New Understanding of Clay Minerals

Total Page:16

File Type:pdf, Size:1020Kb

New Understanding of Clay Minerals NewNew UnderstandingUnderstanding ofof ClayClay MineralsMinerals Sang-Mo Koh Geology and Geoinformation Division, KIGAM 2006. 11. 27 ClayClay && ClayClay MineralsMinerals Introduction ContentsContents Definition of clay and clay minerals Classification of clay minerals Structure of clay minerals Properties of clay minerals Utiliz New field of clay minerals ation of clay minerals Organo-clay : Modified clay Nano-composite clay Introduction FieldField ofof ClayClay MineralogyMineralogy Quantitative chemistry Crystallography Geology Clay Mineralogy Soil science Mineralogy Physical chemistry WhatWhat isis clayclay ?? Definition Size terminology Ceramics A very fine grained soil that is plastic when moist but hard when fired. Civil Decomposed fine materials with the size less than 5μm engineering in weathered rocks and soils Geology Sediments with the size less than 1/256mm (4μm) Pedology All the materials with size less than 2μm in soils (ISSS) ISSS: International Society of Soil Science WhatWhat isis clayclay mineralmineral ?? Definition in Clay Mineralogy (Bailey, 1980) Clay minerals belong to the family of phyllosilicates and contain continuous two-dimensional tetrahedral sheets of composition T2O5 (T=Si, Al, Be etc.) with tetrahedral linked by sharing three corners of each, and with the four corners pointing in any direction. The tetrahedral sheets are linked in the unit structure to octahedral sheets, or to groups of coordinating cations, or individual cations ClassificationClassification ofof clayclay mineralsminerals Group Layer (x=charge per Subgroup Species type Definition in Clayformula Mineralogyunit) (Bailey, 1980) Kaolin~ Kaolin Kaolinite, dickite, halloysite, nacrite 1:1 serpentine x=0 Serpentine Chrysotile, lizardite, amesite Pyrophyllite~ Pyrophyllite Pyrophyllite talc x=0 Talc Talc Montmorillonite Montmorillonite, beidellite, nontronite Smectite (dioctaheral smectite) x=0.2-0.6 Saponite Saponite, hectorite, (trioctahedral smectite) Vermiculite Dioctaheral vermiculite Dioctaheral vermiculite x=0.6-0.9 Trioctaheral vermiculite Trioctaheral vermiculite Dioctaheral mica Muscovite, illite, glauconite, paragonite 2:1 Mica x=0.5-1.0 Trioctaheral mica Phlogopite, biotite, lepidolite Brittle mica Dioctaheral brittle mica Margarite x=2.0 Trioctaheral brittle mica Clintonite, anandite Dioctaheral chlorite donbassite Chlorite Di,trioctaheral chlorite Cookeite, sudoite x=variable Trioctaheral chlorite Chlinochlore, chamosite, nimite Palygorskite~ Sepiolite Sepiolite sepiolite x=variable Palygorskite palygorskite StructureStructure ofof clayclay mineralsminerals Tetrahedron structure Definition in Clay Mineralogy (Bailey, 1980) StructureStructure ofof clayclay mineralsminerals DefinitionThree ways in Clay of tetrahedralMineralogy sheet(Bailey, 1980) StructureStructure ofof clayclay mineralsminerals Octahedron structure Definition in Clay Mineralogy (Bailey, 1980) StructureStructure ofof clayclay mineralsminerals Trioctahedral & dioctahedral sheet Octahedral sheet Six coordination number Divalent cations (Mg2+) : Three of every octahedral sites are occupied : Trioctahedral Trivalent cations (Al3+) : Two of every octahedral sites are occupied : Dioctahedral StructureStructure ofof 1:11:1 typetype clayclay mineralsminerals 1:1 layer structure consists of a unit made up of one octahedral& one tetrahedral sheet, with the apical O2- ions of the tetrahedral sheets being shared with the octahedral sheet. Kaolin and serpentine group StructureStructure ofof 2:12:1 typetype clayclay mineralsminerals 2:1 layer structure consists of two tetrahedral sheet with one bound