genetic variation in TP53 and its flanking genes, WDR79 and ATP1B2, and susceptibility to breast cancer. Int J Cancer. 2007;121:2532–8. 2118. Wang Q, Ma C, Kemmner W. Wdr66 is a novel marker for risk stratification and involved in epithelial-mesenchymal transition of esophageal squamous cell carcinoma. BMC Cancer. 2013;13:137. doi:10.1186/1471-2407-13-137. 2119. Ang Y-S, Tsai S-Y, Lee D-F, Monk J. SuJ, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstain E, Schaniel C, Lemischka IR. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell. 2011;145:183–97. 2120. Côté-Martin A, Moody C, Fradet-Turcotte A, D’Abramo CM, Lerhoux M, Joubert S, Poirier GC, Coulombe B, Laimins LA, Archambault J. Human papillomavirus E1 helicase interacts with the WD repeat protein p80 to promote maintenance of the viral genome in keratinocytes. J Virol. 2008;82:1271–83. 2121. DeMartini JC, Bishop JV, Allen TE, Jassim FA, Sharp JM, de las Heras M, Voelker DR, Carlson JO. Jaagsiekte sheep retrovirus proviral clone JSRVJS7, derived from the JS7 lung tumor cell line induces ovine pulmonary carcinoma and is integrated into the surfactant protein gene. J Virol. 2001;75:4239–4246. 2122. Hofacre A, Fan H. Jaagsiekte sheep retrovirus biology and oncogenesis. Viruses. 2010;2:2618–48. 2123. Wootton SK, Metzger MJ, Hudkins KL, Alpers CS, York D, DeMartini JC, Miller AD. Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus (JSRV) closely resembles lung cancer in sheep infected with JSRV. Retrovirology. 2006;3:94. doi:10.1186/1742-4690-3-94. 2124. Hanger JJ, Bromham LD, McKee JJ, O’Brien TM, Robinson WF. The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to gibbon ape leukemia virus. J Virol. 2000;74:4264–72. 2125a. Tarlinton R, Meers J, Young P. Biology and evolution of the endogenous koala retrovirus. Cell Mol Life Sci. 2008;65:3413–3421. 2125b. Tarlinton R, Meers J, Hanger J, Young P. Real time reverse transcriptase PCR for endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. J Gen Virol. 2005;86:783–787. 2126. Boensch C, Huang SS, Connolly DFT, Huang JS. Cell surface retention sequence binding protein-1 interacts with the v-sis gene product protein-derived growth factor beta-type receptor in simian sarcoma virus –transformed cells. J Biol Chem. 1999;274:10582–9. 2127. Pierce GF, Shawver LK, Milner PG, Yeh HJ, Thomason A, Deuel TF. Identification and purification of PDGF/sis-like proteins from nuclei of simian sarcoma virus-transformed fibroblasts. Oncogene Res. 1988;2:235–44. 2128. Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology. 2011;8:90. doi:10.1186/1742-4690-8-90. 2129a. Wainwright M. The Sinkovics hybridoma. The discovery of the first “natural hybridoma”. Prospect Biol Med. 1992;35:372–379. 2129b. Wainwright M, Lederberg J. History of microbiology. In: Encycopedia of Microbiology, Vol 2. London New York: Academic Press; 1992. p. 419–437. 2130a. Margolis LB, Glushakova S, Baibakov B, Zimmerberg J. Syncytium formation in cultured human lymphoid tissue; fusion of implanted HIV glycoprotein 120/41-expresssing cells with CD4+ cells. AIDS Res Hum. Retroviruses. 1995;11:697–704. 780 References

2130b. Glushakova S, Baibakov B, Zimmerberg J, Margolis LB. Experimental HIV infection of human lymphoid tissue: correlation of CD4+ T cell depletion and virus syncytium-inducing/non-syncytium-inducing phenotype in histocultures inoculated with laboratory strains and patient isolates of HIV type 1. AIDS Res Human Retroviruses. 1997;13:461–471. 2131. Lazova R, Chakraborty A, Pawelek JM. Leukocyte-cancer cell fusion initiator of the Warburg effect in malignancy. In: Dittmar T, Zänker KS, editors. Cell fusion in health and disease. II. Cell fusion in disease. Dordrecht Heidelberg London New York: Springer Verlag; 2011. p. 151–172. 2132. Lu X, Kang Y. Cell fusion hypothesis of the cancer stem cell. In: Dittmar T, Zänker KS, editors. Cell fusion in health and disease. II. Cell fusion in disease. Dodrecht Heidelberg London New York: Springer Verlag; 2011. p. 129–140. 2133. Nagler C, Zänker KS, Dittmar T. Cell fusion. Drug resistance and recurrent cancer. In: Dittmar T, Zänker KS, editors. Cell fusion in health and disease. II. Cell fusion in disease. Dordrecht Heidelberg London New York: Springer Verlag; 2011. p. 173–182. 2134. Silvestris F, Ciavarella S, Strippoli S, Dammaco F. Cell fusion and hyperactive osteoclastogenesis in multiple myelomas. In: Dittmar T, Zänker KS, editors. Cell fusion in health and disease. II. Cell fusion in disease. Dordrecht Heidelberg London New York: Springer Verlag; 2011. p. 113–128. 2135a. Sinkovics JG, Szakacs J,E, Györkey F. Thirty-year search for human retroviruses. American College of Physicians Florida Scientific Meeting. Abstracts Sept 19-20 1992. 2135b. Sinkovics JG, Györkey F, Gyorkey P. Immunovirology of Reed-Sternberg cells. Eighth Internationational Congress Immunology. Budapest, Hungary, Aug 23–28, 1992 Abstracts 1992; p 416 #66-19. 2135c. Györkey F, Gyorkey P, Sinkovics JG. Immunovirology of Kaposi sarcoma cells. Eighth International Congress Immunology, Budapest, Hungary Aug 23-28 1992 Abstracts 1992; p 415 #66-7. 2135d. Gyorkey F†, Gyorkey P, Sinkovics JG, Szakacs J, Gergely S. Thirty-year search for human retroviruses. In Memoriam Ferenc Gyorkey MD. First International Conference on Human Retroviruses, Washington DC, Dec 12–16 1993 Abstracts p. 95 #233. 2135e. Sinkovics JG, Szakacs JE, Gergely AS, Gyorkey P, †Gyorkey F. Unidentified human retroviruses. Presentation dedicated to the Memory of Professor Ferenc Györkey. Infectious Disease Society of America Annual Meeting. Orlando, FL 1994. Book of Abstracts. 2135f. Sinkovics JG. Contradictory concepts in the etiology and regression of Kaposi’s sarcoma. The Ferenc Györkey Memorial Lecture. Pathol Oncol Res. 1996;2:249–267. 2136. Jha AR, Nixon DF, Rosenberg MG, Martin JN, Deeks SG, Hudson RR, Garrison KE, Pillai SK. Human endogenous retrovirus K106 (HERV-K-106) was infectious after the emergence of anatomically modern humans. PLoS One. 2011;6(5):e20234. doi:10.1371/ journal.pone.0020234. 2137. Mullins CS, Linnebacher M. Human endogenous retroviruses and cancer: causality and therapeutic possibilities. World J Gastroenterol. 2012;18:6027–35. 2138. Drewinko B, Romsdahl MM, Yang LY, Ahearn MJ, Trujillo JM. Establishment of a human carcinoembryonic antigen-producing colon adenocarcinoma cell line. Cancer Res. 1976;36:467–75. 2139. Dunn CA, Medstrand P, Mager DL. An endogenous retroviral long terminal repeat is the dominancy promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc Natl Acad Sci USA. 2003;100:12841–6. 2140a. Lamprecht B, Bonifer C, Mathas S. Repeat-element driven activation of proto-oncogenes in human malignancies. Cell Cycle. 2010;9:4276–4281. References 781

2140b. Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze D, Köchert K, Bouhlel K, Richter J, Soler E, Stadhouders R, Jöhrens K, Wurster KD, Callen DF, Harte MF, Giefing M, Barlow R, Stein H, Anagnostopoulos I, Janz M, Cockerill PN, Siebert R, Dörken B, Bonifer C, Mathas S. Derepression of an endogenous long terminal repeat activates CSF1R proto-oncogene in human lymphoma. Nat Med. 2010;16:571–579. 2141. Bonnaud B, Beliaeff J, Bouton O, Oriol G, Duret L, Mallet F. Natural history of the ERVWE1 endogenous retroviral locus. Retrovirology. 2005;22(2):57. doi:10.1186/1742- 4690-2-57. 2142. Ajore R, Kumar P. Singh Dhanda R, Gullberg U, Olsson I. The leukemia associated nuclear corepressor ETO homologue genes MTG16 and MYGR1 are regulated differently in hematopoietic cells. BMC Mol Biol. 2012;13:11. doi:10.1186/1471- 2199-13-11. 2143. Engel ME, Hiebert SW. The enemy within: dominant retroviruses awaken. Nat Med. 2010;16:517–8. 2144a. Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I, Bagnoli F, Giusti F, Dosik MH, Hayes DF, Gitlin SD, Markovitz DM. Human endogenous retrovirus K (HML2) elements in the plasma of people with lymphoma and breast cancer. J Virol. 2008;82:9329–9336. 2144b. Contreras-Galindo R, Kaplan MH, Contreras-Galindo AC, Gonzalez-Hernandez MJ, Ferlenghi I, Giusti F, Lorenzo E, Gitlin SD, Dosik MH, Yamamura Y, Markovitz DM. Characterization of human endogenous retroviral elements in the blood of HIV-1-infected individuals. J Virol. 2112;86:262–276. 2145. Januszkiewitz-Lewandowska D, Nowicka K, Rembowska J, Fichna M. Zurawek, Derwich K, Nowak J. Env gene expression of human endogenous retrovirus-K and human endogenous retrovirus-W in childhood acute leukemia cells. Acta Haematol. 2013;129:232–7. 2146a. Wang-Johanning F, Liu J, Rycay K, Huang M, Tsai K, Rosen DG, Chen DT, Lu DW, Barnhart KF, Johanning GL. Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int J Cancer. 2007;120:81–90. 2146b. Wang-Johanning F, Rycaj K, Plummer JB, Li M, Yin B, Frerich K, Garza JG, Shen J, Lin K, Yan P, Glynn SA, Dorsey TH, Hunt KK, Ambs S, Johanning GL. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J Natl Cancer Inst. 2012;104:189–210. 2146c. Zhao J, Rycaj k, Geng S,, Li G, Plummer JB, Yin B, Liu H, Xu X, Zhang Y, Yan Y, Glynn SA, Dorsey TH, Ambs S, Johanning GL, Lin G, Wang-Johanning F. Expression of human endogenous retrovirus type K . Genes Cancer. 2011;2:914–922. 2147a. Yaniv A, Gotlieb-Stematsky T, Vonsover A, Perk K. Evidence for type-C retrovirus production by Burkitt’s lymphoma-derived cell line. Int J Cancer. 1980;25:205–211. 2147b. Dreyfus DH. Autoimmune disease: A role for new anti-viral therapies? Autoimmun Rev. 2011;11:88–97. 2147c. Crane GM, Ambinder RF, Shirley CM, Fishman EK, Kasamon YL, Taube JM, Borowitz MJ, Duffield AS. HHV-8-positive and EBV-positive intravascular lymphoma: an unusual presentation of extracavitary primary effusion lymphoma. Am J Surg Pathol. 2014;38:426–432. 2147d. Bentz GL, Bheda-Malge A, Wang L, Shackelford J, Damania B, Pagano JS. KSNV LANA and EBV LMP1 induce the expression of UCH-L1 following viral transformation. Virology. 2014;448:293–302. 2148. Ishida T, Obata Y, Ohara N, Matsushita H, Sato S, Uenaka A, Saika T, Miyamura T, Chayama K, Nakamura Y, Wada H, Yamashita T, Morishi A t, Old LJ, Nakayama E. Identification of the HERV-R gag antigen in prostate cancer by SEREX using autologous patient serum and its immunogenicity. Cancer Immun. 2008;8:15. 782 References

2149. Carlini F, Ridolfi B, Molinari A, Parisi C, Bozzulo G, Toccacieli L, Formisano G, De Orsi D, Paradisi S, Grober OM, Rayo M, Weisz A, Arcien R, Vella S, Gaudi S. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines. PLoS One. 2010;5(12):e14221. 2150. Cherkasova E, Malinzak E, Rao S, Takahashi Y, Senchenko VN, Kudryavtseva AV, Nickerson ML, Merino M, Hong JA, Schrump DS, Srinivasan R, Linehan WM, Tian X, Lerman MI, Childs RW. Inactivation of the von Hippel-Lindau tumor suppressor leads to selective expression of a human endogenous retrovirus in kidney cancer. Oncogene. 2011;30:4697–706. 2151. Sinkovics JG, Samuels ML, Thota H, Johnson DE. Kidney carcinoma: a chemotherapy-resistant tumor probably amenable to chemoimmunotherapy. Proc Am Assoc Cancer Res & Am Soc Clin Oncol Joint Ann Meeting San Diego CA May 7–11 1975 16:123 #491. 2152a. Horvath JC, Szabó-Szabari M, Sinkovics JG. Autologous activated lymphocyte production for cancer immunotherapy. Sixteenth Symposium International Association Comparative Research Leukemia and Related Diseases. July 11–16 1993, Montreal, Canada, Abstracts 1993 #79. 2152b. Horvath J, Szabó-Szabari M, Sinkovics JG. Autologous activated lymphocyte therapy in a community hospital. Acta Microbiol Hung. 1994;41:205–214. 2152c. Horvath JC, Sinkovics JG. Adoptive immunotherapy with activated peripheral blood lymphocytes. Leukemia. 1994;8S1:121–126. 2153a. Sinkovics JG, Horvath JC. Combination of active tumor-specific immunization (ATSI) and adoptive immunotherapy (AIT) with LAK cells and /or TIL expanded with IL-2. XVIth International Cancer Congress, New Delhi, India, Collection of Abstracts, 1994. 2153b. Sinkovics JG, Horvath JC, Horak A. Lymphocytes cytotoxic to human tumor cells. Proceedings Plenary Lectures XVIth International Cancer Congress, New Delhi, India. Monduzzi Editore, Bologna, Italy, 1994;93–102. 2154. Horvath JC, Sinkovics JG. Dendritoma. Presentations, 50th Annual Conference Hungarian Microbiological Society, Budapest, Hungary. Acta Microbiol Immunol Hung 50th Jubilee Issue 2003;50:250–251. 2155. Amato RJ, Shetty A, Lu Y, Ellis R, Low PS. A phase I study of folate immune therapy (EC90 vaccine administered with GPI-0100 adjuvant followed by EC17) in patients with renal cell carcinoma. J Immunother. 2013;36:268–75. 2156. Bedke J, Gouttefangeas C, Singh-Jasuja H, Stevanović S, Behnes CL, Stenzl A. Targeted therapy in renal cell carcinoma: moving from molecular agents to specific immunother- apy. World J Urol. 2014;32:31–8. 2157. Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S, Read EJ, Tisdale J, Dunbar C, Linehan WM, Young NS, Barrett AJ. Regression of metastatic renal cell carcinoma after nonmyeloablative allogeneic peripheral blood stem cell transplan- tation. N Engl J Med. 2005;353:2477–90. 2158. Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautés-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: adoptive cell transfer immunotherapy. Oncoimmunology. 2012;1:306–15. 2159. Inman BA, Harrison MR, George DJ. Novel immunotherapeutic strategies in develop- ment for renal cell carcinoma. Eur Urol. 2013;63:881–9. 2160. Jäkel CE, Hauser S, Rogenhofer S, Müller SC, Brossart P, Schmidt-Wolf IG. Clinical studies applying cytokine-induced killer cells for the treatment of renal cell carcinoma. Clin Dev Immunol. 2012;2012:473245. doi:10.1155/2012/473245. 2161. Lawson KA, Morris DG. Oncolytic virotherapy for renal cell carcinoma: a novel treatment paradigm? Expert Opin Biol Ther. 2012;12:891–903. 2162. Quesada JAR, Swanson DA, Trindade A, Gutterman JU. Renal cell carcinoma: antitumor effects of leukocyte interferon. Cancer Res. 1983;43:940–7. References 783

