Mineralogical Characterization of Uranium Ores, Blends and Resulting Leach Residues from Key Lake Pilot Plant, Saskatchewan, Canada

Total Page:16

File Type:pdf, Size:1020Kb

Mineralogical Characterization of Uranium Ores, Blends and Resulting Leach Residues from Key Lake Pilot Plant, Saskatchewan, Canada MINERALOGICAL CHARACTERIZATION OF URANIUM ORES, BLENDS AND RESULTING LEACH RESIDUES FROM KEY LAKE PILOT PLANT, SASKATCHEWAN, CANADA A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Geological Sciences University of Saskatchewan, Saskatoon, SK, Canada By MD. ALAUDDIN HOSSAIN Copyright Md. Alauddin Hossain, October 2014. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geological Sciences University of Saskatchewan 114 Science Place Saskatoon, Saskatchewan Canada S7N 5E2 i ABSTRACT The production and storage of uranium mine mill tailings have the potential to contaminate local groundwater and surface waters with metals and metalloids. As such, an understanding of the solids reservoirs for potential contaminants in uranium ore blends and leach residues (solid wastes generated by the milling of ore) is required to predict long-term controls on these contaminants in tailings porewaters. This study characterized the distribution of the elements of concern (EOCs; As, Mo, Ni, and Se) in uranium ores and waste rock used to blend the mill feeds in the milling process and leach residues from the Key Lake mining operation, Saskatchewan. This study also evaluated the alteration of the clay minerals in these uranium ores, waste rocks and leach residues. X-ray diffraction, electron micro-probe, and mineral liberation analyses showed that the reservoirs for As, Mo, Ni, and Se (in ores and ore blends) were dominated by sulphides including cobaltite, gersdorffite, molybdenite, pyrite, galena and chalcopyrite, secondary Ni-arsenates (annabergite?), Fe-arsenate (scorodite?) and Ni-Co/Ni- sulfates. The secondary arsenates and sulfates present in special waste were identified as major As, Mo, Ni, and Se bearing minerals and most likely the product of oxidation of arsenide-bearing sulphide minerals within the special waste rock. Analyses also showed that sulphides and arsenates occurred in trace amounts in the ores and special waste rock (0.5 to 1.0 wt %). Data showed that 55 to 90% pyrite, 36 to 51% chalcopyrite, 23 to 37% molybdenite, and 52 to 70% galena remained unleached in the leach residues after milling of the ore blends. The percentages of unleached minerals varied between mill feeds and were dependent on the grain-size distribution and the degree of mineral liberation. Cation exchange capacity (CEC) analysis indicated an increase of the CEC values in the leach residues suggesting possible evolution of 2:1 layers into high-charge layers during the milling. ii ACKNOWLEDGEMENTS I would like to express my special appreciation and gratefulness to my supervisors Prof. Dr. Jim Hendry and Prof. Dr. Yuanming Pan, for their guidance, advices and valuable suggestions throughout my M.Sc. study and research. I would like to thank them for encouraging me and for allowing me to grow as a graduate student. Sincere thanks to my committee member Dr. Tom Kotzer for his insightful comments and research questions about my research that improved my thesis. I also want to thank my defense external Dr. Derek Peak for an enjoyable defense, and for your brilliant comments and suggestions. Sincere thanks to Dr. Joseph Essilfie-Dughan. His valuable suggestions, ideas and recommendations have encouraged me along the way. I am