<<

NewNew UnderstandingUnderstanding ofof ClayClay MineralsMinerals

Sang-Mo Koh Geology and Geoinformation Division, KIGAM 2006. 11. 27 ClayClay && ClayClay MineralsMinerals ContentsContents

Introduction Definition of clay and clay minerals

Classification of clay minerals

Structure of clay minerals

Properties of clay minerals

Utilization of clay minerals

New field of clay minerals ified Mod lay : no-c Orga y clay cla site mpo o-co Nan Introduction FieldField ofof ClayClay MineralogyMineralogy

Quantitative chemistry

Crystallography Geology Clay Mineralogy

Soil science Mineralogy Physical chemistry WhatWhat isis clayclay ??

Definition Size terminology

Ceramics A very fine grained soil that is plastic when moist but hard when fired.

Civil Decomposed fine materials with the size less than 5μm engineering in weathered rocks and soils

Geology Sediments with the size less than 1/256mm (4μm)

Pedology All the materials with size less than 2μm in soils (ISSS) ISSS: International Society of Soil Science WhatWhat isis clayclay mineralmineral ??

Definition in Clay Mineralogy (Bailey, 1980)

Clay minerals belong to the family of phyllosilicates and contain

continuous two-dimensional tetrahedral sheets of composition T2O5 (T=Si, Al, Be etc.) with tetrahedral linked by sharing three corners of each, and with the four corners pointing in any direction. The tetrahedral sheets are linked in the unit structure to octahedral sheets, or to groups of coordinating cations, or individual cations ClassificationClassification ofof clayclay mineralsminerals

Group Layer (x=charge per Subgroup Species type Definition in Clayformula Mineralogyunit) (Bailey, 1980) Kaolin~ Kaolin , , , 1:1 serpentine x=0 Serpentine , lizardite, ~ Pyrophyllite Pyrophyllite x=0 Talc Talc Montmorillonite, beidellite, Smectite (dioctaheral smectite) x=0.2-0.6 Saponite, hectorite, (trioctahedral smectite)

Vermiculite Dioctaheral Dioctaheral vermiculite x=0.6-0.9 Trioctaheral vermiculite Trioctaheral vermiculite Dioctaheral , , , 2:1 Mica x=0.5-1.0 Trioctaheral mica , ,

Brittle mica Dioctaheral brittle mica x=2.0 Trioctaheral brittle mica , Dioctaheral chlorite donbassite Chlorite Di,trioctaheral chlorite Cookeite, sudoite x=variable Trioctaheral chlorite Chlinochlore, , nimite ~ Sepiolite sepiolite x=variable Palygorskite palygorskite StructureStructure ofof clayclay mineralsminerals

Tetrahedron structure Definition in Clay Mineralogy (Bailey, 1980) StructureStructure ofof clayclay mineralsminerals

DefinitionThree ways in Clay of tetrahedralMineralogy sheet(Bailey, 1980) StructureStructure ofof clayclay mineralsminerals

Octahedron structure Definition in Clay Mineralogy (Bailey, 1980) StructureStructure ofof clayclay mineralsminerals

Trioctahedral & dioctahedral sheet

Octahedral sheet Six coordination number

Divalent cations (Mg2+) : Three of every octahedral sites are occupied : Trioctahedral

Trivalent cations (Al3+) : Two of every octahedral sites are occupied : Dioctahedral StructureStructure ofof 1:11:1 typetype clayclay mineralsminerals

1:1 layer structure consists of a unit made up of one octahedral& one tetrahedral sheet, with the apical O2- ions of the tetrahedral sheets being shared with the octahedral sheet. Kaolin and serpentine group StructureStructure ofof 2:12:1 typetype clayclay mineralsminerals

2:1 layer structure consists of two tetrahedral sheet with one bound to each side of an octahedral sheet. Octahedral sheet Smectite, , pyrophyllite, and vermiculite etc. EquipmentEquipment forfor researchresearch ofof clayclay mineralsminerals

X-ray Diffractometer SEM

Thermal TEM Analyser

FTIR EPM A

Qualitative and quantitative analysis of clay minerals

Study on the

Study on the mineral chemistry

Study for the utilization of clay minerals PropertiesProperties ofof clayclay mineralsminerals