2163. Rini BI, Zimmerman T, Stadler WM, Gajewski TF, Vogelzang NJ. Allogeneic stem-cell transplantation of renal cell cancer after nonmyeloablative chemotherapy: feasibility, engraftment, and clinical results. J Clin Oncol. 2002;20:2017–24. 2164. Schwarzer A, Wolf B, Fisher JL, Schwaab T, Olek S, Baron U, Tomlinson CR, Seigne JD, Crosby NA, Gui J, Hampton TH, Fadul CE, Heaney JA, Ernstoff MS. Regulatory T cells and associated pathways in metastatic renal cell carcinoma (mRCC) patients undergoing DC-vaccination and cytokine-therapy. PLoS One. 2012;7(10): e46600. doi:10.1371/journal.pone.0046600. 2165. Topolian SL, Rosenberg SA. Therapy of cancer using the adoptive transfer of activated killer cells and interleukin-2. Acta Haematol. 1987;78S:75–6. 2166. Wolf B, Schwarzer A, Coté AL, Hampton TH, Schwaab T, Huarte E, Tomlinson CR, Gui J, Fisher JL, Fadul CE, Hamilton JW, Ernstoff MS. Gene expression profile of peripheral blood lymphocytes from renal cell carcinoma patients treated with IL-2, interferon-α and dendritic cell vaccine. PLoS One. 2012;7(12):e50221. 2167. Camp E, Hope R, Kortschak RD, Cox TC, Lardelli M. Expression of three spalt (sal) genes in zebrafish embryos. Dev Genes Evol. 2003;213:35–43. 2168. de Celis JE, Barrio R. Regulation and function of Spalt proteins during animal development. Int J Dev Biol. 2009;53:1385–95. 2169. Sánchez J, Talamillo A, González M, Sánchez-Pulido L, Jimenéz S, Pirone L, Sutherland JD, Barrio R. Drosophila Sal and Salr are transcriptional repressors. Biochem J. 2011;438:437–45. 2170. Shuai X, Zhou DF, Shen T, Wu Y, Zhang X, Wang X, Li Q. Overexpression of the novel oncogene SALL4 and activation of the Wnt/beta-catenin pathway in myeloproliferative syndrome. Cancer Genet Cytogenet. 2009;194:119–24. 2171. Hupfeld T, Chapuy B, Schrader V, Beutler M, Veltkamp C, Koch R, Cameron S, Aung T, Haase D, Larosee P, Truemper L, Wulf GG. Tyrosine kinase inhibition facilitates cooperation of transcription factor SALL4 and ABC transporter A3 towards intrinsic CML cell drug resistance. Br J Haematol. 2013;161:204–13. 2172. Kohlhase J, Hausmann S, Stojmenovic G, Dixkens C, Bink K, Schulz-Schäeffer W, Altmann M, Engel W. SALL3, a new member of the human spalt-like gene family, maps to 18q23. Genomics. 1999;62:216–22. 2173. Lin J, Qian J, Yao DM, Qian W, Yang J, Wang CZ, Chai HY, Ma JC, Deng ZQ, Li Y, Chen Q. Aberrant hypomethylation of SALL4 gene in patients with myelodysplastic syndrome. Leuk Res. 2013;37:71–5. 2174a. Gao C, Kong NR, Li A, Tatetsu H, Ueno S, Yang Y, He J, Yang J, Ma Y, Kao GS, Tenen DG, Chai L. SALL4 is a key transcription regulator in normal human hematopoiesis. Transfusion. 2013;53:1037-49. 2174b. Gao C, Dimitrov T, Yong KJ, Tatetsu H, Jeong HW, Luo HR, Bradner JE, Tenen DG, Chai L. Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex. Blood. 2013;121:1413–1421. 2175. Natarajan S, Hombach-Klonisch S, Dröge P, Klonisch T. HMGA2 inhibits apoptosis through interaction with ATR-CHK1 signaling complex in human cancer cells. Neoplasia. 2013;15:263–80. 2176. Luo, Li W, Liao H. HMGA2 induces epithelial-to-mesenchymal transition in human hepatocellular carcinoma cells. Oncol Lett. 2013;5L1353–1356. 2177. Zhu C, Li J, Cheng G, Zhou H, Tao L, Cai H, Li P, Cao Q, Ju X, Meng X, Wang M, Zhang Z, Qin C, Hua L, Yin C. Shao. miR-154 inhibits EMT by targeting HMGA2 in prostate cancer cells. Mol Cell Biochem. 2013;379:69–75. 2178. Fan T, Schmidtmann A, Xi S, Briones V, Zhu H, Suh HC, Gooya J, Keller JAR, Xu H, Roayaei J, Anver M, Ruscetti S, Muegge K. DNA hypermethylation caused by Lsh deletion promotes erythroleukemia development. Epigenetics. 2008;#:134–142. 784 References

2179. Ashiru O, Boutet P, Fernández-Messina L, Agüera-González S, Skepper JN, Valés-Gómez M, Reyburn HT. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010;70:481–9. 2180. Boylan MO, Athanassiou M, Houle B, Wang Y, Zarbl H. Activation of tumor suppressor genes in nontumorigenic revertants of the HeLa cervical carcinoma cell line. Cell Growth Differ. 1996;7:725–35. 2181. Chu C, Lugovtsev V, Golding H, Betenbaugh M, Shiloach J. Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production. Proc Natl Acad Sci USA. 2009;106:14802–7. 2182. Cinatl J Jr, Cinatl J, Wichelhaus T, Weber B, Rabenau H, Gümbel HO, Komhuber B, Doerr HW. Suspension culture of HeLa cells in protein-free medium: sensitivity to human pathogenic viruses. Intervirology. 1994;37:361–6. 2183. Hou H, Zhang Y, Huang Y, Yo Q, Lv L, Zhang T, Chen D, Hao Q, Shin Q. Inhibitors of phosphatidylinositol 3’-kinase promote mitotic death in HeLa cells. PLoS One. 20122;7 (4):e35665. 2184. Kochanowska IE, Wlodarski K, Wojtowicz A, Kinsner A, Ostrowski K. BMP-4 and BMP-6 involvement in the osteogenic properties of the HeLa cell line. Exp Biol Med. 2002;227:57–62. 2185. Landry JJ, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stütz AM, Jauch A, Aiyar RS, Pau G, Delhomme N, Gagneur J, Korbel JO, Huber W, Steinmetz LM. The genomic and transcriptomic landscape of a HeLa cell line. G3 (Genes/Genomes/Genetics) Bethesda. 2013;3:1213-1224. pii.g3.113.005777v6. doi:10.1534/g3.113.005777. 2186. Li M, Zheng H, Duan Z, Liu H, Hu D, Bode A, Dong Z, Cao Y. Promotion of cell proliferation and inhibition of ADCC by cancerous immunoglobulin expressed in cancer cell lines. Cell Mol Immunol. 2012;9:54–61. 2187a. Rafehi H, Orlowski C, Georgiadis GT, Ververis K, El-Osta A, Karagiannis TC. Clonogenic assay: adherent cells. J Vis Exp. 2011;13;(49). Pii:2573. doi:10.3791/2573. 2187b. Zhu K, Chen L, Han X, Wang J, Wang J. Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells. Oncol Rep. 2012;27:1027–1034. 2188. Mitra R, Li X, Kapusta A, Mayhew D, Mitra RD, Feschotte C, Craig NL. Functional characterization of piggyBat from the bat Myotis lucifugis unveils an active mammalian DNA transposons. Proc Natl Acad Sci USA. 2013;110:234–9. 2189a. Lozupone C, Perdicchio M, Brambilla D, Borghi M, Meschini S, Barca S, Marino ML, Logozzi M, Federici C, Iessi E, de Milito A,, Fais S. The human homologue of Dictyostelium discoideum phag1A is expressed by human metastatic melanoma cells. EMBO Rep. 2009;10:1348–1354. 2189b. Lozupone C, Faust K, Raes J, Faith JJ, Frank DN, Zaneveld J, Gordon JI, Knight R. identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Res. 2012;22:1974–1984. 2190a. Van Haastert PJ. How cells use pseudopods for persistent movement and navigation. Sci Signal. 2011;4(159):pe6.doi:10.1126/scisignal.2001708. 2190b. Van Haastert PJ. Amoeboid cells use protrusions for walking, gliding and swimming. PLoS One. 2011;6(11):e27532. doi:10.1371/journal.pone.0027532. 2191a. Driscoll M, Kopace R, Li L, McCann C, Watts J, Fourkas JT, Losert W. The adventures of Dicty, the Dictyostelium cell. Chaos 2009;19(4):041110. doi:10.1063/1.3212926. 2191b. Driscoll MK, McCann C, Kopace R, Homan T, Fourkas JT, Parent C, Losert W. Cell shape dynamics: from waves to migration. PLoS Comput. iol 2012;8(3):e1002392. doi:10.1371/journal.pcbi.1002392. 2192. Lorentzen A, Bamber J, Sadok A, Elson-Schwab I, Marshall CJ. An ezrin-rich rigid uropod-like structure directs movement of amoeboid blebbing cells. J Cell Sci. 2011;124:1256–67. References 785

2193a. Parri M, Taddei ML, Bianchini F, Calorini L, Chiarugi P. EphA2 induces metastatic growth regulating amoeboid motility and clonogenic potential in prostate carcinoma cells. Mol Cancer Res. 2011;9:149–160. 2193b. Parri M, Chiarugi P. Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal. 2010;8:23. doi:10.1186/1478-811X-8-23. 2194. Saito K, Ozawa Y, Hibino K, Ohta Y. FilGAP, a Rho/Rho-associated protein kinase-regulated GTPase-activating protein for RAC, controls tumor cell migration. Mol Biol Cell. 2012;23:4739–50. 2195. Panková K, Rösl D, Novotný K, Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci. 2010;67:63–71. 2196a. Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ. Contact guidance mediated three-dimensional cell migration is regulated by Rho.ROCK-dependent matrix reorga- nization. Biophys. 2008;95:5374–5384. 2196b. Provenzano PP, Eliceiri KW, Keely PJ. Shining new light on 3D cell motility and the metastatic process. Trends Cell Biol. 2009;19:638–648. 2197a. Tsai SC, Adamik R, Haun RS, Moss J, Vaughan M. Effects of brefeldin A and accessory proteins on association of ADP-ribozylation factors 1,3, and 5 with Golgi. J Biol Chem. 1993;268:10820–10825. 2197b. Tsai PC, Hsu JW, Liu YW, Chen KY, Lee FJ. Arl1p regulates special membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p. Proc Natl Acad Sci USA. 2013;110:E666–677. 2198. Képíró M, Várkuti BH, Bodor A, Hegyi G, Drahos L, Kovács M, Málnási-Csizmadia A. Azidoblebbistatin, a photoreactive myosin inhibitor. Proc Natl Acad Sci USA. 2112;109:9402–9407. 2199. Poincloux R, Collin O, Lizárraga F, Romao M, Debray M, Piel M, Chavrier P. Contractility of the cell rear drives invasion of breast tumor cells in 30 Matrigel. Proc Natl Acad Sci USA. 2011;108:1943–8. 2200. Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N, Park SM, Catena R, Do Y, Brazin J, Vahdat LT, Silver RB, 2026. Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N, Park SM, Catena R, Do Y, Brazin J, Vahdat LT, Silver RB, Mittal V. Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell. 2013;23:63–76. 2201. Mittal V. Suppression of mRNA-708 by polycomb group promoters metastases by calcium-induced cell migration. Cancer Cell. 2013;23:63–76. 2202a. van Dam TJ, Rehmann H, Bos JL, Snel B. Phylogeny of the CDC25 homology domain reveals rapid differentiation of Ras pathways between early animals and fungi. Cell Signal. 2009;21:1579–1585. 2202b. van Dam TJ, Bos JL, Snel B. Evolution of the Ras-like small GTPases and their regulators. Small GTPases. 2011;2:4–16. 2203a. Marat AL, Ioannou MS, McPherson PS. Connecdenn 3/DENND1C binds actin linking Rab35 activation to the actin cytoskeleton. Mol Biol Cell. 2012;23:163–175. 2203b. Marat AL, Dokainish H, McPherson PS. DENN domain proteins: regulators of Rab GTPases. J Biol Chem. 2011;286:13791–13800. 2204. Zhang D, Iyer LM, He F, Aravind L. Discovery of novel DENN proteins: implications for the evolution of eukaryotic intracellular membrane structures and human disease. Front Genet. 2012;3:283. doi:10.3389/fgene.2012.00283. 2205. Davis MJ, Ha BH, Holman EC, Halaban R, Schlessinger J, Boggon TJ. RAC1 P29S is a spontaneously activating cancer-associated GTPase. Proc Natl Acad Sci USA. 2013;110:912–7. 2206. Cavalli G. Molecular biology: EZH2 goes solo. Science. 2012;338:1430–1. 786 References

2207. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, Xu H, Cato L, Thornton JE, Gregory RI, Morrissey C, Vesella RL, Montinori RL, Magi-Galuzzi C, Kantoff PW, Balk SP, Liu XS, Brown M. EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science. 2012;338:1465–1469. 2208. Changchien YC, Tátrai P, Papp G, Sápi J, Fónyad L, SzendrőiM,Pápai Z, Sápi Z. Poorly differentiated synovial sarcoma is associated with high expression of enhancer of zeste homologue 2 (EZH2). J Transl Med. 2012;10:216. doi:10.1186/1479-5876-10-216. 2209. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R, Zhang Y, Chan JC, Fu K, Marquez VE, Chen-Kiang S, Moscinski LC, Seto E, Dalton WS, Wright K, Sotomayor E, Bhalla K, Tao J. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell. 2012;22:506–23. 2210. Chen YH, Hung MC, Li LY. EZH2: a pivotal regulator in controlling cell differentiation. Am J Transl Res. 2012;4:3640375. 2211. Shaver S, Casas-Mollano JA, Cerny RL, Cerutti H. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homologue in the unicellular alga Chlamydomonas. Epigenetics. 2010;5:301–12. 2212. Bajusz I, Sipos L, Györgypál Z, Carrington EA, Jones RS, Gausz J, Gyurkovics H. The trithorax-mimic allele of enhancer of zeste renders active domains of target genes accessible to polycomb-group-dependent silencing in Drosophila melanogaster. Genetics. 2001;159:1135–50. 2213. Jones CA, Ng J, Peterson AJ, Morgan K, Simon J, Jones RS. The Drosophila esc and E (z) proteins are direct partners in polycomb group-mediated repression. Mol Cell Biol. 1996;18:2825–34. 2214. Hajósi-Kalcakosz S, Dezső K, Bugyik E, Bödör C, Paku S, Pávai Z, Halász J, Schlachter K, Schaff Z. Enhancer of zeste homologue 2 (EZH2) is a reliable immunohistochemical marker to differentiate malignant and benign hepatic tumors. Diagn Pathol. 2012;786. doi:10.1186/1746-1596-7-86. 2215a. Futosi K, Németh T, Pick R, Vántus T, Walzog B, Mócsai A. Dasatinib inhibits proinflammatory functions of mature human neutrophils. Blood. 2012;110:4981–4991. 2215b. Futosi K, Fodor Sz, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013;17:638–650. 2216. Schmidt W, Weber OF. In memoriam of Rudolf Virchow: a historical retrospective including aspects of inflammation, infection, and neoplasia. Contrib Microbiol. 2006;13:1–15. 2217a. Snow H. A treatise, practical and theoretic on cancers and the cancer process. London: JA Churchill; 1893., cited in 2217b. 2217b. Neuhaus SJ, Clark MA, Thomas JM. Dr. Herbert Lumley Snow MD, MRCS (1847-1930): the original champion of elective lymph node dissection in melanoma. Ann Surg Oncol. 2004:11:875–878. 2218. Johnston RN, Pai SB, Pai RB. The origin of the cancer cell: oncogeny reverses phylogeny. Biochem Cell Biol. 1992;70:831–4. 2219a. Moncevičiūtė-Eringiene E. Evolutionary malignant resistance of cells to damaging factors as common biological defence mechanism in neoplastic development. Review of conception. J Exp Clin Cancer Res. 2000;19:335–348. 2219b. Moncevičiūte-Eringiene E. Neoplastic growth: the consequence of evolutionary malig- nant resistance to chronic damage for survival of cells (review of a new theory of the origin of cancer). Med Hypotheses. 2005;65:595–604. 2219c. Moncevičiūtė-Eringiene E, Kazbariene B, Milasiene V, Characiejus D, Kemekliene R. Natural antibodies to endotoxin in experimental and clinical oncology. Exp Oncol. 2006;28:89–91. References 787