indebted to Dr. Mario Gomez for teaching me XRD and Raman spectroscopy. Special thanks to Dr. Ali Hooshiar, for his cordial inspiration and guidance with clay minerals analysis. I would also like to thank Mr. Tom Bonli for helping me with the EPMA and SEM, and Dr. Jianzhong Fan for collecting ICP-MS data for me. Thanks to Mr. Michael Shaffer for teaching me Mineral Liberation Analysis (MLA) and helping me to collect MLA data. Finally, I would also like to acknowledge Cameco Corp., NSERC, Department of Geological Sciences and the University of Saskatchewan for financial support. iii TABLE OF CONTENTS PERMISSION TO USE i ABSTRACT ii ACKNOWLEDGEMENTS iii Chapter 1 Introduction 1 1.1 Overview 1 1.2 Tailings management 7 1.3 Objectives of the study 8 Chapter 2 Literature review 10 2.1 Location of the mill and milling process 10 2.2 Geology of the McArthur River deposit 12 2.3 Geology of the Millennium deposit 15 2.4 Key Lake special wastes 16 2.5 Mineralogy of uranium deposits 18 2.6 Clay minerals: structures and properties 21 2.6.1 The 1:1 clay minerals 22 2.6.2 The 2:1 clay minerals 23 2.6.3 The 2:1:1 clay minerals 24 2.6.4 Mixed-layer clay minerals 24 2.6.5 Layer charge and variable charge 25 2.6.6 Cation exchange capacity 26 Chapter 3 Geochemical and mineralogical analysis 27 3.1 Inductively coupled plasma spectrometry (ICP-MS) 27 3.2 X-Ray diffraction 27 3.3 Electron probe micro-analyzer (EPMA) 29 3.4 Automated mineralogy 30 3.4.1 Mineral liberation analysis 32 3.4.2 Instrumentation and performance 34 Chapter 4 Material and methods 40 4.1 Mini-mill design and sample collection 40 4.2 Whole-rock geochemistry 41 4.3 X-ray diffraction analysis 41 4.4 Electron micro-probe analysis 42 4.5 Mineral liberation analysis 42 4.6 Cation Exchange Capacity 43 Chapter 5 Results and discussion 44 5.1 Elemental analysis 44 iv 5.2 Primary minerals 49 5.2.1 XRD analysis 49 5.2.2 Electron microscopy analysis 51 5.2.3 Mineral composition 59 5.2.4 Distribution of the Elements of Concern (EOCs) 69 5.2.5 Mineral liberation analysis 79 5.2.5.1 Quantitative modal mineralogy 82 5.2.5.2 Grain size distribution 84 5.2.5.3 Liberation and leaching 86 5.3 Clay minerals 91 5.3.1 XRD analysis 91 5.3.2 Cation exchange capacity (CEC) 97 Chapter 6 Summary and conclusion 101 Chapter 7 Suggestions for future research 104 References 105 Appendix A Elemental assay of the studied samples using ICP-MS 122 Appendix B Calculated elemental assay using MLA 124 v CHAPTER 1 INTRODUCTION 1.1 Overview Increase in global energy demand coupled with global warming associated with fossil fuel has made nuclear energy a viable alternative option for both developed and developing economies. This has resulted in a demand for uranium (U) globally. U ore deposits spread out all over the world and are found in large quantities in Australia, Kazakhstan, and Canada. The Athabasca Basin, located in northern Saskatchewan, Canada, hosts the largest and richest reserves of U ore in the world (Jamieson and Frost, 1997). Presently 19% of the world’s U is produced from this Basin (IAEA, 2012). The mining and milling of U ores result in the generation of large masses of tailings, estimated to be about one billion tons from 4000 U mines world-wide (IAEA, 2004; Abdelouas, 2006). Globally, U ore with low carbonate content is extracted by acid leaching. In case of U ore with high carbonate contents, alkaline leaching is employed. After ore extraction, the residues are dominated by solid residues that contain unleached primary minerals and secondary minerals formed during