to each side of an octahedral sheet. Octahedral sheet Smectite, micas, pyrophyllite, and vermiculite etc. EquipmentEquipment forfor researchresearch ofof clayclay mineralsminerals X-ray Diffractometer SEM Thermal TEM Analyser FTIR EPM A Qualitative and quantitative analysis of clay minerals Study on the crystal structure Study on the mineral chemistry Study for the utilization of clay minerals PropertiesProperties ofof clayclay mineralsminerals Permanent negative charge ( 2:1 clay minerals) - By isomorphic substitution in octahedral and tetrahedral site [ octahedral site: Al 3+ (Fe 3+)→Fe 2+, Ca 2+, Mg 2+ ] [ tertrahedral site: Si 4+ → Al 3+ , Fe 3+ ] pH dependent charge or edge charge (1:1 clay minerals) - Broken, structural defect (terraces, kinks, holes) - react with water molecules to form surface hydroxyl group aluminol and silanol functional group PropertiesProperties ofof clayclay mineralsminerals Negative Charge : Cation Exchange Capacity (CEC) : High Adsorption Capacity of Heavy Metals & Cationic nuclides Mineral type CEC (cmol/kg) Kaolinite 3-15 Halloysite 5-10 (2H2O) Halloysite 40-50 (4H2O) Zeolite 100-300 Diocahedral vermiculite 10-150 Trioctahedral vermiculite 100-200 Chlorite 10-40 Biotite 10-40 Smectite 80-150 PropertiesProperties ofof clayclay mineralsminerals High Surface Area : high adsorption capacity Mineral type Surface area(cm2/g) EGME BET EGME Ethylene Glycol Montmorillonite 35 ~ 48 810 Monoethyl Ether Kaolinite 5 ~ 9 48 Halloysite 76-173 Atapulgite 50 ~ 83 Illite 89 ~ 112 193 Talc 2.4 ~ 5.8 7 Vermiculite 350 Hectorite 461 High Refractoriness : SK PropertiesProperties ofof clayclay mineralsminerals High Viscosity Mineral type Viscosity (cP) : 10% solution Bentonite 10-30 Pyrophyllite 1-1.5 Kaolin 1-1.2 Sericite 1-1.2 High Expansion & Swelling Colloidal property Hydrophyllic property : well dispersed in the water solution Very easily hydrated and dehydrated High plastic property : important property of ceramic materials ClassicClassic UtilizationUtilization Ceramics : pottery, sanitary ware, refractory brick, tile etc. : kaolin, pyrophyllite, illite(sericite) Refractory Plastic Materials Flux Mateerialrial Materials Mixing, Molding, Drying, Sintering ClassicClassic UtilizationUtilization Filler : paper, plastic and rubber (kaolinite, pyrophyllite) Cosmetics : kaolinite, smectite, illite, talc Glass fiber : pyrophyllite, dickite Agricultural fertilizer : pyrophyllite, kaolinite etc. Civil engineering (water barrier & stablizer) : bentonite (smectite) Foundry : bentonite (smectite) Environmental barrier : backfill material of waste disposal site : artificial barrier of nuclear disposal site ClassicClassic UtilizationUtilization BestBest ClayClay MineralsMinerals ?? for Environmental Remediation or Treatment BentoniteBentonite Industrial ore composed of smectite (mainly montmorillonite) Montmorillonite + R 0.33 (Al1.67Mg0.33)Si4O10(OH)2 Expandable interlayer Exchangeable cations in interlayer high adsorption capacity Waste water purification - precipitation of phosphates - sorption of heavy metals - purification of sewage plants : nitrogen and ammonium gases Pre-purification Post-purification BentoniteBentonite Liner of Waste Disposal Site ( Prevention of leachate) BentoniteBentonite Nuclear Waste Disposal Site Radionuclide transport barrier : adsorption of nuclides New Field of Clay Minerals RecentRecent NewNew FieldField ofof ClayClay MineralsMinerals ?? Modification of Clay Minerals OrganoclayPillared Clay Organo-modified clay Organic ---- substances + + + + Na+ -- - - OH Na OH OH OH Ca OH OH Ca OH OH - - OH Na OH H2O - - H2O -+ --+ + Purified clay Preparation of (Ca-type clay) Nano-composite WhatWhat isis OrganoclayOrganoclay ? ? ModificationOrganic