2219d. Moncevičiūtė-Eringienė E. The evolutionary atavistic endotoxin and neoplastic growth. Med Hypotheses. 2011;76:126–131. 2220. Arguello F. Atavistic metamorphosis. A new and logical explanation for the origin and biological nature of cancer. Amazon. 2011;1–126. 2221a. Sinkovics JG, Howe CD, Shullenberger CC. Cellular activities in tissue cultures of leukemia human bone marrow. Blood. 1964;24:389–401. 2221b. Sinkovics JG, Györkey F, Gyorkey P, Jones S, Shullenberger CC, Dreyer DA. Adaptation of lymphoid cells in human and murine leukemia tissue cultures to in vitro environment through a phase of intracellular residence within fibroblasts. 18th Annual Meeting Tissue Culture Association Proceedings June 4–7 1967 Philadelphia PA 1967; 26-27 #68. 2221c. Sinkovics JG, Sykes JA, Shullenberger CC, Howe CD. Patterns of growth in cultures deriving from human leukemic sources. Texas Rep Biol Med. 1967;25:446–467. 2221d. Sinkovics JG. Lymphoid cells in long term cultures. Med Records Annals (Houston). 1968;61;50–56. 2222. Wang C-H, Sinkovics JG, Kay HD, Gyorkey F, Shullenberger CC. Growth of permanent lymphoid cell; cultures from human source: 10th anniversary. Texas Rep Biol Med. 1975;33:213–250. Erratum. Spelling errors. 2223a. Sinkovics JG. Inflammatory carcinogenesis. I. The wild-type original and the tamed contemporary DNA. II. Inflammatory molecular mediators promote carcinogenesis. 2nd International Conference Cancer Immunotherapy & Immunomonitoring (CITIM) Redefining Cancer Therapy. May 2–5 2011, Budapest Hungary, 96–98. 2223b. Sinkovics JG. Inflammatory carcinogenesis. I. Generating tumor cells in the inflamma- some. II. The cellular DNA is induced to resume its ancient formation existing in the era of the “Primordial Gene Pool” and in the genomes of the first unicellular eukaryotes. In the 16th International Congress Hungarian Society for Microbiology. July 20-22 Budapest, Hungary. Acta Microbiol Immunol Hung. 2011;58:S211–213. Errata idem “in the multicellular host. Of DNA mutations,”“…close to indestructible. Of many…”. 2224. Sinkovics JG. The molecules of life and death. Hungarian Epidemiology 2012; IX/1:35–65. 2225. Cassidy-Hanley DM. Tetrahymena in the laboratory: strain resources, methods for culture, maintenance, and storage. Methods Cell Biol. 2012;109:237–76. 2226. Eckert B, Collins K. Roles of telomere reverse transcriptase N-terminal domain in assembly and activity of tetrahymena telomerase holoenzyme. J Biol Chem. 2012;287:12805–14. 2227. Iwamoto M, Asakawa H, Ohtsuki C, Osakada H, Koujin T, Hiraoka Y, Haraguchi T. Monoclonal antibodies recognize gly-leu-phe-gly repeat of nucleoporin nup98 of tetrahymena, yeasts and humans. Monoclon Antib Immunodiagn Immunother. 2013;32:81–90. 2228. Jiang J, Miracco EJ, Hong K, Eckert B, Chan H, Cash DD, Min B, Zhou ZH, Collins K, Feigon J. The architecture of Tetrahymena holoenzyme. Nature. 2013;496:187–92. 2229. Nakano T, Ohki KI, Yokota A, Ashida H. Min BD is a multifunctional fusion enzyme in the methionine salvage pathway of Tetrahymena thermophila. PLoS One. 2013;8(7): e7385. 2230. Xu J, Tian H, Liu X, Wang W, Liang A. Localization and functional analysis of HmgB3p, a novel protein containing high-mobility-group-box domain from Tetrahymena thermophila. Gene. 2013;526:87–95. 2231. Löffler H, Fechter A, Liu FY, Poppelreuther S, Krämer A. DNA damage-+induced centrosome amplification occurs via excessive formation of centriolar satellites. Oncogene. 2013;32:2963–71. 2232. Vonderfecht T, Cookson MW, Giddings TH Jr, Clarissa C, Winey M. The two human centrin homologues have similar but distinct function at Tetrahymena basal bodies. Mol Biol Cell. 2012;234766–4777. 788 References

2233. Couvillion MT, Bounova G, Purdom E, Speed TPO, Collins K. A Tetrahymena Piwi bound to mature tRNA 3’ fragments activates the exonuclease Xrn2 for RNA processing in the nucleus. Mol Cell. 2012;48:509–20. 2234. Gao S, Xiong J, Zhang C, Beruist BR, Yang R, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan D, Qin Z, Wen J, Kapler GM, Andrews PC, Miao W, Liu Y. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev. 2013;27:1662–79. 2235. Long HA, Paixão T, Azevedo RB, Zufall RA. Accumulation of spontaneous mutations in the ciliate Tetrahymena thermophila. Genetics. 2013;195:527–40. 2236. Jung S, Swart EC, Minx PJ, Magrini V, Mardis ER, Landweber LF, Eddy SR. Exploiting Oxytricha trifallax nanochromosomes to screen for non-coding RNA genes. Nucleic Acids Res. 2011;39:7529–47. 2237. Swart EC, Bracht JAR, Magrini V, Minx P, Chen X, Zhou Y, Khurana JS, Goldman AD, Nowacki M, Schotanus K, Jung S, Fulton RS, Ly A, McGrath S, Haub K, Wiggins JL, Storton D, Mateze JC, Parsons L, Chang WJ, Ms Bowen, Stover NA, Jonea TA, Eddy SR, Harrick GA, Doak TG, Wilson RK, Mardis ER, Landweber LF. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol. 2013;11(1):e1001473. 2238. Zahler AM, Neeb ZT, Lin A, Katzman S. Mating of the stichotrichous ciliate Oxytricha trifallax induces production of a class of 27 nt small RNAs derived from the parental micronucleus. PLoS One. 2012;7(8):e42371. 2239. Cang X, Šponer J, Cheatham T III. Explaining the varied glycoside conformations, G-tract length and sequence preference for anti-parallel G-quadruplexes. Nucleic Acids Res. 2011;39:4499–512. 2240. Dubois E, Bischerour J, Marmington A, Mathy N, Régnier V, Bétermier M. Transposon invasion of the Paramecium germline genome countered by a domesticated PiggyBac transposase and the NHEJ pathway. Int: J Evol Biol; 2012. p. 436196. 2241. Vogt A, Goldman AD, Mochizuki K, Landweber LE. Transposon domestication versus mutualism in ciliate genome rearrangement. PLoS One. 2013;9(8):e1003659. 2242. Heidel AJ, Lawai HM, Felder M, Schilde C, Helps NR, Tunggal B, Rivero F, John U, Schleicher M, Eichunger L, Platzer M, Noegel AA, Schaap P, Glöckner G. Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res. 2011;21:1882–91. 2243. Moore HM, Bai B, Boisvert FM, Latonen L, Rantanen V, Simpson JC, Pepperkok R, Lamond AI, Laiho M. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics. 2011;(10): M111.009241. 2244. Magyar Z, De Veylder L, Atanassova A, Bakó L, Inzé D, Bögre L. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell. 2005;17:2527–41. 2245. Strasser K, Bloomfield G, MacWilliams A, Ceccarelli A, MacWillims H, Tsang A. A retinoblastoma orthologue is a major regulator of S-phase, mitotic, and developmental gene expression in Dictyostelium. PLoS. 2012;7(6):e39914. 2246. Chen H, Fan M, Pfeffer LM, Laribee RN. The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. Nucleic Acids Res. 2012;40:6534–46. 2247. Crona M, Avesson L, Sahlin M, Lundin D, Hinas A, Klose R, Söderbom F, Sjöberg BM. A rare combination of ribonucleotide reductases in the social amoeba Dictyostelium discoideum. J Biochem. 2013;288:8198–208. 2248. Wang Q, Liu X, Zhou J, Huang Y, Zhang S, Shen J, Loera S, Yuan X, Chen W, Jin M, Shibada S, Liu Y, Chu P, Wang L, Yen Y. Ribonucleotide reductase large subunit m1 predicts poor survival due to modulation of proliferative and invasive ability of gastric cancer. PLoS One. 2013;8(7):e70191. References 789

2249. Kunos CA, Winter K, Dicker AP, Small W Jr, Abdul-Karim FW, Dawson D, Jhingran A. Valicenti, Widha JB, Gaffney DK. Ribonucleotide reductase expression in cervical cancer: a radiation therapy oncology group translational science analysis. Int J Gynecol Cancer. 2013;23:615–21. 2250. Croce JC, McClay DR. Evolution of Wnt pathways. Methods Mol Biol. 2008;469:3–18. 2251. Fairclough SR, Dayel MJ, King N. Multicellular development in a choanoflagellate. Curr Biol. 2010;20:R875–8. 2252. Sonnhammer ELL, Eddy SR, Birney E, Bateman A, Durbin R. Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res. 1998;26:320–2. 2253. Torruella G, Derelle R, Paps J, Lang J, Roger BF, Shalchian-Tabrizi K, Ruiz-Trillo I. Phylogenetic relationship within the opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol Biol Evol. 2012;29:531–44. 2254. Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol. 2011;357:73–82. 2255. Young SL, Diolaiti D, Conacci-Sorrell M, Ruiz-Trillo I, Eisenman RN, King N. Premetazoan ancestry of the Myc-Max network. Mol Biol Evol. 2011;28:2961–71. 2256. Hoffman GG, Ellington WR. Arginine kinase isoforms in the closest protozoan relative of metazoan. Comp Biochem Physiol Part D Genomics Proteomics. 2011;6:171–7. 2257. Uda K, Ellington WR, Suzuki T. Adverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarians model system for studying developmental evolution. Gene. 2012;497:214–27. 2258. Wang YC, Li C. Evolutionarily conserved protein arginine methyltransferase in non-mammalian animal systems. FEBS J. 2012;279:932–45. 2259. Hung CM, Li C. Identification and phylogenetic analyses of the protein arginine methyltransferase gene family in fish and ascidians. Gene. 2004;340:179–87. 2260. Alié A, Manuel M. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans. BMC Evol Biol. 2010;10:34. 2261. King N & 35 co-authors. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008;451:783–788. 2262. Jékely G. Small GTPases and the evolution of the eukaryotic cell. Bioessays. 2003;25:1129–38. 2263. Mackiewicz P, Wyroba E. Phylogeny and evolution of Rab7 and Rab9 proteins. BMC Evol Biol. 2009;9:101. 2264. Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. Unexpected repertoire of metazoan transcription factors in the unicellular holozian Capsaspora owczarzaki. Mol Biol Evol. 2011;28:1241–54. 2265. Traylor-Knowles N, Hansen U, Dubuc TQ, Martindale MQ, Kaufman L, Finnerty JAR. The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages. BMC Evol Biol. 2010;10:101. 2266. Santhekadur PK, Rajasekaran D, Siddiq A, Gredler R, Chen D, Schaus SE, Hansen U, Fisher PB, Sarkar D. The transcription factor LSF: a novel oncogene for hepatocellular carcinoma. Am J Cancer Res. 2012;2L:269–265. 2267. Michoud RE. Evolution of individuality during the transition from unicellular to multicellular life. Proc Natl Acad Sci USA. 2007;104:8613–8. 2268. Bradley JS, Olson C, Oberholzer M, Lin Y, Zones JM, Kohll HS, Bisova K, Fang S-C, Meisenheider J, Hunter T, Umen JG. Regulation of the Chlamydomonas cell cycle by a stable, chromatin-associated retinoblastoma tumor suppressor complex. Plant Cell. 2010;22:3331–47. 2269. Hellmann A. Key elements of the retinoblastoma tumor suppressor pathway in Volvox carteri. Commun Integr Biol. 2009;2:396–9. 2270. Szekely L, Úzvölgyi E, Jiang WQ, Durko M, Wiman KG, klein G, Sümegi J. Subcellular localization of the retinoblastoma protein. Cell Growth Differ. 1991;2:287–95. 790 References

2271. Solnica-Krezel L, Burland TG, Dove WF. Variable pathways for developmental changes of mitosis and cytokines in Physarium polycephalum. J Cell Biol. 1991;113:591–604. 2272. Fitz-Gibbon ST, Ladner H, Kim U-J, Stetter KO, Simon MI, Miller JH. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci USA. 2002;99:984–9. 2273a. Fehér T, Bogos B, Méhi O, Fekete G, Csörgő B, Kovács K, Pósfai G, Papp B, Hurst LD, Pál C. Competition between transposable elements and mutator genes in bacteria. Mol Biol Evol. 2012;29:3153–9. 2273b. Davidson MB, Katou Y, Keszthelyi A, Sing TL, Xia T, Ou j, Vaisica JA, Thevakumuran N, Marjavaara L, Myers CL, Chabes A, Shirahige K, Brown GW. Endogenous DNA replication stress results in expansion of dNTP pools and mutator phenotype. EMBO J. 2012;31:895–907. 2274. Edris B, Weiskopf K, Volkmer AK, Volkmer J-P, Willingham SB, Contreras-Trujillo H, Liu J, Majeti R, West RB, Fletcher JA, Beck AH, Weissman IL, van de Rijn. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc Natl Acad Sci USA 2012;109:6656–61. 2275a. Hortobagyi GN, Gutterman JU, Blumenschein GR, Buzdar A, Burgess MA, Richman SP, Tashima CK, Schwarz M, Hersh E. Chemoimmunotherapy of advanced breast cancer with BCG. Recent Results Cancer Res. 1977;62:143–50. 2275b. Hortobagyi GN, Gutterman JU, Blumenschein GR, Tashima CK, Burgess GN, Einhorn L, Buzdar AU, Richman SP, Hersh EM. Combination chemotherapy of metastatic breast cancer with 5-fluorouracil, adriamycin, cyclophosphamide, and BCG. Cancer. 1979;44:1955–62. 2276. Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, Green DM, Armstrong GT, Nottage KA, Jones KE, Sklar CA, Srivastava DK, Robinson LL. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309:2371–81. 2277. Hoffman MC, Mulrooney DA, Steinberger J, Lee J, Baker S, Ness KK. Deficits in physical function among young childhood cancer survivors. J Clin Oncol. 2013;31:2799–805. 2278. Cripe T. Differing approaches to experimental therapeutics: are we a world apart? Mol Ther. 2012;20:1649–50. 2279. Wongso D, Fuchs M, Plütschow A, Klimm B, Sasse S, Hertenstein B, Maschmeyer G, Vieler T, Dührsen U, Lindemann W, Aulitzky W, Diehl V, Borchmann P, Engert A. Treatment-related mortality in patients with advanced-stage Hodgkin lymphoma: an analysis of the German Hodgkin Study Group. J Clin Oncol. 2013;31:2819–24. 2280. Lee AH, Pinder SE, Macmillan RD, Mitchell M, Ellis IO, Elston CW, Blamey RW. Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma. Eur J Cancer. 2006;42:357–62. 2281a. Strander H. Antitumor effects of interferon and its possible use as an antineoplastic agent. Tex Rep Biol Med. 1981;41:621–5. 2281b. Strander H. Interferon treatment of human neoplasia. Adv Cancer Res. 1986;46:1–265. 2282. Lengyel P. Tumor-suppressor genes: news about the interferon connection. Proc Natl Acad Sci USA. 1993;90:5893–5. 2283a. Sinkovics JG, Howe CD. Growth characteristics, virus yield and interferon assay of leukemic mouse spleen tissue cultures. J Infect Dis. 1964;114:359–72. 2283b. Sinkovics JG, Howe CD, Shullenberger CC. Interferon production, antibody response and homograft rejection type defense mechanisms in viral mouse leukemia. Proc Am Assoc Cancer Res 35th Annual Meeting April 9–11 1964, Chicago IL 1964;5/1:59 #239. 2283c. Sinkovics JG, Bertin BA, Howe CD. Latency of mouse leukemia virus in tissue cultures as related to cell growth and interferon. 16th Annual Meeting Tissue Culture Association, May 31–June 3 1965. Miami Beach FL. Section A 1965 Abstract #1 p21. References 791