Permanent negative charge ( 2:1 clay minerals) - By isomorphic substitution in octahedral and tetrahedral site [ octahedral site: Al 3+ (Fe 3+)→Fe 2+, Ca 2+, Mg 2+ ] [ tertrahedral site: Si 4+ → Al 3+ , Fe 3+ ]

pH dependent charge or edge charge (1:1 clay minerals) - Broken, structural defect (terraces, kinks, holes) - react with water molecules to form surface hydroxyl group aluminol and silanol functional group PropertiesProperties ofof clayclay mineralsminerals

Negative Charge : Cation Exchange Capacity (CEC) : High Adsorption Capacity of Heavy Metals & Cationic nuclides Mineral type CEC (cmol/kg)

Kaolinite 3-15 Halloysite 5-10 (2H2O) Halloysite 40-50 (4H2O) Zeolite 100-300 Diocahedral vermiculite 10-150 Trioctahedral vermiculite 100-200 Chlorite 10-40 Biotite 10-40 Smectite 80-150

PropertiesProperties ofof clayclay mineralsminerals

High Surface Area : high adsorption capacity

Mineral type Surface area(cm2/g) EGME BET EGME Ethylene Glycol Montmorillonite 35 ~ 48 810 Monoethyl Ether Kaolinite 5 ~ 9 48 Halloysite 76-173 Atapulgite 50 ~ 83 Illite 89 ~ 112 193 Talc 2.4 ~ 5.8 7 Vermiculite 350 Hectorite 461

High Refractoriness : SK PropertiesProperties ofof clayclay mineralsminerals

High Viscosity

Mineral type Viscosity (cP) : 10% solution Bentonite 10-30 Pyrophyllite 1-1.5 Kaolin 1-1.2 Sericite 1-1.2

High Expansion & Swelling Colloidal property Hydrophyllic property : well dispersed in the water solution

Very easily hydrated and dehydrated

High plastic property : important property of ceramic materials ClassicClassic UtilizationUtilization

Ceramics : pottery, sanitary ware, refractory brick, tile etc. : kaolin, pyrophyllite, illite(sericite)

Refractory Plastic Materials Flux Mateerialrial Materials

Mixing, Molding, Drying, Sintering ClassicClassic UtilizationUtilization

Filler : paper, plastic and rubber (kaolinite, pyrophyllite) Cosmetics : kaolinite, smectite, illite, talc Glass fiber : pyrophyllite, dickite

Agricultural fertilizer : pyrophyllite, kaolinite etc. Civil engineering (water barrier & stablizer) : bentonite (smectite) Foundry : bentonite (smectite) Environmental barrier : backfill material of waste disposal site : artificial barrier of nuclear disposal site ClassicClassic UtilizationUtilization

BestBest ClayClay MineralsMinerals ?? for Environmental Remediation or Treatment BentoniteBentonite

Industrial ore composed of smectite (mainly montmorillonite)

Montmorillonite + R 0.33 (Al1.67Mg0.33)Si4O10(OH)2 Expandable interlayer Exchangeable cations in interlayer high adsorption capacity

Waste water purification - precipitation of phosphates - sorption of heavy metals - purification of sewage plants : nitrogen and ammonium gases

Pre-purification Post-purification BentoniteBentonite

Liner of Waste Disposal Site ( Prevention of leachate) BentoniteBentonite

Nuclear Waste Disposal Site

Radionuclide transport barrier : adsorption of nuclides New Field of Clay Minerals RecentRecent NewNew FieldField ofof ClayClay MineralsMinerals ??

Modification of Clay Minerals

OrganoclayPillared Clay

Organo-modified clay

Organic ----

substances + + + + Na+ -- - - OH Na OH OH OH Ca OH OH Ca OH OH - - OH

Na OH H2O - - H2O -+ --+ +

Purified clay Preparation of (Ca-type clay) Nano-composite WhatWhat isis OrganoclayOrganoclay ? ?

ModificationOrganic chemicals of Claycan be Minerals adsorbed on the clay surface and interlayer. Compound of and organic chemicals Pillared Clay

It is manufactured by the reaction between clay and chemicals. OrganoclayOrganoclay

ModificationCommonly of used Clay clay Minerals mineral : smectite

Expandable Interlayer & high charge Organo-modified minerals Organo-sericite Organo-zeolite Organo-montmorillonite

Different mineral types Different surfactants (chemicals)

Characteristics of organo-modified minerals manufactured by different minerals and chemicals Organo-modifiedOrgano-modified mineralmineral

Three minerals Three Chemicals

S

8000 S : Sericite C : Clinoptilolite M : Mordenite S Mo : Montmorillonite 10.05 (001) CT : Opal-CT R S Hyamine 1622 6000 5.03(002) S S S S S S S S S S