chemicals of Claycan be Minerals adsorbed on the clay surface and interlayer. Compound of clay mineral and organic chemicals Pillared Clay It is manufactured by the reaction between clay and chemicals. OrganoclayOrganoclay ModificationCommonly of used Clay clay Minerals mineral : smectite Expandable Interlayer & high charge Organo-modified minerals Organo-sericite Organo-zeolite Organo-montmorillonite Different mineral types Different surfactants (chemicals) Characteristics of organo-modified minerals manufactured by different minerals and chemicals Organo-modifiedOrgano-modified mineralmineral Three minerals Three Chemicals S 8000 S : Sericite C : Clinoptilolite M : Mordenite S Mo : Montmorillonite 10.05 (001) CT : Opal-CT R S Hyamine 1622 6000 5.03(002) S S S S S S S S S S C C C 4000 C C C C M M C M C M C M M Intensity (counts /Intensity second) Mo Mo Benzyldimethyltetradecylammonium (BDTDA) 2000 (005) 12.5(001) Mo (020) Mo (006) CT Mo (002) 0 212223242 2 Theta Benzyltrimethylammonium (BTMA) 5 Å Organo-montmorilloniteOrgano-montmorillonite HYAMINE BDTDA BTMA 300 BDTDA (Benzyldimethyltetradecylammonium) -MONTMORILLONITE -MONTMORILLONITE -MONTMORILLONITE N 27.9 14.1 30.84 16.27 14.9 20000 250 239% 262% 200 27.5 30.68 97% Hyamine 16000 O 14.0 16.02 O N 213% 238% 96% 150 29.51 12000 27.3 93% 15.94 14.1 100 89% BTMA (Benzyltrimethylammonium) 191% 199% N 50 8000 19.19 78% 22.9 Actual exchanged amount compared to CEC (%) CEC to compared amount exchanged Actual INTENSITY (COUNTS / SECOND) / (COUNTS INTENSITY 103% 60% 103% 0 40% 4000 0 50 100 150 200 250 300 350 400 450 12.5 Exchanging amount compared to CEC (%) Non-treated Na-montmorillonite Non-treated 0 2 4 6 810 2 4 6 810 2 4 6 810 2 THETA XRD pattern of Hyamine-. BDTDA, and BTMA-montmrorillonite with increasing chemicals : the interlayer(d001) is gradually expanded to 27.9, 30.8 and 14.9Å. Adsorption capacity of three chemicals into montmorillonite BDTDA and Hyamine show the strong interlayer expansion and the excellent adsorption into montmorillonite. AdsorptionAdsorption behaviorsbehaviors 25 BDTDA-MONT BDTDA 20 -Zeolite BTMA -Zeolite HYAMINE-MONT 15 Hyamine -Zeolite 10 BDTDA -Sericite Amount adsorbedAmount cmol ( kg ) / BTMA-MONT kg) / (cmol adsorbed
Recommended publications
  • Microstructures and Interlayering in Pyrophyllite from the Coastal Range of Central Chile: Evidence of a Disequilibrium Assemblage
    Clay Minerals (2004) 39,439–452 Microstructures and interlayering in pyrophyllite from the Coastal Range of central Chile: evidence of a disequilibrium assemblage 1, 2 3 2 2 M. D. RUIZ C RUZ *,D. M ORATA ,E. P UGA ,L. A GUIRRE AND M. VERGARA 1 Departamento de Quı´mica Inorga´nica, Cristalografı´a y Mineralogı´a, Facultad de Ciencias, Universidad de Ma´laga, 29071 Ma´laga, Spain, 2 Departamento de Geologı´a, Universidad de Chile, Plaza Ercilla, 803, Santiago, Chile, and 3 Instituto Andaluz de Ciencias de la Tierra (C.S.I.C.-U.G.R.), Avda. Fuentenueva s/n, 18002 Granada, Spain (Received 5 December 2003; revised 19 April 2004) ABSTRACT: Pyrophyllite from a Triassic sedimentary formation from the Coastal Range of Chile has been investigated by transmission/analytical electron microscopy (TEM/AEM). The mineral assemblage includes pyrophyllite,muscovite,paragonite,a kaolin mineral,boehmite,rutile and hematite. The textures indicate that the protolith was a volcanoclastic rock. Petrographic evidence, chemistry,and the mineral assemblage suggest the intense leaching of the parent rock by a weathering process,before the metamorphic episode,to create the protolith for the pyrophyllite. Pyrophyllite always grows from the kaolin mineral,and both phases show close orientation relationships. The presence of parallel intergrowths of pyrophyllite and muscovite indicate that muscovite also grew from the kaolin mineral. Nevertheless,the composition of muscovite suggests that this phase must also form from another precursor,probably Al smectite. The AEM data and textural relationships between pyrophyllite and muscovite reveal the presence of two generations of muscovite and suggest that Na-rich muscovite recrystallized into a Na-free muscovite and paragonite.