2283d. Sinkovics JG, Groves GF, Howe CD. Actions of interferon in tissue cultures harboring mouse leukemia virus. Experientia 1968;24:927. 2284a. Gutterman JU, Cardenas JO, Blumenschein GR, Hortobagyi G, Burgess MA, Livingston RB, Mavligit GM, Freireich EJ, Gottlieb JA, Hersh EM. Chemoimmunotherapy of advanced breast cancer: prolongation of remission and survival with BCG. Br Med J. 1976;2:1222–5. 2284b. Gutterman JU, Blumenschein GR, Alexanian R, Yap HY, Buzdar AU, Cabanillas P, Hortobagyi GN, Hersh EM, Rasmussen GR, Harmon M, Kramer M, Pestka S. Leukocyte interferon-induced tumor regression in human metastatic breast cancer, multiple myeloma and malignant lymphoma. Ann Int Med. 1980;93:399–408. 2284c. Gutterman JU. Cytokine therapeutics: lessons from interferon alpha. Proc Natl Acad Sci USA. 1994;91:1198–205. 2285. Schlom J. Therapeutic cancer vaccines: current status and moving forward. J Natl Cancer Inst. 2012;104:599–613. 2286. Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N, Bepler G, Simon G, Janssen SW, Lee JH, Menander K, Chada DS, Gabrilovich DI. Combination of p53 cancer vaccine with chemotherapy in patients with extensive small cell lung cancer. Clin Cancer Res. 2006;12:878–89. 2287. Frei E III. Curative cancer chemotherapy. Cancer Res. 1985;45:6523–37. 2288. Rosenberg SA, Yang JC, Robbins PF, Wunderlich JH, Hwu P, Sherry RM, Schwartzentruber DJ, Topalian SL, Restifo NP, Filia A, Chang R, Dudley ME. Cell transfer for cancer: lessons from sequential treatments of patients with metastatic melanoma. J Immunother. 2003;28:385–93. 2289. Brentjens RJ, Davila ML, Riviera I, Park J, Wang X, Cowell LG, BartiDo S, Stafanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasilewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177RA38. 2290. Olson JS. Making Cancer History. Baltimore: Johns Hopkins University Press; 2009. 2291a. Huang ME, Ye YC, Wang ZY. Treatment of 4 APL patients with all-transretinoic acid. Chin J Intern Med. 1987;26:220–322. 2291b. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu LJ, Wang ZY. Use of all-transretinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567–72. 2291c. Wang ZY. Ham-Wasserman lecture: treatment of acute leukemia by inducing differentiation and apoptosis. Hematology Am Soc Hematol Educ Program 2003;1-13. 2292. Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinol electrode. Nature. 1965;205:698. 2293a. Burdette WJ, Evans C. Management of coin lesions and carcinoma of the lung. Ann Surg. 1965;161:649–73. 2293b. Burdette WJ. Tumors, hormones, and viruses in Drosophila. Natl Cancer Inst Monogr. 1969;31:303–21. 2293c. Burdette WJ. Hormonal heterophylly, invertebrate endocrinology, and phytohormones. Cancer Res. 1972;32:1088–90. 2294. Sinkovics JG, Thota H, Kay HD, Loh KK, Williams DE, Howe CD, Shullenberger CC. Intensification of immune reactions by immunotherapy: attempts at measuring sarcoma-specific reactions in vitro. In: University of Illinois at the Medical Center, R. Crispen editor. ITR 904 W Adams, Chicago. Library Congress Catalog LC75-18796 ISBN 0-915311-02-9. 2295. Sinkovics JG. Immunotherapy of sarcomas with viral oncolysates. J Am Med Assoc. 1977;237:869. *) *) Patients were co-attended by Carl Plager and Clifton D Howe, whose names were withheld for freedom to submit intended final paper to NE J Med as ‘unpublished elsewhere’. 792 References

2296. Sinkovics JG, Plager C, Romero J. Immunology and immunotherapy of patients with sarcomas. In: Crispen R, editor. Chicago symposium: immunotherapy of solid tumors. Philadelphia PA: Franklin Institute Press; 1977. p 211–219. Library Congress Catalog 77-777-79 ISBN 0-89168-000-4. 2297ab. Sinkovics JG, Horvath JC, Plager C. Coaxing human sarcomas to surrender. I. Basic science. II. Clinical science. Eleventh World Congress Advances in Oncology & 9th International Symposium Molecular Medicine. D. Spandidos, organizer. Crete, Greece, Oct 12–14 2006. Int J Mol Med 2006;18:S1/S37 #231 #232. 2297c. Sinkovics JG. Complete remissions lasting over three years in adult patients treated for metastatic sarcomas. In: Crispen R, editor. Tumor progression. Elsevier North Holland; 1981. p. 315–331. 2298a. Ioannides CG, Platsoucas CD, O’Brian C, Patenia R, Bowen JM, Wharton JT, Freedman RS. Viral oncolysates in cancer treatment: immunological mechanisms of action. Anticancer Rev. 1989;9:535–44. 2298b. Ioannides CG, Platsoucas CD, Patenia R, Kim PL, Bowen JM, Morris M, Edwards C, Wharton JT, Freedman RS. T-cell functions in ovarian cancer patients treated with viral oncolysates. I. Increased helper activity to immunoglobulin production. Anticancer Res. 1990;10:645–54. 2298c. Ioannides CG, Platsoucas CD, Freedman RS. Immunological effects of tumor vaccines. II. T cell responses directed against cellular antigens in the viral oncolysates. In Vitro. 1990;4:14–24. 2299a. Sinkovics JG. Viral oncolysates as human tumor vaccines. Intern Rev Immunol. 1991;7:259–87. 2299b. Sinkovics JG. Oncogenes-antioncogenes and virus therapy of cancer. Anticancer Res. 1989;9:1281–90. 2299c. Sinkovics JG, Horvath JC. Can virus therapy of human cancer be improved by apoptosis induction? Med Hypotheses 1995;44:359–68. 2300. Schirrmacher V, Fournier P. Chapter 30. Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer. In: Walther W, SS Stain US, editors. Methods in molecular biology, gene therapy of cancer. Humana Press, Part of Springer Science. Book ID 1449271-02/01/229 lines 1–1444. 2301. Sinkovics JG, Horvath JC. Epilogue: “Damn the torpedoes! Full speed ahead!” In: Sinkovics JG, Horvath JC, authors/editors. Viral therapy of human cancers. New York: Marcel Dekker; 2005; 1–147; 149–457; 797–811. 2302. Sivanandham M, Wallack MK. Viral oncolysates. In: DeVita VT, Hellman S, Rosenberg SA editors. Biological therapy of cancer. 2nd ed. Philadelphia: J.B. Lippincott Company; 1995. p. 659–667. 2303. Sinkovics JG. The beginnings of cancer chemo-immunotherapy in the 1960-70s at the Department of Medicine, MD Anderson Hospital, Houston, TX. In: Cancer Immunology and Immunotherapy: Building on Success. Center of Cancer Research, National Cancer Institute, Sept 22–23 2011 Poster #88. 2304. Trujillo J, Ahearn MJ, Pienta RJ, Gott C, Sinkovics JG. Immunocompetence of leukemic murine lymphoblasts: ultrastructure, virus and globulin production. Cancer Res. 1970;30:540–5. 2305. Sinkovics JG, Drewinko B, Thornell EW. Immunoresistant tetrapoid lymphoma cells. Lancet. 1970;1:139–40. 2306. Sinkovics JG. Early history of specific antibody-producing lymphocyte hybridomas. Cancer Res. 1981;41:511–8. 2307. Sinkovics JG. The earliest concept of the ‘hybridoma principle’ recognized in 1967-1968. Front Rad Ther Oncol. (JM Vaeth, JL Meyer editors) 1990;24:18–31. 2308. Sinkovics J. Lymphocyta hybridomák specifikus ellenanyagtermelése (Specific antibody production of lymphocyte hybridomas). Magyar Onkológia (Sándor Eckhardt editor). 1982;26:1–6. References 793

2309a. Sinkovics JG. Lymphocyte hybridomas in cancer research. J Med (Julian Ambrus editor). 1981;12:109–126. 2309b. Sinkovics JG. Discovery of the hybridoma principle in 1968-9. Immortalization of specific antibody-producing cell by fusion with a lymphoma cell. J Med (Julian Ambrus editor). 1985;16:509-524. 2310. Sinkovics JG. Retroviruses R Us. Kaposi Award Presentation at the Kaposi Sarcoma Foundation, Hungarian Scientific Academy, Apr 12, 2002. Magyar Venerologiai Archivum/Arch Venerol Hung (Attila Horvath editor). 2002;5/4:231–233. 2311. Blanchard DK, Kavanagh JJ, Sinkovics JG, Cavanagh D, Hewitt SM, Djeu JY. Infiltration of interleukin-2-inducible killer cells in ascitic fluid and pleural effusions of advanced cancer patients. Cancer Res. 1988;48:6321–7. 2312. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula UI, Robbins PE, Huang J, Citrin DE, Leitman SE, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurence C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26:5233–9. 2313. Sinkovics JG, Hirano M, Szakacs A, Shullenberger CC, Howe CD. Growth of lymphoreticular malignant cells in the preconditioned murine host. A Collection of Papers Presented at the 21st Annual Symposium on Fundamental Cancer Research, The University of Texas M.D. Anderson Hospital, Houston, TX. Williams & Wilkins, Baltimore 1967, pp 615–639. 2314. Sinkovics JG. Up-dating the Monograph “Cytolytic Immune Lymphocytes…” Acta Microbiol Immunol Hung. 2008;55:371–382. Errata AMIH 2009;56:197. 2315. Sinkovics JG. Medical oncology an advanced course. 2nd ed vol I/II. New York: Marcel Dekker; 1986. p. 2062. 2316. Sinkovics G. On the threshold of the door of “No Admittance”. In: Szentivanyi A, Friedman H, editors. The immunologic revolution: facts and witnesses. Boca Raton FL: CRC Press; 1994. p. 241–86. 2317. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon R-A, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M. Nivolumab plus ipilumab in advanced melanoma. N Engl J Med. 2013;369:122–33. 2318. Peto R, Davies C, Godwin J, Gray R, Pan HC, Clarke M, Cutter D, Darby S, McGale P, Taylor C, Wang YC, Bergh J, Di Leo A, Albain K, Swain S, Piccart M, Pritchard K. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,999 women in 123 randomized trials. Lancet. 2012;379:432–44. 2319. Cegolon L, Salata C, Weiderpass ER, Vineis P, Palu G, Mastrangelo G. Human endogenous retroviruses and cancer prevention: evidence and prospects. BMC Cancer. 2013;13:4. 2320. Emens LA. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev Anticancer Ther. 2012;12:1597–611. 2321. Lazzeroni M, Serrano D. Potential use of vaccines in the primary prevention of breast cancer in high-risk patients. Breast Care. 2012;7:281–7. 2322. Shaw AT, Kim D-W, Nakagawa K, Seto T, Crinó L, Ahn M-j, De Pas T, Besse B, Solomon BJ, Blackhall F, Wu Y-L, Thomas M, O’Byrne KJ, Moro-Sibilot D, Camidge DR, Mol T, Hirsh V, Riely GJ, Iyer S, Tasssell V, Polli A, Wilner KD, Jänne PA. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94. 794 References

2323. Awad MM, Katayama R, McTigue M, Liu W, Deng Y-L, Brooun A, Friboulet L, Huang D, Falk MD, Timofeevski S, Wilner KD, Lockerman EL, Khan TM, Mahmood S, Gainor JF, Digumarthy SR, Stone JAR, Mino-Kenudson M, Christensen JG, Lafrate AJ, Engelman JA, Shaw AT. Acquired resistance to crizotinib from a mutation in CD74 −ROS1. N Engl J Med. 2013;368:2395–401. 2324. Morton LM, Dores GM, Curtis RE, Lynch CF, Stovall Hall P, Gilbert ES, Hodgson DC, Storm HH, Johanneden TB, Smith SA, Weathen RE, Andersson M, Possa SD, Hauptman M, Holowaty EJ, et al. Stomach cancer risk after treatment for Hodgkin lymphoma. J Clin Oncol. 2013;31:3369–77. 2325. Cao Y, Marks JD, Huang Q, Rudnick SI, Xiong C, Hittelman WN, Wen X, Marks JW, Cheung LH, Boland K, Lim C, Adams GP, Rosenblum MG. Single-chain antibody-based immunotoxins targeting Her2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity. Mol Cancer Ther. 2012;11:143. 2326. Diessner J, Bruttel V, Becker K, Pawliok M, Stein R, Häusler S, Dietl J, Wischhusen J, Hönig A. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells. Am J Cancer Res. 2013;3:211–20. 2327. Jurczyszyn A, Legieć W, Helbig G, Hus G, Kyrcz-Krzemień S, Skotnicki AB. New drugs in multiple myeloma—role of carfilzomib and pomalidomide. Contemp Oncol. 2014;18:17–21. 2328. Gutterman JU, Blumenschein GR, Alexanian R, Yap HT, Buzdar AU, Cabanillas F, Hortobagyi GN, Hersh EM, Rasmussen SL, Harmon M, Kramer M, Pestka S. Leukocyte interferon-induced tumor regression in human metastatic breast cancer, multiple myeloma, and malignant lymphoma. Ann Int Med. 1980;03:200–406. 2329. Lissa D, Senovilla L, Reno-Varona S, Vitale I, Michaud M, Pietrocola F, Boilève A, Obrist F, Bordenave C, Garcia P, Michels J, Jermaà M, Kepp O, Castedo M, Kroerner G. Resveratrol and aspirin eliminate tetraploid cells for anticancer chemoprevention. Proc Natl Acad Sci USA. 2014;111:3020–5. doi:10.1073/pnas.1318440111. 2330. Choi BH, Chakraborty G, Baek K, Yoon HS. Aspirin-induced Bcl-2 translocation and its phosphorylation in the nucleus trigger apoptosis in breast cancer cells. Exp Mol Med. 2013;45:e47. doi:10.1038/emm.2013.91. 2331. Vosooghi M, Amini M. The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies. Expert Opin Drug Discov. 2014;9:255–67. doi:10.1517/ 17460441.2014.883377. 2332. Nakamura M, Ogo A, Yamura M, Yamaguchi Y, Nakashima H. Metformin suppresses sonic hedgehog expression in pancreatic cancer cells. Anticancer Res. 2014;34:1765–9. 2333. Anisimov VN. Metformin for aging and cancer prevention. Aging. 2010;2:760–74. 2334. Tan HK, Moad AIH, Tan ML. The mTOR signaling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals. Asian Pacific J Cancer Prevent. 2014;15:6463–75. 2335. Kuiper MTR, Sabourin JR, Lambowitz AM. Identification of the reverse transcriptase encoded by the Mauriceville and Varkud mitochondrial plasmids of Neurospora. J Biol Chem. 1990;265:6936–43. 2336. Schaap P. Evolutionary crossroads in developmental biology: Dictyostelium discoideum. Development. 2011;138:387–96. doi:10.1242/dev.048934. 2337. Jörg Huesken, Walter Birchmeier, Max-Delbrück Centrum, Berlin-Buch, Helmholtz Gemeinschaft, mdc-berlin.de https://www.mdc-berlin.de/8048310/de/news/archive/ 2007/20070912-die_balance_halten_neue_einblicke_. 2338. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. doi:10. 1126/science.1160809. References 795

2339. Chernov VM, Chernova OA, Alexey A. Mouzykantov AA, Baranova NB, Gorshkov OV, Trushin MV, Nesterova TN, Ponomareva AA. Extracellular membrane vesicles and phytopathogenicity of Acholeplasma laidlawii PG8. Sci World J. 2012; 2012:315474. doi:10.1100/2012/315474. 2340. Gourlay RN, Wyld SG, Bland AP. Demonstration by electron microscopy of intracellular virus in Acholeplasma laidlawii infected with either MV-L3 or a similar but serologically distinct virus (BN1 virus). J Gen Virol. 1979;42(2):315–22. 2341a. Haberer K, Maniloff J, Gerling D. Adsorption, capping, and release of a complex bacteriophage by mycoplasma cells. J Virol. 1980;36:264–70. 2341b. Brunner H, Schaar H, Krauss H. Giant cell formation in Acholeplasma laidlawii, strain JA1. Zentralbl Bakteriol A. 1980;248:120–8. 2342. KarvelisT Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biology. 2013;10(5):841–51. doi:10.4161/rna.24203. 2343. Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L. The making of a slicer: activation of human Argonaute-1. Cell Rep. 2013;3(6):1901–9. doi:10.1016/j.celrep. 2013.05.033. 2344. Karijolich J, Yu YT. Spliceosomal snRNA modifications and their function. RNA Biology. 2010;7(2):192–204. doi:10.4161/rna.7.2.11207. 2345. Teixeira JE, Huston CD. Evidence of a continuous endoplasmic reticulum in the protozoan parasite Entamoeba histolytica. Eukaryotic Cell. 2008;7:1222–6. doi:10.1128/ EC.00007-08. 2346. Nichols SA, Roberts BW, Richter DJ, Fairclough SR, King N. Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. Proc Natl Acad Sci USA. 2012;109:13046–51. doi:10.1073/pnas.1120685109. 2347. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/S/Spemann.html. 2348. Wilbertz T, Wagner P, Petersen K, Stiedl AC, Scheble VJ, Maier S, Reischl M, Mikut R, Altorki NK, Moch H, Fend F, Staebler A, Bass AJ, Meyerson M, Rubin MA, Soltermann A, Lengerke C, Perner S. SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Modern Pathology. 2011;24(7):944–53. doi:10.1038/modpathol.2011.49. 2349. Schröck A, Göke F, Wagner P, Bode M, Franzen A, Braun M, Huss S, Agaimy A, Ihler S, Menon R, Kirsten R, Kristiansen G, Bootz F, Lengerke C, Perner S. Sex determining region Y-Box 2 (SOX2) amplification is an independent indicator of disease recurrence in sinonasal cancer. PLoS One. 2013;8(3):e59201. doi:10.1371/journal.pone. 0059201. 2350. Kankel MW, Hurlbut GD, Upadhyay G, Yajnik V, Yedvobnick B, Artavanis-Tsakonas S. Investigating the genetic circuitry of mastermind in Drosophila, a Notch signal effector. Genetics. 2007;177:2493–505. doi:10.1534/genetics.107.080994. 2351. Smith LC. Diversification of innate immune genes: lessons from the purple sea urchin. Dis Model Mech. 2010;3:274–9. doi:10.1242/dmm.004697. 2352. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL, Saksena G, Harris S, Shah RR, Resnick MA, Getz G, Gordenin DA. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Gen. 2013;45:970–6. doi:10.1038/ng.2702. 2353. Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Plückthun A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA. 2001;98:8572–7. doi:10.1073/pnas. 141229498. 2354. Planchon SM, Waite KA, Eng C. The nuclear affairs of PTEN. J Cell Sci. 2008;121:249– 53. doi:10.1242/jcs.022459. 796 References