C C 4000 C C C C C M M C M C M C M M Intensity (counts /Intensity second) Mo Mo Benzyldimethyltetradecylammonium (BDTDA) 2000 (005) 12.5(001) Mo (020) Mo (006) CT Mo (002)

0

212223242 2 Theta Benzyltrimethylammonium (BTMA)

5 Å Organo-montmorilloniteOrgano-montmorillonite

HYAMINE BTMA BDTDA BDTDA (Benzyldimethyltetradecylammonium) -MONTMORILLONITE -MONTMORILLONITE -MONTMORILLONITE 300 N 27.9 14.1 30.84 16.27 14.9

20000 250 239% 262%

200 27.5 30.68 Hyamine 16000 97% O 14.0 16.02 O N 213% 238% 96% 150

12000 29.51 27.3 93% 15.94 14.1 100 89% BTMA (Benzyltrimethylammonium) 191% 199% N 50 8000 19.19 78% 22.9 Actual exchanged amount compared to CEC (%) CEC to compared amount exchanged Actual

INTENSITY (COUNTS / SECOND) / (COUNTS INTENSITY 103% 60% 103% 0 40% 4000 0 50 100 150 200 250 300 350 400 450

12.5 Exchanging amount compared to CEC (%)

Non-treated Na-montmorillonite Non-treated 0

2 4 6 810 2 4 6 810 2 4 6 810 2 THETA XRD pattern of Hyamine-. BDTDA, and BTMA-montmrorillonite with increasing

chemicals : the interlayer(d001) is gradually expanded to 27.9, 30.8 and 14.9Å. Adsorption capacity of three chemicals into montmorillonite BDTDA and Hyamine show the strong interlayer expansion and the excellent adsorption into montmorillonite. AdsorptionAdsorption behaviorsbehaviors

25 BDTDA-MONT

BDTDA -Zeolite 20

BTMA HYAMINE-MONT -Zeolite 15

Hyamine -Zeolite 10

BDTDA -Sericite Amount adsorbedAmount cmol ( kg ) / BTMA-MONT kg) / (cmol adsorbed Amount 5 Hyamine -Sericite BTMA -Sericite 0

0.00.51.01.52.02.5

mmol Surfactant / L Equilibrium concentration (mmol / L)

Adsorption isotherm curves of several organomodified minerals Of them, BDTDA and Hyamine-montmorillonite show the strong and stable adsorption into montmorillonite So, montmorillonite is the best mineral & BDTDA is the one of the best chemicals for the manufacturing the organo-minerals. Organo-modified montmorillonite

Most economic chemicals BDTDA (160 US$ / 50g) HDTMA (286 US$ / 50g) CP (77 US$ / 500g)

To investigate the adsorption capacity and behavior of CP exchanged smectite OrganicOrganic chemicalschemicals

Organic cations : Quaternary ammonium cations Modification of Clay Minerals Mr Name Abbreviation Structure (chloride salt)

HeIIx .a d화학물ecyl- trimethyl- HDTMA+ 320.01 ammonium

Cetylpyri- dinium CP+ 358.01 (Hexadecylp- ridinium)

Benzyldimet- hyltetradecyl BDTDA+ 368.05 - ammonium

CP is firstly studied in my research Journal of Clay Minerals (2005) AdsorptionAdsorption BehaviorBehavior

300 300

250 250

200 200 kg ) kg / 150 150

100 CP – Na smectite 100 CP – Ca smectite CP ( / cmol kg ) CP ( cmol cmol ( CP 50 50

0 0 048121620 0 4 8 12 16 20 mmol CP / l mmol CP / l

Adsorption isotherm curves of CP-smectite. CP shows the excellent adsorption into smectite like HDTMA and BDTDA-smectite : L – type isotherm InterlayerInterlayer expansionexpansion ofof HDTMA-smectiteHDTMA-smectite

39.58 16000 40.12 8000 HDTMA - Ca smectite 39.40 HDTMA - Na smectite

39.06 38.88 19.93 19.79 20.06 12000 38.38 6000 13.20 19.79 12.95 400% 38.14 350% 19.57 19.97 12.85 19.79 13.06 300% 38.54 8000 4000 19.70 400% 29.52 20.11 12.51 38.38 12.78 12.76 250% 19.75 200% 12.93 23.11 150% 19.66 350% 37.09 300% 20.82 100% Intensity (counts / second) 80% Intensity (counts/second) 250% 16.94 31.64 20.06 4000 15.54 60% 2000 22.46 200% 150% 22.46 13.40 40% 100% 21.42 80% 16.29 60% 15.25 12.74 40% 20% 15.02 20% 0 Non-treated 0 Non-treated 246810 246810 2Theta (degree) 2Theta (degree)