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINERALOGIST, VOL. 52, SEPTEMSER_OCTOBER, 1967 NEW MINERAL NAMES Mrcn,rBr F-r-Brscnnn Lonsdaleite Cr.u'lonn FnoNoer. lNn Uxsule B. MenvrN (1967) Lonsdaleite, a hexagonai polymorph oi diamond. N atwe 214, 587-589. The residue (about 200 e) from the solution of 5 kg of the Canyon Diablo meteorite was found to contain about a dozen black cubes and cubo-octahedrons up to about 0.7 mm in size. They were found to consist of a transparent substance coated by graphite. X-ray data showed the material to be hexagonal, rvith o 2.51, c 4.12, c/a I.641. The strongest X-ray lines are 2.18 (4)(1010), 2.061 (10)(0002), r.257 (6)(1120), and 1.075 (3)(rrr2). Electron probe analysis showed only C. It is accordingly the hexagonal (2H) dimorph of diamond. Fragments under the microscope were pale brownish-yellow, faintly birefringent, a slightly higher than 2.404. The hexagonal dimorph is named lonsdaleite for Prof. Kathleen Lonsdale, distin- guished British crystallographer. It has been synthesized by the General Electric co. and by the DuPont Co. and has also been reported in the Canyon Diablo and Goalpara me- teorites by R. E. Hanneman, H. M. Strong, and F. P. Bundy of General Electric Co. lSci.enc e, 155, 995-997 (1967) l. The name was approved before publication by the Commission on New Minerals and Mineral Names, IMA. Roseite J. OrrnueNn nNl S. S. Aucusrrtnrs (1967) Geochemistry and origin of "platinum- nuggets" in lateritic covers from ultrabasic rocks and birbirites otW.Ethiopia.
    [Show full text]
  • NOTE Synthesis of a Regularly Interstratified 2:1 Margarite And
    Clay Minerals (1998) 33, 363–367 NOTE Synthesis of a regularly interstratified 2:1 margarite and beidellite (34 A˚ phase) Regularly interstratified mica-smectites and The conditions of composition and temperature chlorite-smectites have been synthesized by Ueda under which the 34 A˚ phase formed as a single & Sudo (1966), Frank-Kamenetskij et al. (1972), phase were fairly limited. The compositions ranged Matsuda & Henmi (1973, 1974)and by Eberl from margarite to margarite and beidellite in a ratio (1978). Only a few studies have been carried out, of 2:1. The temperatures were 400À5008C, and run however, on regularly interstratified minerals whose durations were >2 weeks. The 25 A˚ phase often spacings exceed 30 A˚ (Lazarenko & Korolev, 1970; formed during short runs despite the optimal Sato & Kizaki, 1972). compositions for formation of the 34 A˚ phase. Regularly interstratified minerals with basal Experimental results at 4508C are shown in a ˚ ˚ spacings of 25 A and 30 A have been synthesized triangular diagram of CaOÀAl2O3ÀSiO2 with from kaolinite by means of hydrothermal treatments starting compositions (Fig. 1). As a Ca starting ˚ and by the addition of various oxides or carbonates material, CaCO3 formed the 34 A phase within a (Matsuda & Henmi, 1974, 1983). In these studies a shorter time than did CaO. Compositions richer in phase with a basal spacing of 33À34 A˚ was Ca and Al than ideal margarite led to margarite accompanied by a 25 A˚ mineral after hydrothermal formation at 400À5008C, and to the formation of treatment of kaolinite plus calcium carbonate. The the 25 A˚ phase and boehmite at lower temperatures.