raffinate neutralization. Raffinate is the remaining solution after U extraction. Both the solids and liquid raffinate are neutralized by the addition of CaCO 3 and/or Ca(OH) 2 (Abdelouas, 2006). Then these materials are discharged into the tailings management facility (TMF) which can be a large waste retention pit or lake. The highest amount of tailings has been generated so far in Kazakhstan (IAEA, 2004). Canada has produced 3% of the global U tailings which is equal to around 30 million tonnes of tailings (Scissons, 1997; IAEA, 2004). In 1953, Beverlodge mill first started U production and associated tailings (Donahue, 2000). Before 1996, the U mill tailings were discharged in above ground TMFs at Rabbit Lake, Cluff Lake and Key lake sites (Scissons, 1997; Donahue, 2000). The tailings consist of the processed waste materials from the mill. These materials usually contain naturally occurring radionuclides (e.g. U 238 , Ra 226 , Rn 222 , Th 230 ), and toxic metals (e.g. As, Se, Pb, Hg) found in U ores (Nilsson and Forssberg, 1988; Landa et al., 1991; Lottermoser and Ashley 2005; Abdelouas, 2006). These elements are frequently referred to as elements of concern (EOCs). Tailings located in this region are generally characterized by 15 elevated concentrations of Ra 226 , As, Ni, Mo and Se (Essilfie-Dughan et al., 2013, 2012, 2011; Gomez et al., 2013; Liu and Hendry, 2011; Moldovan and Hendry, 2005; Moldovan et al., 2008, 2003; Shaw et al., 2011). Some of these elements can have adverse effects on human health and aquatic life/biota (Lener and Bibr, 1984, USEPA, 1998 and Goldhaber, 2003).
Recommended publications
  • Athabasca Basin Communities Renew Partnership with the Uranium Mining Industry
    Athabasca Basin Communities Renew Partnership with the Uranium Mining Industry Saskatoon, Saskatchewan, Canada, June 21, 2016 . The Athabasca communities, Cameco Corporation (Cameco) and AREVA Resources Canada Inc. (AREVA) are proud to announce the signing of a collaboration agreement that builds upon an enduring partnership in the development of uranium resources in the Athabasca Basin. The Ya’Thi Néné (“Lands of the North” in Dene) collaboration agreement confirms the continued support of the communities historically and traditionally associated with the Cigar Lake, McClean Lake and Rabbit Lake uranium mining operations. The comprehensive and unique agreement builds on the existing relationships and commercial arrangements between Cameco, AREVA and the three First Nation communities of Black Lake, Fond du Lac and Hatchet Lake, and the four communities of Stony Rapids, Wollaston Lake, Uranium City and Camsell Portage. “The renewed partnership agreement gives the Athabasca communities certainty, to help ensure that the companies operate sustainably, bringing positive changes for the future generation.” Diane McDonald, lead negotiator for the Athabasca communities “By working with industry, people living in the north have found ways to enhance the capacity and vitality of their communities while protecting their traditional values and lands. This agreement assures that strong partnership will continue.” Tim Gitzel, president and CEO of Cameco “This agreement further solidifies our longstanding collaboration with these communities. It speaks to our joint vision and commitment to the prosperity of northern Saskatchewan for decades to come.” Vincent Martin, president and CEO of AREVA Resources Canada The Ya’Thi Néné collaboration agreement builds on the existing impact management agreement signed in 1999.