♣ XRD patterns of HDTMA-smectite exchanged with different HDTMA concentration to check the change of smectite interlayer. ♣ With increasing of HDTMA amount, the interlayer is expanded to39-40 Å. ♣ Excellent adsorption and sequential adsorption in the smectite interlayer

d(001) ⇒ d(002) ⇒ d(003). InterlayerInterlayer expansionexpansion ofof CP-smectiteCP-smectite 8000 CP - Ca smectite 40.15 16000 40.9 CP-Na smectite 40.67 40.9 20.29 20.7 39.58 40.7 20.75 420%(222.2%) 40.67 20.7 420%(222.2%) 20.29 40.7 6000 380%(216.5%) 20.6 380%(216.5%) 12000 20.67 40.7 39.09 340%(202.4%) 340%(202.4%) 20.8 39.76 20.28 40.7 20.8 300%(198.3%) 300%(198.3%) 39.76 21 20.48 40.5 260%(194.7%) 20.58 260%(194.7%) 21 220%(183.9%) 4000 20.82 220%(183.9%) 40.30 180%(170.2%) 8000 40.4 21.9 189%(170.2%) 22.21 23.2 140%(138.3%) 22.18 140%(138.3%) 22.6 100%(99.7%) 16.1 100%(99.7%) 22.4 80%(79.9%) Intensity (counts / second) 21.12 16.1 80%(79.9%) Intensity( counts / second ) 2000 16.08 60%(58.6%) 4000 15.3 60%(58.6%) 15.40 40%(39.2%) 40%(39.2%) 15.02 12.7 20%(18.8%) 20%(18.8%) Nontreated 0 Nontreated 0 246810 2 Theta (degree) 246810 2 Theta ( degree ) ♣ XRD patterns of CP-smectite exchanged with different CP concentration. ♣ It shows the strong interlayer expansion and adsorption like HDTMA. So CP can be used for the economic organosmectite. WhatWhat’’ss propertyproperty ??

ModificationHydrophyllic surface of Clay is changed Minerals to organophyllic nature Hardness Viscosity Flocculation (dispersionPillared behavior) Clay Sorption capacity Structure (Interlayer expansion) pHpH

12 12

10 10

8 8

6 pH pH 6

4 4

2 2

0 0 HDTMA- BDTDA- CP- Non-treated Na-be. Ca-be. bentonite bentonite bentonite

Smectite (Bentonite) Organo-smectite SwellingSwelling

30 30

25 25

20 20 2g) / l/2g) (m

15 g 15 ng (ml lin l elli e w S Sw 10 10

5 5

0 0 Non-treated Na-be. Ca-be. HDTMA- BDTDA- CP- bentonite bentonite bentonite

♣ Volume expansion caused by bonding between interlayer of montmorillonite and water molecules. ViscosityViscosity

12

12 10

10 8

8 6

6 4 viscosity· ( mPa s )

Viscosity (mPa· s) Viscosity (mPa· 4 2 2

0 0 HDTMA- BDTDA- CP- Non-treated Na-be. Ca-be. bentonite bentonite bentonite FlocculationFlocculation aandnd dispersiondispersion behaviorbehavior

1200 1800 L E G E N D Non - treated LEGEND 1600 Na - bentonite 1000 HDTMA Ca - bentonite BDTDA 1400 ) CP U

T 800 ) N 1200 ( TU y t N ( di 1000 y

it 600 bi r d i b Tu 800 Tur 400 600

400 200 0 1 510 Time (Minutes)

0 0 102030405060 Time (min.) ♣ Turbidity measurement ♣ Na-smectite : steady ♣ Ca-smectite : flocculatoin ♣ Organo-smectite : fast and strong flocculation AdsorptionAdsorption ModelModel

40 Å (10+15+15)

Intercalation model of large molecules exchanged smectite such as HDTMA-, BDTDA, and CP-smectite. It is explained by the total length of expanded interlayer Double layered paraffin structure ThermalThermal stabilitystability ofof HDTMA-smectiteHDTMA-smectite