2355. Dupressoir A, Vernochet C, Harper F, Guégan J, Dessen P, Pierron G, Heidmann T. A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc Natl Acad Sci USA. 2011;108: E1164–73. doi:10.1073/pnas.1112304108. 2356. Adem C, Gisselsson D. Dal Cin P, Nascimento AG. ETV6 rearrangements in patients with infantile fibrosarcomas and congenital mesoblastic nephromas by fluorescence in situ hybridization. Mod Pathol. 2001;14:1246–51. 2357. Judelson HS, Blanco FA. The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol. 2005;3:47–58. doi:10.1038/nrmicro1064. 2358. Virgili A, Brazma D, Reid AG, Howard-Reeves J, Valgañón M, Chanalaris A, De Melo VA, Marin D, Apperley JF, Grace C, Nacheva EP. FISH mapping of Philadelphia negative BCR/ABL1 positive CML. Mol Cytogenet. 2008;18:1–14. doi:10.1186/1755- 8166-1-14. 2359. Springer ML, Yanofsky C. Expression of con genes along the three sporulation pathways of Neurospora crassa. Genes Dev. 1992;6:1052–7. doi:10.1101/gad.6.6.1052. 2360. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–55. 2361. Kops GJPL, Weaver BAA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer. 2005;5:773–86. Index

Note: Page numbers followed by f and t indicate figures and tables, respectively

A Activation-induced deaminases (AIDs), 309 Abalone herpesvirus (AbHV-1), 239, 586 Acute myeloid leukemia (AML), 134, 431 ABC ATPase SMC superfamily proteins, 248 Acute promyelocytic leukemia, 248–250 Acanthamoeba castellani, 392 Acyrthosiphon pisum, point mutations, 177 Achaete-scute, 383–386 Adaptive immunity, 105–109 complex (AS-C), 385 genomics of, insertions of evolution of, 507t ancient retrovirus and pre-EBV helix-loop-helix proteins, 553, 555 herpesvirus, cooperation of, homolog (ASH), 379 231–235 oncogenesis, 507–508t Epstein-Barr virus, 235–238, 236f Achole, 41–42 Harbingers, 242–245, 243f Acholeplasma, 40, 41–42 paleogenomics, 238–242 viruses, 42–44, 42f, 43f self-assembly, elements of, 111–120 Acholeplasma axanthum (A. axanthum), 41 unreliable enzymes of, 308–310 Acholeplasma granularum (A. granularum), 41 Adenomatous polyposis coli (APC), 79, 81 Acholeplasma laidlawii (A. laidlawii), 42 Adenovirus, 247 Entner-Doudoroff carbohydrate metabolism and YY proteins, 133–134 of, 41 Adipose tissue-derived stromal cells, 223 life cycle of, 40f A-DNA, 1, 2 transmission electron microscopy of, 40f Adoptive immune T lymphocyte, 447–451 viruses, 38, 42–44, 42f, 43f, 46, 47 Aeropyrum pernix, primordial fused genes, 157 Acholeplasma pyrophylus (A. pyrophylus), 38, Afrotheria, 138 41 Aggregatibacter actinomycetemcomitans (A. Acidithiobacillus thiooxidans, 5 actinomycetemcomitans), 308 Acquired immunodeficiency syndrome Agnatha (AIDS), 512t, 547 adaptive immune system without immune APOBEC-mediated protection, 209 globulins, 108–109, 108f HIV-induced, 208 microRNAs, 106–108 -related KS, 190 stepwise diversification, 105–106, 106f, virus, 112 107f Activation-induced cytidine deaminase, 25–26, Agrobacterial oncogenesis, 522t 108–109, 108f Agrobacterium, T-DNA transfer and, 2 ancient genes of, 202–204 Agrobacterium tumefaciens, 500t -induced dsDNA breaks and translocations, Aiptasia pallida, 232 114–115, 116t, 117t AKNA factor, 355–356 lymphoma and, 112–114 Akt pathway, 68 non-Ig genes targeted by, 112–114 Aldehyde dehydrogenases (ALDH), 333, 334, as potential activator of oncogenes, 204 385

© Springer International Publishing Switzerland 2016 797 J.G. Sinkovics, RNA/DNA and Cancer, DOI 10.1007/978-3-319-22279-0 798 Index

Allogeneic hematopoietic stem cell APOBEC (apolipoprotein B-editing enzyme transplantation, 448 catalytic), 10, 36, 25–26, 207–209, Alloherpesviridae, 239, 240 413, 474 All trans-retinoic acid (ATRA), and ancient genes of, 202–204 neuroblastoma, 360 APOBEC-1, 209 Alvinella pompejana, 392 as potential activator of oncogenes, 204 Amino acids (aa), 3, 41, 74 Apoptosis aromatic, 502t by DNA fragmentation, 233 coexistence before cells, 31–33 induced, 352, 369 hydrophobic, 168, 189, 502t Apoptosis-prone transformed cells, 350 xenopus type III IFN, 93 Apoptosis-stimulating proteins (ASPP), 342 Aminopterin-methotrexate (MTX), 452 and gestational choriocarcinoma, 402 Amoebae, 62–64 Apoptotic protease-activating factor (APAF), phagocytose bacteria, for nourishment, 63 322 tumor cells, transformation of Aquifex aeolicus (A. aeolicus), 5, 38, 57, 76 fusion, 483–485 primordial fused genes, 164 invasion, 483–485 Aquificales, 41 locomotion, 483–485 Arabidopsis thaliana, 496 phagocytosis, 483–485 G4 DNA motifs, 129 Amoeba histolytica (A. histolytica), 64f Arachnida, 320 Amoebozoan Dictyostelium, 8, 9 Archaea, 35–36, 76–89 Amphidinium carterae, 257–258 horizontal-transfer gene network, 47f AmphiGILT, 91t Archaeoglobus fulgidus, 57, 76, 505t Amphimedon queenslandica (A. Okazaki fragments, 381 queenslandica), 70t, 350, 380, 599 Archaeopteryx, 8 Amphioxus tsingtauense, 273 Archaeopteryx lithographica (A. Anaplastic lymphoma, 362–364 lithographica), 326 of mature T cells, 518t Argatroban, for neuroblastoma, 359 Anaplastic lymphoma kinase (Alk), 146, 431, Argonautes (AGO), 56–59, 57f, 65–75 432, 556 donors of, 76–89 Ancient Earth RNA-induced slicing complex (RISC), 57, biomolecules on, 32 57f primordial genes conserved as stem cell Armillaria bulbosa, 129 genes/proto-oncogenes, 31–34 Armillaria ostoyae, 129 Aneuploidy, 299–301, 300f, 436, 553 Artemia salina, 384 genetic instability and, 501t Arthrobacter luteus, 218, 470 AngHV1, 240 ASCL1, 385, 508t Angioneogenesis, 312t Ash genes, 16, 358, 507t, 561, 562, 581 Angiosarcomas, 189–190 Aspergillus nidulans, 263 Anguilla japonica, 241 Aspergillus niger, 260 Ansamycin/allylamino-17-demethoxy- Atavistic endotoxin, 492 geldanamycin (17-AAG), 506t Atavistic metamorphosis, 493 Anthozoa, 77 Ataxia telangiectasia mutated (ATM) proteins, Anti-apoptosis, 341–344 113 Antigen-presenting cells (APCs), 235 Ateles paniscus, 471 Anti-p53 MDM, 344–345 Ath5 gene, 81 Apaf-1 (apoptotic protease-activating factor-1), Atorvastatin, 441 368 ATP-binding cassette (ABC) proteins, 14, 22 Aphidicolin, 253 Aurora-kinase oncogenesis, 252, 299–300 Index 799

Autophagy, 351–353, 351f introns, 262 Aves, 8 Bombyx mori (B. mori), 321–322, 324 AVRblb2 protein, 163 achaete-scute, 383–384, 385 Axinib (Inlyta, Pfizer), 455 Bone morphogenetic protein (BMP), 172 Axitinib (Sutent; Inlyta, Pfizer), 455 Bortezomib, 453 Axl gene Bosutinib (Pfizer), 452 chromosomal localization of, 182 Botryllus, 106, 107f, 342 Gas6-driven, 184 Botryllus schlosseri (B. schlosseri), 106, 411 Axons, 20 BRAF oncoproteins, 173, 174f, 556 Brain-derived neurotrophic factor (BDNF), 294 B Branchiostoma, 112 Babesia, 512t Branchiostoma belcheri (B. belcheri), 212t, primordial fused genes, 165 273 Bacillaceae, 40 Branchiostoma floridae (B. floridae), 7, 77, Bacillus, 113, 132 177, 212t, 238, 273, 288, 314, 384 Bacillus anthracis (B. anthracis), introns, 260 Branchiostoma mediterranean (B. Bacillus subtilis (B. subtilis), 248 mediterranean), 212t introns, 260 Branchiostoma tsingtauense (B. tsingtauense), Bacteriophages, 45f 212t, 273 Bacteroides, enterotoxigenic, 11 Brassicaceae, 387 Bacteroides fragilis, 120 BRCA1, 196 -induced colonic adenocarcinomas, 311 BRCA2, 172, 196 primordial fused genes, 157 Breast carcinoma (BC), 428t Balanced chromosomal rearrangement, 10–11 Breast tumor-initiating cells (BTIC), 80 Bax (Bcl-2-associated X protein), 146 Bromodomain (BRD) genes, 170–171 B-cell lymphocytes, 204 Brugia malayi, 213t receptors, 21 Bruton tyrosine kinase (BTK), 21, 22, 452–453 B-cell lymphoblastic leukemia, 448 BTG3 gene, 294–295 B-cell lymphomas, 509t, 518t Burkitt's lymphoma (BL), 113, 152, 160, 237, biotherapy for, 520–521t 309, 430, 459 diffuse large (DLBCL), 310 bcl-2 and, 358, 420 BCG (Bacille Calmette-Guerin), 527, 528, 532, c-myc in, 115, 202, 588 537 EBV in, 132, 224 Bcl-2, 10, 26, 94, 250, 278, 279, 310, 337, 398, translocation, 159 420 and Burkitt's lymphoma, 358 C and follicular lymphoma, 358 Cadherins/catenins, 503–504t and neuroblastomas, 359 E-cadherin, 191, 337, 339, 340 and rhabdomyosarcoma, 368–370 N-cadherin, 337 Bcl-6, 203, 275, 310, 418 Caenorhabditis Bdelloidea, 124 activated oncogenes in, 82f B-DNA, 2 aging, health care of, 86–87 Beauveria bassiana, 306 hypoglycemic, 144–145 Benzimidazole, 17 Caenorhabditis elegans (C. elegans), 81–82, β-catenin, 79–81, 191–192 85–86 destroyer complex, 81 anti–apoptosis, 341, 344 HMG proteins, 213–214t Lag-1 in, 87 in ontogenesis, 11, 12 Caldiarchaeum, 292 Bet proteins, 204–205 Cancer cell cytoplasm, 334–356 Bevacizumab anti-neoangiogenesis therapy, AKNA, 355–356 335–336, 358, 395 anti-apoptosis, 341–344 Biomolecules, on ancient Earth, 32 anti-p53 MDM, 344–345 bmi-1 gene, 222 apoptosis-prone transformed cells, 350 Bodo saltans, 301 autophagy, 351–353, 351f 800 Index

Cancer cell cytoplasm (cont.) Chimeric antigen receptor (CAR), 318 epithelial-to-mesenchymal transition, Chlamydia psittaci-induced periorbital 336–341 lymphomas, 311 navitoclax, 350–351 Chlamydomonas oncogenic fusion oncoproteins, cellular MCD4 gene, ancestry, 437 viability and, 353–355 primordial fused genes, 158 oyster leukemia, 349–350 Chlamydomonas moewusii (C. moewusii), 268 vasculogenic mimicry, 334–336, 336f Chlamydomonas reinhardtii (C. reinhardtii), Cancer cell nucleus, 333–334 59, 76, 498 Cancer stem cells, 192t. See also Stem cells asymmetrical cell divisions, 329 ontogenesis, reversal of, 414t introns, 293 Candida, 7 morphological metamorphoses, 319 Candida albicans, 258, 260, 408, 505t primordial fused genes, 164, 213t Capsaspora owczarzaki, 497 zeste of, 485–486 Carbohydrate metabolism, 41, 124 Chlorocebus aethiops, 204 in archaic cell communities, 152–156 Chloroplasts, 51–54, 54f Warburg-type, 151–152 Choanoflagellates, 7, 77, 127–128, 392–395 Carcinoma cells, introns in, 280–283 Choanozoa, 77 Cavimorpha, 138 Chondrichtyes, 250 CCAAT enhancer-binding protein-ß (C-EBP), Choriocarcinoma, gestational, 401–404 60 Choriomeningitis virus (CMV) infections, 417 CEACAM (carcinoembryonic antigen-related Chromalveolate, 76 cell adhesion molecule), 280–281 Chronic lymphocytic leukemia (CLL), 22 Cell cannibalism, 395, 554 Chronic myelogenous leukemia (CML) Cell death. See Apoptosis imatinib mesylate for, 115 Cell rescue, 425–427 Philadelphia chromosome in, 165–166 Cell survival pathways, 74, 425, 494, Ciona, 79, 112, 244 502–504t, 553 Ciona intestinalis (C. intestinalis), 89, 499 ancient, 7, 16, 21–23, 25 adaptive immunity, 241 PI3K, 15, 125 and Ewing sarcoma, 174 primordial, 56 introns, 274 of unicellular life forms, 201–202 response to sugar intake, 143 Cellular like forms Circular RNA (circRNA), 2, 523t embedded doctrines of, 410–411 Circulating tumor cells, release of, 434–435 retro(lenti)- and herpesviruses, criminal Cisplatin, for hepatoblastoma, 401 collusion of, 411–413 13-Cis-retinoic acid (CRA), and retrospective glance of, 407–410 neuroblastoma, 360 Cellular RNA/DNA, 181–183 Cleft lip and palate (CL/P), faults in complex Cercopithecus aethiops, 204 pathways, 514–515t Cerebral cortex, human, 19–21 Clostridium innocuum (C. innocuum), 41 Chagraff rule, 3 Clostridium ramosum (C. ramosum), 41 CHARGE syndrome, 244 Clustered regularly interspersed short Chemobrain syndrome, 528 palindromic repeat (CRISPR), 64, Chemokines, 36, 509t 308, 408 Chemotherapy, 527–530 -associated complex for antiviral defense combination, 531 (CASCADE), 45, 55 Chemotons, 31, 32 -associated genes (CAS), 45, 46f, 55 Childhood first antiviral defense, 55–56 anaplastic lymphoma, 362–364 pathway, 36 lymphomas/leukemias, 518–519t primordial faculties, preservation of, 56 neuroblastomas, 358–362 Clytia hemisphaerica, 394 rhabdomyosarcoma, 364–368, 365f c-MET (hepatocyte growth factor receptor), 13 Index 801 c-myc, 10, 17, 26, 60, 250, 310, 358, 398, 496 Decitabine, for rhabdomyosarcoma, 372 Cnidaria, 77, 78f Deinococcus radiodurans (D. radiodurans), Coelacanth, 8 17, 121, 248, 426 Coelenterata, 77 primordial fused genes, 157 Coelomocytes, 106f radiation-resistant, 6 Coiled coil, nucleotide-binding, leucine rich Deleted in liver cancer-1 (DLC-1), 459. repeat (CC-NB-LRR) proteins, 163 See also GTPase-activating protein Colon cancer, staging in, 11, 12 Delta-like ligand 1 (DLL1), and gestational Colony stimulating factor-1 receptor (CSF1R), choriocarcinoma, 402 155 Dendritic cells (DCs), 235 Computer biologists, 414–416 intron changes in, 286–287 Conatumumab, for rhabdomyosarcoma, 369 plasmacytoid, 97 Conditionally replicating adenoviruses sarcoma, 71t, 419 (CRAd), 101–102 vaccines, 443 Confuciusornis sanctus, 321 DENN proteins, 407 Consummate bioengineer, 26–28 2-Deoxy-D-glucose (2DG), 155 Copidosoma floridanum, 323 -induced aRMS cell death, 376 CpG islands, 309 Desmoplastic small round cell tumor Crenarchaea, 38 (DSRCT), 431 fuselloviruses, 44–45, 46 Dick-1, 79 Crenarchaeota, 251 Dickkopf (DKK) genes, 78, 79, 385–386 CRISP3 gene, 171 Dictyostelium, 253 Cryptococcus neoformans Amoebozoan Dictyostelium, 8, 9f introns, 268 metamorphosis bordering trans-speciation primordial fused genes, 158 in, 7 Cryptosporidia, 126t Dictyostelium discoideum (D. discoideum), 62, primordial fused genes, 165 392, 408, 496 CtBorDx (cyclophosphamide, bortezomib, carbohydrate metabolism, 152 dexamethasone), 452 introns, 261, 268, 292 Cyanidoschyzon, primordial fused genes, 158 oncogenic fusion oncoproteins, 353 Cyanophycea, 77 primordial fused genes, 160 Cybertoxicity, 73f Diplonema papillatum, primordial fused genes, Cyclic AMP-responsive element-binding 164 protein and modulator (CREM), DJ-1 protein, 211, 213–214 172–173 DJ-1/ThiJ/Pfpl protein superfamily, 217t Cyclophosphamide (Cytoxan), 451 DNA for metastatic neuroblastoma, 373 A-DNA, 1, 2 Cyclostomata (lamprey), 105, 178 B-DNA, 2 CyHV3, 240 break repair, inhibiting, 196t, 198 Cysteine-rich protein (CRP) LIM kinase, 367t cellular, 181–183 Cytokine-induced killer (CIK) cells, 370 dsDNA, 114–115, 116t, 117t, 195, 196t Cytokines, 97–98 mitochondrial, 516–517t oncogenes, release of, 434–435 D propellers, 122–125 Dabrafenib (Tafinlar, GlaxoSmithKline), 455 replication, 256 daf (decay accelerating factor) gene, 87 retrotransposon-derived, 26 Danio rerio , 91t, 314, 382. See also Zebrafish sliding clamp, 251–256 Daphnia pulex, 265, 266, 288 translesional synthesis, 194, 195 Dasatinib (Sprycel, BristolMyersSquibb), 452, X ray diffraction of, 1, 2 489 Z-DNA, 1 interaction with immune lymphocytes, 490t DNA methyltransferases (DNMT), 415 DCAF12 gene, 272 (cytosine-5-) methyltransferase 1 (DNMT- DCAMKL (Double-Cortin and Calmodulin 1), 140 Kinase-like), 89–90 Double agent enzymes, 194–195 802 Index