    [Show full text]
  • Cation Ordering and Pseudosymmetry in Layer Silicates'
    I A merican M ineralogist, Volume60. pages175-187, 1975 Cation Ordering and Pseudosymmetryin Layer Silicates' S. W. BerI-nv Departmentof Geologyand Geophysics,Uniuersity of Wisconsin-Madison Madison, Wisconsin5 3706 Abstract The particular sequenceof sheetsand layers present in the structure of a layer silicate createsan ideal symmetry that is usually basedon the assumptionsof trioctahedralcompositions, no significantdistor- tion, and no cation ordering.Ordering oftetrahedral cations,asjudged by mean l-O bond lengths,has been found within the constraints of the ideal spacegroup for specimensof muscovite-3I, phengile-2M2, la-4 Cr-chlorite, and vermiculite of the 2-layer s type. Many ideal spacegroups do not allow ordering of tetrahedralcations because all tetrahedramust be equivalentby symmetry.This includesthe common lM micasand chlorites.Ordering oftetrahedral cations within subgroupsymmetries has not beensought very often, but has been reported for anandite-2Or, llb-2prochlorite, and Ia-2 donbassite. Ordering ofoctahedral cations within the ideal spacegroups is more common and has been found for muscovite-37, lepidolite-2M", clintonite-lM, fluoropolylithionite-lM,la-4 Cr-chlorite, lb-odd ripidolite, and vermiculite. Ordering in subgroup symmetries has been reported l-oranandite-2or, IIb-2 prochlorite, and llb-4 corundophilite. Ordering in local out-of-step domains has been documented by study of diffuse non-Bragg scattering for the octahedral catlons in polylithionite according to a two-dimensional pattern and for the interlayer cations in vermiculite over a three-cellsuperlattice. All dioctahedral layer silicates have ordered vacant octahedral sites, and the locations of the vacancies change the symmetry from that of the ideal spacegroup in kaolinite, dickite, nacrite, and la-2 donbassite Four new structural determinations are reported for margarite-2M,, amesile-2Hr,cronstedtite-2H", and a two-layercookeite.
    [Show full text]
  • Nanoidentation Behavior of Clay Minerals and Clay-Based Nonstructured Multilayers" (2009)
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2009 Nanoidentation behavior of clay minerals and clay- based nonstructured multilayers Zhongxin Wei Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Civil and Environmental Engineering Commons Recommended Citation Wei, Zhongxin, "Nanoidentation behavior of clay minerals and clay-based nonstructured multilayers" (2009). LSU Doctoral Dissertations. 3033. https://digitalcommons.lsu.edu/gradschool_dissertations/3033 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. NANOINDENTATION BEHAVIOR OF CLAY MINERALS AND CLAY-BASED NANOSTRUCTURED MULTILAYERS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Civil and Environmental Engineering by Zhongxin Wei B.S., Tsinghua University, China, 1989 M.S., Tsinghua University, China, 1994 December, 2009 DEDICATION To my parents and my wife ii ACKNOWLEDGEMENTS I would like to express my sincere thanks to Dr. Guoping Zhang, my advisor, who provided me the opportunity and guided me to pursue my Ph.D degree in the academic area of geotechnical engineering. I have learned a lot from his outstanding knowledge and professional attitude, and I am grateful of his patient guidance and multiaspect supports which attribute to the accomplishment of this dissertation.