2000 DTA TGA HDTMA - smectite uv HDTMA - smectite mg 60 32 890° C Heating

10.34mg 1600 600° C Heating 34.4% 12.6 40 889.36° C 28 400° C Heating 12.8 606.94° C 20 24 1200 13.8 250° C Heating 0 403.60° C 268.84° C 20 93.13° C 800 -20 Intensity (counts / second) 0 500 1000 19.4 Temp.(° C) 400 90° C Heating

♣ HDTMA-smectite No heating 0 ⇒ 250 °C > : HDTMA begins to decompose. 2 5 1015202530354045 ⇒ 400 °C : HDTMA is completely decomposed. 2Theta (degree) ⇒ 600 °C > : smectite structure begins to decompose. ⇒ 890 °C : complete decomposition of smectite structue ThermalThermal stabilitystability ofof BDTDA-smectiteBDTDA-smectite

BDTDA - smectite DTA TGA 2000 uv BDTDA - smectite mg 890° C Heating 60 32 11.154mg 35.59% 10.9 600° C Heating 1600 40 28 12.5 400° C Heating

554.57° C cond) 20 1200 24 se / 14.0 s 250° C Heating

402.98° C ount 0 c

248.74° C 20 y ( t 800 89.87° C nsi e t 24.6 n

-20 I 0 500 1000 90° C Heating Temp.(° C) 400

No heating ♣♣ BDTDA-smectite 0 ⇒ 250 °C > : BDTDA begin to decompose. 2 5 1015202530354045 ⇒ 400 °C : BDTDA is completely decomposed. 2Theta (degree) ⇒ 550 °C > : smectite structure begins to decompose. Thermal stability of CP-smectite

2000 DTA TGA CP-smectite uv CP -s mectite mg 890° C Heating 32

60 10.78 mg 10.9 36% 600° C Heating 896.13° C 28 1600 40 )

d 12.7 609.73° C 24 n 400° C Heating 20 1200 seco

20 s / t 14.0 0 262.3° C 434.5° C n 250° C Heating u

90.65° C o c -20 16 y ( t

i 800 0 500 1000 s n

Temp.(° C) e t

n 19.4 I 90° C Heating ♣♣ CP-smectite 400 ⇒ 250 °C > : BDTDA decomposed ⇒ 430 °C : completely decomposed No heating ⇒ 600 °C > : smectite structure 0 2 5 1015202530354045 decomposed 2Theta (degree) ThermalThermal stabilitystability ofof BDTDA-smectiteBDTDA-smectite

GenerallyGenerally HDTMAHDTMA--,, BDTDABDTDA--,, andand CPCP--smectitesmectite,, theirtheir thermalthermal decompositiondecomposition beginsbegins atat 250250 ººCC andand endsends atat aroundaround 400400 ººC.C. UtilizationUtilization ofof organoclayorganoclay

- 1950 ~ : soil amendment, paint, paper, lubricant, grease, flocculant, adsorbent, cosmetics, medicines etc. - Recent (G. R. Alther, 1998) : Removal of organic contaminants Mortland Removed G. Alther (1998) (1970) pollutants Lubricants Manufacturing process water Oil and grease Paper Degreasing operation Oil and grease

Cosmetics Electroplating Heavy metals Paint Metal casting Dye penetrate Oil and grease Ground water and drinking Soil amendment Heavy metals water BTEX Pentachlorophenol

Wood treating Creosote Pigment production Organic pigments

Dry cleaning Perchloroethylene UtilizationUtilization ofof organoclayorganoclay ? ?

25.0

20.0 Phenol 15.0 Hyamine- &

10.0

5.0 BDTDA-Mont.

0.0

40.0 Excellent Benzene 30.0 adsorbents of 20.0 Organic 10.0 mount sorbed (g / kg)

A 0.0 pollutants 40.0

30.0 Toluene (BTEX)

20.0

10.0

0.0 AC H50M H200M BD100M BT50M BT200M ZEO BD-ZEO SER BD-SER Na-M H100M BD50M BD200M BT100M H-ZEO BT-ZEO H-SER BT-SER

This histogram shows sorption capacity of organic pollutants (phenol, benzene and toluene) by manufactured organo-modified minerals. RecentRecent NewNew UtilizationUtilization :: NanocompositeNanocomposite organoclay organoclay

Improvement of mechanical properties (strength and thermal stability).

Flammability resistance. Ablation performance. Environmental stability, etc.

Less than 4~5% nanocomposite organoclay is mixed with major materials for the light and strong parts of cars and cameras. Thank you for your attention !