Doublecortin (DCX), 90 Enzalutamide (Xtandi, Astellas), 455 Down syndrome, HMG proteins and, 215t Ephidius ervi, 324 Doxorubicin Ephydatia fluviatilis, 392 for hepatoblastoma, 401 Epidermal growth factor receptors (EGF-R), for metastatic neuroblastoma, 373 13, 430 drh (Dicer-related helicase) genes, 86 Epigenomics Drosophila, 76–89, 112 elementary, 291–297 hypoglycemic, 144–145 germ line, sanctity of, 294–297 JAK mutation in, 95–96 restless, 291–294 longevity assurance gene, 87–88, 88f Epithelial-to-mesenchymal transition, 13, triangle between YP, Piwi and Hh, 67 336–341, 398, 434 zeste of, 485 EPIYA (glutamic acid-proline-isoleucine- Drosophila melanogaster, 322 tyronine-alanine) motif, 157 achaete-scute, 383 Eps15 (EGFR epidermal growth factor receptor anti-apoptosis, 341 pathway substrate), 148 Drosophilalet-7, 83 Epstein-Barr virus (EBV) dsDNA adaptive immune system, 309 breaks and translocations, AID-induced, human, 60, 62, 80t 114–115, 116t, 117t retroviruses, 224–225 repair, 195, 196t transposable and signal sequences, Dunaliella, 253 235–238, 236f and YY proteins, 131–133 E ERK/MAPK, 144 EBNALP, 225 Erlotinib (Tarceva, Genentech), 454 E-cadherin, 191, 337, 339, 340 Erythropoietins (EPO), 312, 430, 508t Ecklonia cava, Ki-67 and, 382 miR-17-92, 221 Ecteinascidia turbinata, 72t receptor, 430 Ecteinascidins (Trabectedin, Yondelis), 72t, in JAK2 activation, 270 454 Escherichia coli (E. coli), 248, 499 Edwardsiella, 233 bacteriophage-infected library, 182 EFCAB6 gene, 210, 211 extracellular ribosomes, 3 EHBP-1 (Eps homology domain binding G4 DNA motifs, 129 protein), 148 primordial fused genes, 157 Ehrlichia, carbohydrate metabolism, 153 ribosomal RNA synthesis in, 304 Endogenous oncogenesis, 420–422 spheroplasts of, 38 Endogenous retroviruses, 150f ETS (erythroblast transformation-specific; E- interaction twenty-six) domain protein, 172 in mTOR pathway, 149–151 Eubacteria, 35 with Rab proteins, 149–151 Eukaryotes, 35–36, 38–49 Kaposi sarcoma, 61f balancing acts, 122–130, 123f, 126–127t, as oncogene activators, 468–474 128f reactivation, 434–435 Crenarchaea, division, 38 RNA/DNA complex, 387–390 horizontal-transfer gene network, 47f Endosomal sorting complex required for primordial fused genes, 157–160, 161f transport of endocytic cargo recreation of, 45–49 (ESCRT), 147 response to sugar intake, 143–144 Endotoxin septic shock, 492 spheroplasts, 38 Entamoeba histolytica (E. histolytica), 74, 124, tree of living organisms, 48f 392 unicellular, primordial resistance of, 121 carbohydrate metabolism, 153 Euryarchaeota, 251 introns, 260 Everolimus (Afinitor, Novartis), 455 primordial fused genes, 164 Ewing's sarcoma, 71t Index 803

ATF/CREB oncogenes in, 174 Gastrointestinal stromal tumors (GIST), 68 -ATF1, 172–173 Gefitinib (Iressa, Astra Zeneca), 454 oncogenes, 169–170, 170f Gene fusions, 23–24 Excavata, 76 Genitourinary (GU) tract Exogenous oncogenesis, 420–422 infections in, 421 retroviral genes in, 476–477 F viral-induced carcinoma, 420 FARP1 gene, 270 Genomic chaos. See Aneuploidy Fas-associated death domain (FADD), 368 Genomic imprinting Fasciola gigantica, 211 living fossils, 137–138 FasL-induced mitosis, 174–175, 176f retroviral inheritance, 216–217 Felis cattus endogenous retrovirus (FcEV), 469 Gestational choriocarcinoma, 401–404 Ferroplasma acidarmanus, 17, 121 Giardia, 58–59 FGF-R1/TACC proteins, 283 introns, 258 Fibroblast growth factors (FGF), 430 PI3K pathway in, 7 5-Fluorouracil (5-FU), 452 Giardia intestinalis, 76, 124 for hepatoblastoma, 401 Giardia lamblia (G. lamblia), 258, 260 fmr (fragile mental retardation) gene, 167 Glossina, 262 Foamy spumaviruses, 207 Glucose dehydrogenase (GDH). See H6PD Focal adhesion kinase (FAK), 427 Glucose-6-phosphate dehydrogenase (G6PD), FOLFIRI regimen, 13, 14 158 FOLFOX regimen, 13 Glyceraldehyde-3-phosphate dehydrogenase Follicular lymphoma, 358 (GAPDH), 155 bcl-2 and, 358 Glycogen synthase kinase-3 (GSK3), 78–80, FOXO (forkhead box transcription factor), 144, 80t 145 Glycolysis, 23, 369 Free living or parasitic unicellular eukaryotes, inhibitor 2-DG, 376 312t. See also Unicellular parasites mitochondrial, 430 Friend, Charlotte, 221–222 Warburg’s aerobic not-mitochondrial, Fusarium graminearum, introns and, 263 15–16 Fusarium oxysporum, Mauriceville plasmid Warburg-type, 154, 282, 369, 473 and, 386 Glycosyl-phosphatidylinositol (GPI) molecule, Fuselloviridae, 388 87 Fuselloviruses, of Crenarchaea, 44–45, 46 Gnathostomata, 111–120 AID-induced dsDNA breaks and G translocations, 114–115, 116t, 117t Gain-of-function mutations, 23–24, 25 enzyme AID targets non-Ig genes, 112–114 of β-catenin, 191 immunological lymphomagenesis, 118–120 of BTK gene, 71t Reed-Sternberg cells engagement in genomic mutations, 27 ménage à quatre, 115–118, 119f point mutation, 11, 15, 26, 28, 190, 398 Gonium multicoccum, 268 c-kit proto-oncogene, 431 Granular lymphoid cells, 73f proto-oncogene, 210 Granule lattice (GRL) proteins, 262 the Rac1 gene, 485 Granulocyte colony stimulating factor receptor rafB (BRAF) proto-oncogene, 173 (G-CSF-R), 175 of Smo, 277 GTPase-activating protein, 484–485 thrombopoietin receptor (TPO-R) gene, 96 GTPases Galleria mellonella, 323 -activating protein (GAP), 146, 148, 484 Gamma interferon-inducible lysosomal thiol Rab family, 147–149 (GILT) reductase, 91–92, 91t Gammaretrovirus, 208 H Ganglion mother cells (GMC), 87 H6PD, 158–159 Gas6 protein, 184–186 Haloarcula marismortui, 179 804 Index

Halobacteriales (Haloarchaea), 251 Tat, 80t Halobacterium salinarum, carbohydrate viral infectivity factor (Vif), 208 metabolism, 152 and YY proteins, 131–133 Haloferax volcanii (H. volcanii), 217t HIWI (human PIWI), 24, 57, 59, 66, 68 carbohydrate metabolism, 152, 153 antigens, 68–69, 73–74 first TSP protein, 486t Hodgkin lymphoma, 26 Hippopotamus amphibius (H. amphibius), 241 Homo sapiens, 413, 474 Haploid germ cells, 6 CBF–1 in, 87 HARB1 protein, 244 Horologists, 417–419 Harbingers, 242–245, 243f Host cell factor-1 (HCF-1), 86 Hayflick rule, 15, 493 Host cell genomic mRNAs, 59–62 Heat shock proteins (HSP) Hostenia miamia, 314 hyperthermic therapy, 506t Host immune reactions, tumor growth primordial, 505–506t enhanced, 312t as protector of oncogenes, 505–506t Howe, Clifton Dexter, 534–541 Hedgehog pathway, 67 farewell, 547–548 in ontogenesis, 11, 12 memory of, 548–551, 550f HeLa cells, 26, 479, 302 Human cerebral cortex, 19–21 Helicobacter, 120 Human endogenous retroviruses (HERV) Helicobacter pylori, 120 RNA, 217–218 -induced gastric MALT lymphomas, 311 Human face, retroviral inheritance of, 207–224 introns, 260 insertional mutagenesis, 209–216, primordial fused genes, 157 212–213t, 214–216t Hepatoblastoma, 401 new services rendered by inserted genes, HER2/neu oncoproteins, 447 216–219 Herpes simplex virus (HSV), 230 Retroviruses R Us, 207–209 Herpesvirus ateles, 471 retroviruses spread in laboratory, 223 Herpesvirus saimiri (H. saimiri), 209, 412, 471 viruses collaboration, 219–221 Herpesviruses wnt proto-oncogenes, cooperation of, 221 EBV, 224–225 HurIFNα therapy, 190 genomic intrusions of, 224–231 Hybridoma formation, 473f HHV8-related, 208 Hydractinia, 77 KSHV, 225–227 Hydractinia echinata, 16 and retro(lenti)-viruses, criminal collusion Hydractinia symbiolongicarpus, 232–233 of, 411–413 Hydra magnipapillata (H. magnipapillata), tankyrase interaction, 230–231 350, 390, 466, 496 HERV-WE1 gene, 219, 220 Hydra vulgaris (H. vulgaris), 380 Hh shared sarcoma genomics, 277–280 achaete-scute, 384 HHV-6, 236 Hylobates agilis, 207 telomere attraction, 227–230, 229f Hyper-CVAD regimen, 453 HHV8 Hypercycling peptides, autocatalytic latency-associated nuclear antigen of, 224 chiroselective reactions of, 33 -related herpesviruses, 208 Hyperglycemic Drosophila, 144–145 High mobility group (HMG) proteins, Hypoglycemic Caenorhabditis, 144-145 210–211, 356, 485, 502t Hypoxanthine phosphoribosyltransferase human cancer growth induced and/or (HPRT), 468 promoted by, 214–216f of unicellular eukaryotic ancestors, I 212–213t Ibrutinib, 22 Histone deacetylase inhibitors (HDACI), for for chronic lymphocytic leukemia, 22 neuroblastoma, 359 for mantle cell lymphoma, 22 HIV-1, 131–133. See also Acquired Idelalisib, 452 immunodeficiency syndrome IKBKE (inhibitor kappa light chain enhancer B (AIDS) cells), 416–417 Index 805

Imatinib mesylate (Gleevec, Novartis), 452 in carcinoma cells, 280–283 for chronic myelogenous leukemia, 115 changes in dendritic cells and immune Imiquimod, for neuroblastoma, 373 lymphocytes, 286–287 Immune lymphocytes, intron changes in, fate of, 269–273 286–287 Hh shared sarcoma genomics, 277–280 Immune T cells, recognition of, 533 of LECA, 258, 259t, 264, 265, 269, 275, Immunity-related GTPase (IRG) protein, 92 289 Immunoglobulin gene (IgH), 10 in leukemogenesis, fate of, 269–271 Immunological lymphomagenesis, 118–120 loss of, 94, 263 Immunological surveillance, 10 natural products, impact of, 283–284 Immunotherapy, for melanoma, 456t of oncogenomics, hidden, 275–277 IMP-1 protein, 313 in ontogenesis, 284–286 Inflammatory carcinogenesis, 26, 310–311, -poor genomes, 257–263 427 resting gene transforms into oncogenesis, Insertional mutagenesis, 209–216, 212–213t, impact of, 267–269 214–216t -rich genomes, 257–263 Insulin-like growth factor (IGF), 430 undisciplined, 257–290 -binding protein 2 (IGFBP), 204 Ipilimumab, 23 IGF-1, 86 Irs-1, 60 1-R, 13 Isochrysis, 253 IGF-2, 137–138, 140 in placental syncytiotrophoblasts, 140 J in poecilia fishes, 141 Jaagsiekte retrovirus (JSRV), 471 receptors and ligands, long trajectory of, JAK mutation 143–156 in Drosophila, 95–96 Insulin receptor substrate-1 (IRS-1), 147 /FERM mutations, 270 Interferons (IFN), 91–98, 509t human, 96 -deficient tumor cells, oncolytic viruses in, JAK/STAT signaling, 97 98–99 activated by IFN-alpha, 91–92, 530–531 IFNβ, 98 IFN-γ, 91–98 type I IFN, 94–95 type I target genes, 96 IFNαβ, 92-94 JNK protein, 79 JAK/STAT activated by, 94–95 Interleukins (IL), 509t K IL-1, 96, 97 Kaposi sarcoma, 190 converting enzyme (ICE), 322 endogenous retroviruses, 61f IL-1β, 172, 227, 278, 432, 468 herpesviruses (KSHV), 60, 60f, 62, 80t, IL-2, 210, 227, 316, 317, 509t 209, 220, 225–227 IL-3, 227 Keratinocyte growth factor (KGF), 430 IL-4, 97, 509t Ki-67, 24, 382–383 IL-6, 96, 97, 98, 172, 190, 226, 227, 468, Kinetoplastids, 7 509t Klebsiella pneumoniae (K. pneumoniae), 260 IL-8, 112, 468 Koacervats, 32 IL-10, 97, 240, 316 Krebsbacillus, 491 IL-12, 98, 316 Kupffer cells, 13, 311 IL-13, 97 IL-15, 445, 509t L IL-17, 112 Laboratory technology IL-27, 98 cellular RNA/DNA, 181–183 Intron(s) nomenclature clarification, 183–187 amphioxus species, 273–275 Lactococcus lactis (L. lactis), 288, 289 ancestors of, 263–267 Laminas, and neuroblastoma, 361 biology, latest on, 287–290 Lapatinib (Tykerb, GlaxoSmithKline), 454 806 Index