    [Show full text]
  • Geology of Selected Quadrangles in Rhode Island
    Geology of Selected Quadrangles in Rhode Island GEOLOGICAL SURVEY BULLETIN 1158 This bulletin was published separately as chapters A-E UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director / CONTENTS [The letters in parentheses preceding titles indicate separately published chapters] (A) Bedrock geology of the Coventry Center quadrangle, Rhode Island, by George E. Moore, Jr. (B) Bedrock geology of the Crompton quadrangle, Rhode Island, by Alonzo W. Quinn. (C) Bedrock geology of the Wickford quadrangle, Rhode Island, by Roger B. Williams. (D) Bedrock geology of the Tiverton quadrangle, Rhode Island-Massachusetts, by Samuel J. Pollock. (E) Bedrock geology of the Kingston quadrangle, Rhode Island, by George E. Moore, Jr. ) 3edrock Geology of the ~oventry Center )uadrangle, Rhode Island 1 GEORGE E. MOORE, JR. EOLOGY OF SELECTED QUADRANGLES IN RHODE ISLAND EOLOGICAL SURVEY BULLETIN 1158-A ,repared in cooperation with the State r Rhode Island Development Council HTED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Abstract__________________________________________________________ A1 Introduction______________________________________________________ 2 Geologic formations____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
    [Show full text]
  • Petrology of Clintonite-Bearing Marbles in the Boulder Aureole, Montana
    American Mineralogist, Volume 64, pages 519-526, 1979 Petrologyof clintonite-bearingmarbles in theBoulder aureole, Montana Jecr M. Rlcr Departmentof Geology,Uniuersity of Oregon Eugene,Oregon97403 Abstract The trioctahedralcalcium brittle mica, clintonite,occurs locally in aluminousmarbles near the intrusivecontact of the Boulderbatholith. Assemblages include clintonite-calcite-olivine- clinopyroxene-phlogopiteand clintonite-calcite-olivine-spinel-phlogopite.Microprobe analysesof coexistingphases show clintonite to lie withjn the phasevolume calcite-olivine- clinopyroxene-spinel,close to the MgSi-rich end of the synthesizedsolid solution. Phase relationsare characterizedby both continuousand discontinuousreactions. Discontinuous reactionsbetween the observedphases result in a topology in pCOz-pHzOspace which restrictsthe stability field of clintonite to relatively low pCOz and/or high pHrO. The formation of clintonite was not relatedto metasomatism,but rather to reaction between calcite,olivine, clinopyroxene, spinel, and HzO introducedfrom the intrusivebody. In the Boulderaureole the formation of clintonitecan be restrictedto temperaturesbetween 580o and 620'C with fluid compositionsbetween XCOz of 0.05and approximately0.2. Introduction changedthrough metasomatism.Such an origin has Trioctahedralcalcium brittle micas,most appro- also been invoked to explain the observationsthat priately referredto by the generalname clintonite, clintonite-bearingrocks are typically restricted to the form a solid-solutionseries which can be represented immediatecontacts of intrusiveigneous rocks and by the generalformula oftenspatially associated with skarns(Knopf, 1953). In the contact-metamorphicaureole surrounding + + Ca [(M g, Fe'z ), *,(Al, Fe3 )2 - A\ _ 10(O H, F "f "Si"O ), the northernmostportion of the Boulderbatholith of Although suchmicas are rare, being found occasion- Montana, clintoniteis found locally in impure lime- ally in thermally-metamorphosedimpure carbonate stones near the contact with granodiorite.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Clintonite-Bearing Assemblages in Chondrodite Marbles from the Contact Aureole of the Tøebíè Pluton, Moldanubian Zone, Bohemian Massif