    [Show full text]
  • Project Management for Decommissioning of Hope Brook
    Uranium Development & Exploration The Athabasca Basin, Northern Saskatchewan July 2020 | Corporate Update Cautionary Statements & References This presentation and the information contained herein is designed to help you understand management’s current views, and may not be appropriate for other purposes. This presentation contains information relating to other companies and provincial infrastructure, and the plans and availability thereof, derived from third-party publications and reports which Denison believes are reliable but have not been independently verified by the Company. Certain information contained in this presentation constitutes “forward-looking information”, within the meaning of the United States Private Securities Litigation Reform Act of 1995 and similar Canadian legislation concerning the business, operations and financial performance and condition of Denison. Generally, these forward-looking statements can be identified by the use of forward-looking terminology such as “plans”, “expects”, “budget”, “scheduled”, “estimates”, “forecasts”, “intends”, “anticipates”, or “believes”, or the negatives and / or variations of such words and phrases, or state that certain actions, events or results “may”, “could”, “would”, “might” or “will be taken”, “occur”, “be achieved” or “has the potential to”. In particular, this presentation contains forward-looking information pertaining to the results of, and estimates, assumptions and projections provided in, the PFS, including future development methods and plans, market prices, costs
    [Show full text]
  • Regulatory Oversight Report for Uranium Mines and Mills in Canada: 2018
    Regulatory Oversight Report for Uranium Mines and Mills in Canada: 2018 Commission Meeting December 12, 2019 CMD 19-M36.A CNSC Staff Presentation e-Doc 5970530 PPTX e-Doc 6018833 PDF Commission Meeting, December 12, 2019 CMD 19-M36.A – 2018 ROR for Uranium Mines and Mills CNSC Regulatory Oversight Reports for 2018 • November 6, 2019: Canadian Nuclear Power Generating Sites: 2018 • November 7, 2019: Use of Nuclear Substances in Canada: 2018 • November 7, 2019: Canadian Nuclear Laboratories Sites: 2018 • December 11, 2019: Uranium and Nuclear Substance Processing Facilities in Canada: 2018 • December 12, 2019: Uranium Mines and Mills in Canada: 2018 Reporting on licensee performance based on CNSC oversight nuclearsafety.gc.ca 2 Commission Meeting, December 12, 2019 CMD 19-M36.A – 2018 ROR for Uranium Mines and Mills Presentation Outline • Errata • CNSC’s regulatory oversight activities • Uranium mine and mill facilities • Performance of uranium mines and mills • Interventions • Conclusions SAG mill used to grind ore at the McArthur River Operation. (Photo source: CNSC) nuclearsafety.gc.ca 3 Commission Meeting, December 12, 2019 CMD 19-M36.A – 2018 ROR for Uranium Mines and Mills Errata – to be corrected before the report is published Appendix B, Table B1, corrected information Facility Safety and control area Date report issued Fitness for Service, Conventional Health and Safety, March 20, 2018 Environmental Protection, Human Performance Management Environmental Protection, Radiation Protection, October 31, 2018 McArthur Conventional Health and Safety River Physical Design, Environmental Protection, Radiation August 8, 2018 Operation Protection, Conventional Health and Safety Environmental Protection October 2, 2018 Emergency Management and Fire Protection January 16, 2019 nuclearsafety.gc.ca 4 Commission Meeting, December 12, 2019 CMD 19-M36.A – 2018 ROR for Uranium Mines and Mills Errata – to be corrected before the report is published Appendix J: Environmental Action Level and Regulatory Exceedances Reported to CNSC.
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINERALOGIST, VOL. 52, SEPTEMSER_OCTOBER, 1967 NEW MINERAL NAMES Mrcn,rBr F-r-Brscnnn Lonsdaleite Cr.u'lonn FnoNoer. lNn Uxsule B. MenvrN (1967) Lonsdaleite, a hexagonai polymorph oi diamond. N atwe 214, 587-589. The residue (about 200 e) from the solution of 5 kg of the Canyon Diablo meteorite was found to contain about a dozen black cubes and cubo-octahedrons up to about 0.7 mm in size. They were found to consist of a transparent substance coated by graphite. X-ray data showed the material to be hexagonal, rvith o 2.51, c 4.12, c/a I.641. The strongest X-ray lines are 2.18 (4)(1010), 2.061 (10)(0002), r.257 (6)(1120), and 1.075 (3)(rrr2). Electron probe analysis showed only C. It is accordingly the hexagonal (2H) dimorph of diamond. Fragments under the microscope were pale brownish-yellow, faintly birefringent, a slightly higher than 2.404. The hexagonal dimorph is named lonsdaleite for Prof. Kathleen Lonsdale, distin- guished British crystallographer. It has been synthesized by the General Electric co. and by the DuPont Co. and has also been reported in the Canyon Diablo and Goalpara me- teorites by R. E. Hanneman, H. M. Strong, and F. P. Bundy of General Electric Co. lSci.enc e, 155, 995-997 (1967) l. The name was approved before publication by the Commission on New Minerals and Mineral Names, IMA. Roseite J. OrrnueNn nNl S. S. Aucusrrtnrs (1967) Geochemistry and origin of "platinum- nuggets" in lateritic covers from ultrabasic rocks and birbirites otW.Ethiopia.