Last Eukaryotic Common Ancestor (LECA), Lithospermum erythrorhizon, 352 463, 496, 553 Living fossils, 137–141 introns of, 258, 259t, 264, 265, 269, 275, genomic imprinting, 137–138 289 meiotic errors, 140 morphological metamorphoses, 319 placental syncytiotrophoblasts, 138–140, Late membrane protein (LMP) mRNAs, 60, 62 139f Latency-associated nuclear antigen (LANA), poecilia fishes, 140–141 224, 292 viviparity, 137–138 Laurasiatheria, 138 Lmbr1, 273, 274 Lausannevirus, 247 Long terminal repeats (LTRs), 14, 37 LecRK–I, 163 Loss-of-function mutations, 15, 140, 429, 600, Legionella drancourtii, 63 629 Legionella pneumophila, morphological of ELG in budding yeast, 500t metamorphoses, 319 in Hirschsprung’s disease, 190 Leishmania, and carbohydrate metabolism, 153 integrated HHV-6 genome (CIHHV), 229 Leishmania amazonensis, strand-switch of mitochondrial gene, 52, 54 regions (SSRs) of, 355 point mutation, 72t, 174, 364 Leishmania braziliensis, 75 key genes for, 514t Leishmania donovani (L. donovani), 128 of prmt-1 gene, 328 interaction with PCNA, 252 PTEN gene, 125, 339 Leishmania major (L. major), 76 of Rab and/or DENN proteins, 485 interaction with PCNA, 252 of Sox2, 83 Lenalidomide, 452, 453 tumor suppressor genes, 25, 222, 354, 442 Leucine rich repeats (LRR), 105, 308 Apc, 363 Leukemia gld, 145 acute myeloid, 431 tudor gene, 171 chronic lymphocytic, 22 Lovastatin, 441 mixed lineage, 167 Ludus vitalis (alloy of philosophy), 3 myelogenous, 518–519t Lycopersicon esculentum (L. esculentum), 177 chronic, 115, 165–166 Lycopersicon pimpinellifolium (L. pennellii), oyster, 349–350 177 precursor B cell acute lymphoblastic, 518t Lymphocytes, HiWi antigens and, 68–69, retroviral mouse, 518t 73–74 Leukemic retroviruses, 208 Lymphocytic choriomeningitis virus (LCMV), Leukemogenesis, 215t 390 introns in, fate of, 269–271 Lymphoma Lexatumumab, for rhabdomyosarcoma, 369 activation-induced cytidine deaminase and, Lieberkühn crypts, 22 112–114 stem cells in, 11, 14 anaplastic, 362–364, 518t Ligands-to-growth factor receptors, 508t B cell, 518t, 520–521t Limulus polyphemus, 321 Burkitt's, 358 Lin, 82–85 Hodgkin, 26 lin-4, 82 lymphoplasmacytic plasmablastic, 518t lin-7, 82-83, 85 MALT, 357 lin-28, 83, 85 mantle cell, 22 Lipoprotein receptor-related protein (LRP), 78, Lymphomagenesis, 113, 250 81 immunological, 118–120 Listeria vaccine, 374t Lymphoplasmacytic plasmablastic lymphoma, Lithium chloride (LiCl), 80t, 305t 518t Index 807

Lymphosarcoma, 70–71t immune T cells and NK cells, recognition Lynch syndrome, 7, 26, 467, 554 of, 533 private donors support to immunotherapy, M 533–534 MAFs (musculoaponeurotic fibrosarcoma) MDM, 11, 134, 427 proto-oncogenes, 155 anti-p53, 344–345 Magnaporthe grisea, 263 and sarcoma, 71–72t MAGUK (membrane-associated guanylate MDM2 protein, and rhabdomyosarcoma, 365 kinase) protein, 394 MDR1 protein, 313 , 239, 240, 241, 249 Mechlorethamine (Mustargen), 451 Malignantly transformed cells, 14t, 15, 17–18, Megavirus chilensis, 63 214t, 313t MER signaling/pathway, 185–186 ancestral arginine methyltransferases, 329 Mesenchymal stem cells (MSC), 380 and ancient unicellular eukaryotic cells, 56, Mesotoga prima (M. prima), 388 125, 521 Metalloproteinases (MMPs), 148 aneuploidy, 436 Metazoan HMG proteins, 212–213t cell survival pathways, 23, 343 Micromonas pusilla (M. pusilla), 265 centrosome amplification, 495 Microphthalmia-associated transcription factor genetic instability, 466 (MITF), 338 genomic introns, 296 MicroRNAs (mRNAs), 2, 6, 34, 36, 56–64 human survivin gene, 368 activation-induced cytidine deaminase, IGF-to-R pathway expropriation, 151 114-115 mitotic errors, 301 agnathan, 106–108 RNA-derived mutators, 468 amoebae, 62–64 system expropriation, 507–510t Argonautes, 56–59, 57f tenascins (TNs), 397t Dicer, 57, 58f, 59, 74 trans-speciation, 336, 336f donors of, 76–89 Malignant peripheral nerve sheath tumor Drosha, 57, 58f, 59 (MPNST), 13, 37 host cell genomic, 59–62 MALT lymphoma, 311, 357 interfering/inhibitory, 457–459 Manduca sexta, 324 late membrane protein, 60, 62 Mannose 6-phosphate/IGF2 receptor (M6P/ Nanog, 83, 84, 402 IGF2R), 137–138 p53-induced miR-145, 59–60 Mantle cell lymphoma (MCL), 22 viral genomic, 59–62 Marine annelid, stem cells replication in, 93f YY proteins, regulation of, 134–135 Marseillevirus, 247 Mimivirus, 247 MART (melanoma antigen recognized T cells) Mitochondria, 48f, 51–54 proteins, 387 in oncogenesis, 516–517t Mast cells, 13 Mitochondrial DNA (mtDNA), 383, 516–517t Matrix metalloproteinases (MMP), 282, 336 Mitochondrial RNA editing factor 1 (MEF1), Mauriceville 319 plasmid, 4, 386–387 Mitogen inducible genes (Mig), 335 retroplasmid (mRP), 259t, 464 Mitosis, FasL-induced, 174–175, 176f MD Anderson Hospital Comprehensive Cancer Mitotic errors. See Aneuploidy Center (MDACCC), history of, Mitotic exit network (MEN), 148 527–551 Mixed lineage leukemia (MLL), 167 basic science research, 541–547, 542f Mollicutes, origin of, 40–41 BCG, 527–530 Moloney, John, 222–223 cancer biotherapy, natural IFN-alpha for, Moloney leukemogenic retrovirus, 395 530–531 Moloney mouse leukemia-sarcoma retroviral cancer chemotherapy, 527–530 (MMLV) provirus, 222 combination chemotherapy, 531 Monoclonal antibodies, 449–451 Howe, Clifton Dexter, 534–541, 547–548 Monoclonal immunotoxins, 449–451 808 Index

Monocyte-macrophage colony-stimulating achaete-scute, 384 factor receptor-1 (CSF-R1), adaptive immunity, 241–242 487–489t HMG protein, 212t Monosiga, 11, 79 Neoneurogenesis, 312t Monosiga brevicollis, 127, 128, 393–394, 396, Nerve growth factors (NGF), 430 465 Neurabin-II, 90 primordial fused genes, 164 Neuroblastomas, 507t Monosiga ovata (M. ovata), 128, 191, 392, biology of, 358f 394, 511t of childhood, 358–362 hoglet gene of, 201 Neurofibromatosis gene (nf1), 13, 146 Moraxella bovis, 182 Neurons, 20 Multifactorial resistance phenotypes, 452 Neurospora crassa, 168 Multiple sclerosis associated retrovirus hyphal hyperproliferations in, 255f (MSRV), 220 introns, 263 Mutator pheno-genotypes, 500–501t Mauriceville plasmid, 386–387 Mutator phenotype, 26 Neurotrophic tyrosine receptor kinase (NTRK), Mya arenaria, 349 145 Mycoplasma fermentans (M. fermentans), 44 NFκB, 509t Mycoplasma penetrans (M. penetrans), 44 /STAT pathway, 23 Mycoplasmataceae, 41 Nhej1, 273, 274 Mycoplasmatales, 40 Nicotinamide adenine dinucleotide phosphate Myeloblastosis (MYB) protein, 245 (NADPH), 158 Myelogenous leukemia, 518–519t Niller, H.-H., 235–238 Mytilus trossulus (M. trossulus), 345, 349 herpesviral genomes, 236f Myxoid/Round Cell Liposarcoma (MyLSrc), Nilotinib (Tasigna, Novartis), 452 72t Nitrosopumilus maritimus, 46 genomics of, 117t N-myc downstream-regulated gene 1 (NDRG- 1), 172, 416 N nok/NOK gene, 178 Naegleria, 24, 496 Nomenclature clarification, 183–187 carbohydrate metabolism, 153 Non-coding RNA (ncRNA), 2, 4, 34, 522–523t trans-speciating transformations of, 154f -derived cDNA libraries generated, 522t Naegleria fowleri, and carbohydrate Notch, 90 metabolism, 153–154 Nuclear factor of activated T cells (NFATC), Naegleria gruberi (N. gruberi), and 204 carbohydrate metabolism, 154 Nucleoporin, 17 NAIF1 protein, 244 Nucleotides. See also Oligonucleotides Nanog mRNA, 83, 84, 402 coexistence before cells, 31–33 Naphthoquinones, 155 extra, 124 National Cancer Institute (NCI), 531–532 Nutlin, 72t Natrialba magadii, 389 Nyctotherus, 122 Natural killer (NK) cells, 13, 18, 97, 100 NY-ESO antigens, 444 in antibody-dependent cell-mediated and sarcoma, 70t cytotoxic reactions, 59 recognition of, 533 O therapy, 447–351 Oblimersen (Genasense), 453 Natural products, impact on introns, 283–284 Oct4, 60, 83–85 Navitoclax, 350–351 Oikopleura dioica, and introns, 263 N-cadherin, 337 Okazaki fragments, 380-382, 398 NDUFA1 gene, 270 Oligonucleotides, 411, 415, 457, 458t Nematode viruses, 85–86 Oncogene-derived protein kinases, targeted Nematostella, 11, 79, 554 small molecular inhibitors of, Nematostella vectensis (N. vectensis), 77, 189, 451–457 191, 314, 380 Oncogenesis, 25, 492, 555, 556 Index 809

achaete-scute, 507–508t Paramecium chlorella, 248 agrobacterial, 522t Paramecium tetraurelia (P. tetraurelia), 58, 77 Aurora-kinase, 252 introns, 257 endogenous, 420-422 primordial fused genes, 165 exogenous, 420–422 Pasteurellaceae, 308 gene transforms into, resting, 267–269 Pax6, 81 heat shock proteins, 505–506t Pazopanib (Votrient, GlaxoSmithKline), 454 mitochondria in, 516–517t Pediatric lymphomas/leukemias, 518–519t ncRNAs in, 522–523t Pediatric myelodysplasia, 518–519t PCNA in, 502t Pediatric rhabdomyosarcoma, 364–368, 365f Polo-kinase, 252 PEG10, 138 Oncogenic fusion oncoproteins, cellular Pembrolizumab, 23 viability and, 353–355 Penicillium funiculosum, 183 Oncogenome, 24–26 Pentose phosphate pathway (PPP), 155 primordial, 427–437 Peponocephala electra, 241 strategy of, 425–438 Perkinsus marinus, 467 Oncolytic viral therapy, 444–447 Peroxisome proliferator-activated receptors OncomiRs, 4589–459t (PPAR), 53t, 86 Oncoproteins, release of, 434–435 Pettenkoferia, 302–304, 303f Ontogenesis, introns in, 284–286 Pfiesteria piscicida (P. piscicida), 253 Opisthokonta, 76, 77, 497 Phallusia nigra, 394 Organelles, 51–55 Phascolarctos cinereus, 471 chloroplasts, 51–54, 54f Phosphoinositide-dependent kinase-1 (PDK1), mitochondria, 51–54 144 ribosome, 55, 55f 6-Phosphogluconolactonase (6PGL), 159 Ornithorhynchus anatinus, 137 Physarium polycephalum, 496 Ostreococcus lucimarinus, 257 Physeter macrocephalus, 241 Ovarian carcinoma, physiological growth Phytophthora, 17 factors for, 316–318 primordial fused genes, 160, 162–164, 162f Oxytricha, 7, 481 virulence factors and transposable elements Oxytricha fallax (O. fallax), 122 of, 511–512t Oxytricha nova, 212t Phytophthora brassicae, primordial fused Oxytricha trifallax (O. trifallax), 17, 122, 466 genes, 163 Oyster herpes viruses (OsHV-1), 239 Phytophthora infestans (P. infestans), 387, 499 Oyster leukemia, 349–350 primordial fused genes, 160, 163, 164 Phytophthora sojae, primordial fused genes, P 160, 162 p38 mitogen-activated protein kinase (MAPK), Phytoplasmas, sequence-variable mosaics, 41 97–98 PI3K, 15 p53, 11, 13, 68, 134, 279, 341, 343–344 cell survival pathway, 125 co-evolution of, 71–72t in Giardia, 7, 125 -induced miR-145, 59–60 /Akt, 508t pro-apoptotic, 271f germline mutation of, 126–127t, 128f Paleogenomics, 238–242 PiggyBacs, 7 Panobinostat, 455 Pithecanthropine hominids, 27 Pan troglodytes, 207 Pituitary tumor-transforming gene-1 (PTTG), Papillomavirus, 400 337 E6 oncoprotein, 248 PIWI RNA, 24, 57, 59, 65–75, 390–392 and YY proteins, 133 donors of, 76–89 Papovaviruses, 247 Placenta, as pseudomalignant organ, 18, 19 Parabodo caudatus, primordial fused genes, Placental syncytiotrophoblasts, 138–140, 139f 164 Plasmacytoid dendritic cells (pDC), 97 Parachlamydia acantamoebae, 63 Plasmodia, 17, 496 Paramecium bursaria chlorella, 63 carbohydrate metabolism, 153 810 Index

primordial fused genes, 165 Primordial spheroplasts, 35–36 Plasmodium falciparum (P. falciparum), 76, Progeria, 192–193 465 Prokaryotes, 35, 76–89 interaction with PCNA, 251 cell wall-free, 39f Okazaki fragments, 380–381 horizontal-transfer gene network, 47f primordial fused genes, 158, 159, 162 tree of living organisms, 48f Plasmodium vivax, 260 Proliferating cell nuclear antigen (PCNA), Platelet-derived growth factors (PDGF), 430 194–195, 502t Platynereis dumerilii, 92 as ancient DNA-proliferator, 251–256 achaete-scute, 384 Okazaki fragments, 380–382 Poecilia fishes, 140–141 in oncogenesis, 502t Polo-kinase oncogenesis, 252 Promyelocytic leukemia (PML) protein, Polyadenosine diphosphate ribose polymerase 248–249 (PARP), 53t, 197, 255–256, 371 Prostate carcinoma (PC), 428–429t Polynem (Pln), 16 Protein arginine methyltransferases (PAMT), Polyomaviruses, 420–421 497. See also Protein R-CH3 Polypeptides, 3 methyltransferases (PRMTs) Pomalidomide, 452 Protein R-CH3 methyltransferases (PRMTs), Ponatinib (Iclusig, ARIAD), 452 328–329, 368, 383, 502–503t Pongo pygmaeus, 207 Proteins repressive complex (PRC), 371 Porifera, 77 Protocells, 32 Porphyromonas gingivalis, 308 Proto-oncogenes Poxviruses, 35, 36 ancestors of, 379–380 PRC17 protein (polycomb group repressive classical, 511t complex), 148–149 generation of, 145–147 PRDM genes, 203–204 primordial genes conserved as, 31–34 Precursor B cell acute lymphoblastic leukemia, resident, as recipients, 209–216, 212–213t, 518t 214–216t Pre-immunization, immune reaction without, Protospacer adjacent motifs (PAMs), 308 410 prp8 gene, 263 Primitive neuroectodermal tumors (PNETs), Pseudogenes, 205–206 385 Pseudomonas, 499 Primordial fused genes, 157–179 introns, 260 conserved as stem cell genes/proto- Pseudomonas aeruginosa, 505t oncogenes, 31–34 Pseudomonas caudatum (P. caudatum), 505t exchange of, 164–165 Pseudorca crassidens, 241 extant unicellular eukaryotes, 157–160, Pseudouridylation, 58f 161f Pseudovasculogenesis, 433 FasL-induced mitosis, 174–175, 176f Pseudovirions, 464 gene amplifications and duplications, 175, PSMB (proteasome subunit β-type) proteins, 177 91t in old men, 171–172 PTEN, 13, 15, 125–126, 126–127t, 145, 197, oncogenes/oncoproteins fusion, guidelines 282–283, 339, 415 for, 165–167 intranuclear sumoylated, 127t Phytophthora, 160, 162–164, 162f PI3K/AKT, germline mutation of, point mutations, 175, 177 126–127t, 128f promiscuity in, 167–171, 170f Pyrobaculum aerophilum (P. aerophilum), treacherous tumor, 172–174, 174f 498–499 tyrosine kinase nok/NOK, 178 Pyrococcus, 56 Primordial oncogenome, 427–437 Pyrococcus furiosus, 76 Index 811