    Journal of the Czech Geological Society 51/34(2006) 249 Clintonite-bearing assemblages in chondrodite marbles from the contact aureole of the Tøebíè Pluton, Moldanubian Zone, Bohemian Massif Asociace obsahující clintonit v chondroditových mramorech moldanubika z kontaktní aureoly tøebíèského plutonu, Èeský masiv (6 figs, 4 tabs) STANISLAV HOUZAR1 MILAN NOVÁK2 1 Department of Mineralogy and Petrography, Moravian Museum, Zelný trh 6, CZ-659 37 Brno, Czech Republic; [email protected] 2 Institute of Geological Sciences, Masaryk University, Kotláøská 2, CZ-611 37 Brno, Czech Republic; [email protected] Clintonite is a minor to accessory mineral in chondrodite marbles. They represent a rare type of metacarbonate rocks in the Varied Unit of the Moldanubian Zone, forming thin bodies enclosed in migmatites. Clintonite occurs exclusively in marbles from contact aureole of melanocratic ultrapotassic granites (durbachites) of the Tøebíè Pluton. Chondrodite marbles consist of dominant calcite, less abundant dolomite; amounts of silicates vary from ~ 5 to 30 vol. %. The early mineral assemblage Dol+Cal+Prg ±Phl is replaced by the assemblage Chn+Cli+Cal ±Chl I ±Spl. Accessory minerals include fluorapatite, diopside, tremolite, pyrrhotite, and rare zircon and baddeleyite. Violet fluorite occurs on late fissures. Clintonite forms colourless to pale green flakes and sheaf-like aggregates, up to 2 mm in size. It has extraordinary high Si (2.7392.986 apfu) and Si/Al ratio (0.520.60). The contents of Fe (0.0410.128 apfu), Na (0.0350.134 apfu), tot Ti (0.0040.024 apfu) and K (≤ 0.005 apfu) are low. High concentrations of F (0.4371.022 apfu) corresponding up to 26 % of the F-component are the highest ever-recorded in clintonite.
    [Show full text]
  • 29 Devitoite, a New Heterophyllosilicate
    29 The Canadian Mineralogist Vol. 48, pp. 29-40 (2010) DOl: 1O.3749/canmin.48.1.29 DEVITOITE, A NEW HETEROPHYLLOSILICATE MINERAL WITH ASTROPHYLLITE-LiKE LAYERS FROM EASTERN FRESNO COUNTY, CALIFORNIA ANTHONY R. KAMPP§ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. GEORGE R. ROSSMAN Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125-2500, USA. IAN M. STEELE AND JOSEPH J. PLUTH Department of the Geophysical Sciences, The University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A. GAIL E. DUNNING 773 Durshire Way, Sunnyvale, California 94087, U.S.A. ROBERT E. WALSTROM P. O. Box 1978, Silver City, New Mexico 88062, USA. ABSTRACT Devitoite, [Ba6(P04MC03)] [Fe2+7Fe3+2(Si4012h02(OH)4], is a new mineral species from the Esquire #8 claim along Big Creek in eastern Fresno County, California, U.SA. It is also found at the nearby Esquire #7 claim and at Trumbull Peak in Mariposa County. The mineral is named for Alfred (Fred) DeVito (1937-2004). Devitoite crystallized very late in a sequence of minerals resulting from fluids interacting with a quartz-sanbornite vein along its margin with the country rock. The mineral occurs in subparallel intergrowths of very thin brown blades, flattened on {001} and elongate and striated parallel to [100]. The mineral has a cream to pale brown streak, a silky luster, a Mohs hardness of approximately 4, and two cleavages: {OO!} perfect and {01O} good. The calculated density is 4.044 g/cm '. It is optically biaxial (+), Cl 1.730(3), 13 1.735(6), 'Y 1.755(3); 2Vcalc = 53.6°; orientation: X = b, Y = c, Z = a; pleochroism: brown, Y»> X> Z.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Spring 5-16-2014 Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine Kimberly T. Clark University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Clark, Kimberly T., "Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine" (2014). University of New Orleans Theses and Dissertations. 1786. https://scholarworks.uno.edu/td/1786 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science In Earth and Environmental Science By Kimberly T. Clark B.S.
    [Show full text]