    [Show full text]
  • A Preeminent Uranium Explorer in Canada's Athabasca Basin
    A Preeminent Uranium Explorer in Canada’s Athabasca Basin TSX-V: SYH October 2021 Disclaimer This presentation has been prepared by Skyharbour Resources Ltd. (“SYH”) using its best efforts to realistically and factually present the information contained. However, subjective opinion, dependence upon factors outside SYH’s control and outside information sources unavoidably dictate that SYH cannot warrant the V: SYH | SKYHARBOURLTD.COM information contained to be exhaustive, complete or sufficient. In addition, many factors can effect the - presentation which could significantly alter the results intended by SYH, rendering the presentation TSX unattainable or substantially altered. Therefore, interested uses should conduct their own assessment and consult with their own professional advisors prior to making any investment decisions. This presentation does not constitute a prospectus or public offering for financing, and no guarantees are made or implied with regard to the success of SYH proposed ventures. Interested investors are advised to seek advice from the investment advisors. Some of the statements in this document may be deemed to be "forward-looking statements". All statements on in this document, other than statements of historical facts, that address events or developments that management of the Company expects, are forward-looking statements. Although management believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance, and actual results or developments may differ materially from those in the forward-looking statements. The Company undertakes no obligation to update these forward- looking statements if management's beliefs, estimates or opinions, or other factors, should change. Factors that could cause actual results to differ materially from those in forward-looking statements, include market prices, exploration and development successes, continued availability of capital and financing, and general economic, market or business conditions.
    [Show full text]
  • Press Release Denison Announces Appointment Of
    Denison Mines Corp. 1100 – 40 University Ave Toronto, ON M5J 1T1 www.denisonmines.com PRESS RELEASE DENISON ANNOUNCES APPOINTMENT OF RON HOCHSTEIN AS BOARD CHAIR AND WELCOMES NEW DIRECTORS Toronto, ON – May 11, 2021. Denison Mines Corp. (“Denison” or the “Company”) (DML: TSX, DNN: NYSE American) is pleased to announce the appointment of Mr. Ron F. Hochstein as Chair of the Board of Directors (“Board Chair”). Mr. Hochstein was elected Board Chair, and Mr. Brian Edgar was elected Lead Director, at a meeting of the Company’s independent directors following the Company’s Annual General Meeting. The Company is also pleased to welcome David Neuburger and Jennifer Traub to the Board of Directors. Ron Hochstein, Denison’s Board Chair, commented, “I am honoured to have been elected Chair of Denison’s Board by the Company’s independent directors. This is a very exciting and important time in the modern history of Denison – as the Company focuses on advancing its low-cost Phoenix In-Situ Recovery (‘ISR’) uranium development project, at a time when the uranium market is showing signs of a sustained recovery. Navigating years of challenging uranium markets, with a view of building a sustainable low-cost uranium mining company, has taken great vision from the Company’s Board and management. Accordingly, on behalf of the Board of Directors, I would like to thank Catherine Stefan and Jack Lundin for their contributions to the Board, and specifically express our appreciation to Ms. Stefan, the Company’s outgoing Board Chair, for her legacy of leadership and oversight of the Company during her six year term as Chair and Lead Director and 17 year tenure as a Director of the Company and its predecessor Denison Mines Inc.” David Cates, Denison Director and President & CEO, added, “We are also pleased to welcome the addition of two highly qualified new Directors to join Denison’s Board.