carbohydrate metabolism, 152 RNA Pyruvate dehydrogenase phosphatase (PDP), cellular, 181–183 145 circular, 2, 523t competing endogenous, 206 Q -dependent RNA polymerases (RdRp), 62 Quantitative PCR, 220 -derived mutators, 466–468 real-time, 298 HIWI, 24, 57, 59, 65–75 reverse transcription, 222 -induced slicing complex (RISC), 57, 57f, Quantitative trait loci, 500t 59 interference (RNAi), 56, 57, 59 R mRNAs. (See MicroRNAs (mRNAs)) Rab family GTPases, 147–149 non-coding, 2, 4, 34, 522–523t Rab proteins, endogenous retrovirus genes PIWI, 24, 57, 59, 65–75, 390–392 interaction with, 149–151 polymerases (RNAP), 41 Rad51, 197–198 post-transcriptional modification, 74–75 rag genes, 111–113, 218, 234, 244 scan, 65 RanGTPases (Ras-related nuclear protein), 407 shRNAs(. See Small hepatin RNAs ras genes, 304–308 (shRNAs)) phylogenetic analysis of, 306–307 siRNA (. See Small interfering RNA Ras-Raf-MEK-ERK pathway, 145 (siRNA)) RBP-J (recombination signal binding protein RNA/DNA complex, 2, 4, 7, 121–130 for immunoglobulin kappa J region), adaptive immune system, unreliable 225, 285 enzymes of, 308–310 R-CHOP chemotherapy regimen, for mantle endogenous retroviruses, 387–390 cell lymphoma, 223 enseal into and fly out of cocoon, 321–324 Receptor activator of NFκB/receptor ligand gills transform to lungs, 320–321 (RANKL), 113–114 inflammatory carcinogenesis, 310–311 Reed-Sternberg cells, 554 Ki-67, 382–383 engagement in ménage à quatre, 115–118 malignant transformation of cells, 299–318 extracting guarded secrets from, 474–476 malignant tumors, 399–400 origin of, 119f Martian, 28 Regorafenib (Stivarga, Bayer), 455 Mauriceville plasmid, 386–387 Regulatory T (Treg) cells, 13 morphological metamorphoses, 318–320 RET/PTC, 190–191 mtDNA, 383 Retinoblastoma, 400t Okazaki fragments, 380–382 Retinoic acid-induced heparin-binding protein oncogenic, 13, 16 (RIHBT), 431 Pettenkoferia, 302–304, 303f Retro(lenti) -and herpesviruses, criminal phenomenal physiological tasks, 318–330 collusion of, 411–413 PIWI RNA, 24, 57, 59, 65–75, 390–392 Retroviral mouse leukemias, 518t primordial, 25, 28, 33–34, 379–405, 494 Rev1 polymerase, 194–195 shark bites, 324–325 Rhizome, 463 stem cells, asymmetric mitoses of, 327–329 Rhizopus, 158 taxa, phylogenic shifting of, 325–327 Ribonucleoproteins (RNP), 31, 33 therapeutic interventions, impact of, Ribosome, 55, 55f 395–399 Rituximab, 452, 454 transforming, 23 RIZ genes, 204 unicellular life forms, 311, 313–316 812 Index

RNF113B gene, 271 Sequence-variable mosaics (SVM), 41 Rnf32, 273, 274 SETMAR protein, 244 rNMPs, 252–253 Severe combined immunodeficiency (SCID), ROCK/pMLC2 pathway, 416 210 Romidepsin, and synovial sarcoma, 372 Shank protein, 498 RUNX (runt–related transcription factor), 155, SHOX (stature homeobox-containing) gene, 364 294 Signaling lymphocyte-activation molecule- S associated protein (SLAM; SAP), 97 Saccharomyces, 7, 122, 299 Signal recognition particle (SRP), 304–305 Saccharomyces cerevisiae (S. cerevisiae), 76, Signal transducers and activators of 414, 496 transcription (STAT), 23, 68, Fip1 of, 166 412–413 HMG protein, 212t cell survival pathway, 393 interaction with PCNA, 251 pathway, 95, 96, 97 introns, 258, 262, 266, 269, 289 PI3K phosphorylation, 125 Pak enzymes, 393 protein (STAT92E), 93 Saccharomyces paradoxus (S. paradoxus), 262 Signal transduction ATPases (STAND), 248 Saccharomyces pombe, 328 Simian sarcoma virus (SSV), 471 Saimiri sciureus, 412, 471 Simkania negevensis, 343 Sal flies, 477–479 Simvastatin, 441 Salinomycin, 13 SIN1 protein, 94 Salpingoeca rosetta (S. rosetta), 497 SIR (silent information regulator), 86 Sarcina lutea, 38, 304 SIRs/sirtuins, 89 Sarcoma, 68–69 rhabdomyosarcoma, 365f dendritic cell, 71t SIVcpz, 207 Ewing's, 71t. See also Ewing’s sarcoma Sleeping beauty transposon system, 243f genomics, 116t SLX4 DNA repair protein, 53t Hh shared, 277–280 Small hepatin RNAs (shRNAs), 5–6 immunobiology, 70–73t Small interfering RNA (siRNA), 2, 57, 62 immunotherapy, 70–73t metazoan gametogenesis, regulation of, 83 Kaposi (. See Kaposi sarcoma) nanoparticle encapsulated, 89–90 lymphosarcoma, 70–71t Smo, 275 rhabdomyosarcoma, 364–368, 365f SNARE proteins (soluble NSF attachment synovial, 69f, 116t, 338 protein receptor, N-ethylmaleimide- Staphyloccous aureus (S. aureus), 260 sensitive factor), 148 Scan RNAs (scnRNA), 65 Solanum melongena, 387 Schistosoma, 7 Solanum stoloniferum (S. stoloniferum), 163 Schistosoma haematobium (S. haematobium), Somatic cells, 6, 10, 11, 13–16 465 Somatic hypermutation (SHM), 202, 309 Schistosoma japonicum (S. japonicum), 465 Sorafenib, 432 Schistosoma mansoni (S. mansoni), 465 Sox Schizosaccharomyces pombe, 496 oncoprotein, 84f Argonaute gene in, 465 Sox2, 4, 33, 60, 81, 83–84, 416, 553 Pak enzymes, 393 Y chromosome-embedded (SRY), 5 primordial fused genes, 164 Spheroplasts Schmidtea mediterranea, 391 malleable, 38 Schwann cells, malignant sarcoma of, 37 primordial, 35–36 SDHD (succinate dehydrogenase subunit D) Spi-1 protein, 221 genes, 138 Spindle-shaped viruses (SSV), 44 Seed and soil hypothesis, 185 Staphylococcus, 499 Index 813

Stem cells, 6–18 TDRD1 protein, 171, 172 ancient, 77–79, 78f Telomerase reverse transcriptase transcripts asymmetric mitoses of, 327–329 (TERT), 261, 388 cancer, 192t Telomeres DNA/RNA complex, 8–9 G4 quadruplex in, 122 in Lieberkühn crypts, 11, 14 HHV-6 attraction, 227–230, 229f Streblomastix strix (S. strix), 263 length, of Trypanosoma, 128–129 Streptococcus pyogens (S. pyogens), 260 Temsirolimus (Torisel, Wyeth), 455 Streptomyces anulatus, 130 Tenascins (TNs), 395, 397t Streptomyces hygroscopicus, 471 Teneurins (TNe), 396, 397t Streptomyces parvulus, 95 Tetrahymena, 7, 65–67 Stromal cell-derived factor (SDF), 13 molecular biology, 65f, 66f Strongylocentrotus, 244 Tetrahymena histone methyltransferase Strongylocentrotus purpuratus (S. purpuratus), (TXR1), 495 77, 105 Tetrahymena pyriformis, response to sugar adaptive immunity, 242 intake, 143 HMG protein, 212t Tetrahymena thermophila (T. thermophila), 74, introns, 288 76, 77, 464, 517 Stylonychia lemnae, 122 HMG protein, 212t Suberites domuncula (Demospongiae), 7, 21 introns, 261 Suberoylanilide hydroxamic acid (SAHA), for primordial fused genes, 158, 165 neuroblastoma, 359 Tetraspanins, 486–487t SuFu protein, 275, 276 Thalassiosira, 158 Sulfolobales, 38 Thalassiosira pseudonana, 263 Sulfolobus acidocaldarius, 5, 17, 38, 47, 121 Theileria, 17, 24, 312t, 496 Sulfolobus solfataricus, 17 carbohydrate metabolism, 153 carbohydrate metabolism, 153 primordial fused genes, 165 CASCADE, 45 Theileria annulate (T. annulate) mRNA, 57 carbohydrate metabolism, 154 Sunitinib, 432, 455 morphological metamorphoses, 319 Survivin gene, 79, 90, 94, 166, 254 Theileria parva (T. parva) arsenic trioxide (A2O3, ATO) and, 249 carbohydrate metabolism, 154 DJ-1 co-expression, 211 morphological metamorphoses, 319 downregulation in, 345 Therapeutic cancer vaccines, 442–444, 443t during ontogenesis, 368 Thermococcales, 38 Synapses, 20 Thermococcus kodakarensis, 505t Syncytins, 139f, 219, 469 Thermococcus prieurii, 389 Syncytiotrophoblasts, 18 Thermofilum pendens, 164 placental, 138–140, 139f Thermoplasmales, 38 Synovial sarcoma (SS), 116t, 338 Thermoproteales, 38 fusion oncoprotein, 69f Thermotogales, 38, 41 Syntaxin, 148 Thermus aquaticus, 17, 121 Synthetic lethality, 195–198, 196t, 441 Thermus thermophilus, 57 Syntrophus aciditrophicus, 121 Thrombopoietin receptor gene (TPO-R), 96 SYPCP synaptonemal complex protein, 53t TIE1/2 proteins, 190 T lymphocytes, 13 T adoptive immune, 447 Takifugu rubripes, 235, 314 CD4+, 131, 297, 444 Tankyrase, 230–231 CD8+, 98, 297, 448 Taxa, phylogenic shifting of, 325–327 TH-17, 96 T-cell acute lymphoblastic leukemia-associated Thermotogales maritime (T. maritima), 38, 41 antigen (TALLA), 431 TMPRSS2/ERG protein, 171, 172 TCF/LEF proteins, 79 TNF-related apoptosis-inducing ligand T-DNA, horizontal transfer of, 2 (TRAIL), 368 814 Index

Toll/IL-1 receptor (TIR), 92 interaction with PCNA, 251–252 Toll-like receptors (TLRs), 59 introns, 262 TOR (target of rapamycin), 144 primordial fused genes, 164 , 59 Trypanosoma cruzi (T. cruzi), 7, 75, 76, 128 Toxoplasma, 165 HMG protein, 212t Toxoplasma gondii, 75 interaction with PCNA, 252 interaction with PCNA, 251 oncogenic fusion oncoproteins, 354 primordial fused genes, 158 primordial fused genes, 164 Trametinib (Mekinist, GlaxoSmithKline), 455 Trypanosoma gambiense (T. gambiense), 75, Transformed cells, 10, 11, 15–18, 22, 23, 129 26–27, 28 Trypanosoma montezumae, asymmetrical cell Transforming growth factor-α (TGFα), 509t divisions, 328 Transforming growth factor-αβ (TGFαβ), 402, Tumor cell endosomes, release of, 434–435 508–509t Tumor cell-killer lymphoid cells, 99–100 Transforming growth factor-β (TGFβ), 96 Tumor growth, epigenome/epigenetic control crossveinless-2 (C-2) protein, 380 of, 459–461 Drosophila decapentaplegic orthologs, Tumor immunology, epigenetics of, 368–378, 508t, 582 374–375t inhibin, 508t Tumor-nest vascularization, 433–434 PDP and, 145 Tumor suppressor genes, 10, 11, 13, 16 protection against metastases, 421 Tyrosine kinase proteins, invasion of, 189–191 in sarcoma genomics, 116t in TTRP formation, 411 U Translesional DNA synthesis (TLS), 194, 195 Unicellular ciliate protozoon, 568 Transposon kinetoplastids, 7, 330 -activated oncogenes, 512–513t Unicellular eukaryotes, 7, 13, 56, 266 mutagenesis, 512t evolution, 395–396 sleeping beauty transposon system, 243f lithium chloride (LiCl), 305t Trans-speciated defensive cells, 419–420 activated cell pathways, and cancer, Trastuzumab (Herceptin, Genentech), 454 312–313t TRF (telomere restriction fragment; telomeric Unicellular life sustenance, error or inherent repeat-binding factor), 198 attributes for, 201–206 Trichoderma harzanium, and Mauriceville activation-induced cytidine deaminase, plasmid, 386 202–204 Trichomonas, 7, 58–59, 306, 499 ancient cell survival pathways, 201–202 Trichomonas vaginalis (T. vaginalis), 124, APOBEC, 202–204 245, 306 Bet proteins, 204–205 carbohydrate metabolism, 152 pseudogenes, 205–206 introns, 258, 260, 266 Unicellular parasites, 165, 407 TvMULE1, 465 parasitic microorganisms, 24 Trichoplusia ni (cabbage looper moth), 481, cancer cell viewed as, 483 512t, 568 ancient CSF-R1 becomes an Trichostatin, for neuroblastoma, 359 oncoprotein, 487–489t Triose-phosphate isomerase (TPI), 155 DENN protein, 485 tRNA, 34 GTPase-activating protein, 484–485 Trypanosoma, 7, 17, 426 transmembrane proteins (TSP), carbohydrate metabolism, 153 486–487t telomere length, 128–129 zeste of Chlamydomonas reinhardtii, Trypanosoma brucei (T. brucei), 7, 14–15, 485–486 74–75, 129, 387 zeste of Drosophila, 485 asymmetrical cell divisions, 328 Unicellular pathogenic eukaryotes, 126t HMG protein, 212t Ustilago, 158 Index 815

V Xenotropic murine leukemia virus-related Van Gogh (VANG) protein, 87 retrovirus (XMRV), 208–209, 223 Variable lymphocyte receptors (VLRs), 105, Xiphosura, 321 308 Vascular endothelial cells, 13 Y Vasculogenic mimicry (VM), 334–336, 336f, Yarrowia lipolytica, 269, 408 433–434 YB proteins (Y box-binding protein), 67 VCBP genes, 238–239 Yersinia, 499 Vemurafenib (Zelboraf, Plexxicon, Roche), Yixianornis grabaui, 321 455 Young hosts, cancers in, 357–358 Very large GTPase-inducible (VLIG) proteins, Yuyuanozoon magnificissimi, 275 92 YY proteins, G4 quadruplex promoters of, Vesicle-associated membrane protein (VAMP), 131–135, 132f 148 adenovirus, 133–134 -like regimen, 534 EBV, 131–133 Vespertiliones, 8 genome counters, guardian of, 134 Vetulicolians, 275 HIV-1, 131–133 Vetulicola cuneata (V. cuneata), 275 papillomavirus, 133 v-eyk protein, 186 regulated by microRNAs, 134–135 Vibrio cholerae introns, 260 Z primordial fused genes, 157 Z-DNA, 1 Vincristine, for hepatoblastoma, 401 ZEBRA, ankyrin protein, 237 Viral chromatin-interacting proteins, 247–248 ZRE DNA-binding site, 238 Viral genomic mRNAs, 59–62 Zebrafish Viral oncolysates, 100–103, 101f anti-p53 MDM, 354 Virology fish-specific genome duplications, 314 advanced, 37 IFNs, 93 basic, 36 Ki-67 antigen, 382 Viruses collaboration, 219–221 NEMO in, 411 Volvox, 329–330 PSMB proteins, 91t Volvox carteri, 498 retinoblastoma tumor suppressor genes (Rb), 400t W VLR-like genes, 108 Warburg’s aerobic not-mitochondrial Zhongjianornis yangi, 321 glycolysis, 15–16 Zink finger gene family, 203 Warburg-type glycolysis, 154, 282, 369, 473 Zink finger lymphocyte differentiation factor, Werner syndrome, 192–193 111 Wnt signaling/pathway, 80–81, 80t, 191–192 Zink finger proteins, 287, 438 cooperation in retroviral inheritance, 221 Krüppel-like, 281, 437 HMG proteins, 213–214t LZT protein transporter, 339 in ontogenesis, 11, 12 myc-associated (MAZ) transcription factor, unicellular life forms, 201–202 280 Wuchereria bancrofti, 213t of pannier gene, 385 RNF113B, 269 X Sal, 477 Xanthomonas oryzae, 419 SCAN, 389 Xath5, 81 ZEB1/2 (E-box-binding), 313 Xenarthra, 138 ZFP509, 400t Xenopus laevis (X. laevis), 92 ZNF198, 277 Ziv-aflibercept (Zaltrap, Sanofi), 455