    [Show full text]
  • Cation Ordering and Pseudosymmetry in Layer Silicates'
    I A merican M ineralogist, Volume60. pages175-187, 1975 Cation Ordering and Pseudosymmetryin Layer Silicates' S. W. BerI-nv Departmentof Geologyand Geophysics,Uniuersity of Wisconsin-Madison Madison, Wisconsin5 3706 Abstract The particular sequenceof sheetsand layers present in the structure of a layer silicate createsan ideal symmetry that is usually basedon the assumptionsof trioctahedralcompositions, no significantdistor- tion, and no cation ordering.Ordering oftetrahedral cations,asjudged by mean l-O bond lengths,has been found within the constraints of the ideal spacegroup for specimensof muscovite-3I, phengile-2M2, la-4 Cr-chlorite, and vermiculite of the 2-layer s type. Many ideal spacegroups do not allow ordering of tetrahedralcations because all tetrahedramust be equivalentby symmetry.This includesthe common lM micasand chlorites.Ordering oftetrahedral cations within subgroupsymmetries has not beensought very often, but has been reported for anandite-2Or, llb-2prochlorite, and Ia-2 donbassite. Ordering ofoctahedral cations within the ideal spacegroups is more common and has been found for muscovite-37, lepidolite-2M", clintonite-lM, fluoropolylithionite-lM,la-4 Cr-chlorite, lb-odd ripidolite, and vermiculite. Ordering in subgroup symmetries has been reported l-oranandite-2or, IIb-2 prochlorite, and llb-4 corundophilite. Ordering in local out-of-step domains has been documented by study of diffuse non-Bragg scattering for the octahedral catlons in polylithionite according to a two-dimensional pattern and for the interlayer cations in vermiculite over a three-cellsuperlattice. All dioctahedral layer silicates have ordered vacant octahedral sites, and the locations of the vacancies change the symmetry from that of the ideal spacegroup in kaolinite, dickite, nacrite, and la-2 donbassite Four new structural determinations are reported for margarite-2M,, amesile-2Hr,cronstedtite-2H", and a two-layercookeite.
    [Show full text]
  • Reasons for Decision Ministerial Approval Ministerial Change Approval Pursuant to Section 16(2)(C) the Environmental Assessment Act
    REASONS FOR DECISION MINISTERIAL APPROVAL MINISTERIAL CHANGE APPROVAL PURSUANT TO SECTION 16(2)(C) THE ENVIRONMENTAL ASSESSMENT ACT CAMECO CORPORATION KEY LAKE EXTENSION PROJECT Introduction The Environmental Assessment Act (hereinafter called the Act) states that where a proponent has received Ministerial Approval to proceed with a development and the proponent intends to make a change in the development that does not conform to the terms or conditions contained in the approval, the proponent must receive Ministerial Approval prior to making those changes. On February 13, 1981 Ministerial Approval was issued to Key Lake Mining Corporation for the Key Lake Mine and Mill Project (EAB#: 1976-006). Several changes to the Key Lake operation have also received Ministerial Approval pursuant to Section 16(2) of the Act (EAB# 1990-048, 1991-031, 1992-001, 1998-015, 2000-025, 2002-055, 2003-005). These changes have related to tailings deposition location and methodology, development of the mined-out Deilmann pit as the Deilmann Tailings Management Facility (DTMF), processing of ore from the McArthur River mine, processing of by-products generated at facilities in Ontario and increasing milling and processing rates at the facility. In March 2010, Cameco submitted a proposal for a change to the previously approved Key Lake operation to allow increased tailing storage in the existing DTMF, an increase of the Key Lake mill nominal annual production capacity, an increase to the ore storage area and modifications to the existing mill (the project). The proposal was sent to provincial agencies and the Government of Canada for technical review. Following technical review, it was determined that the proposed change did not conform to the terms and conditions of previous approvals and therefore Cameco would require approval under section 16(2) of the Act prior to proceeding and would be required to conduct an environmental impact assessment (EIA) for the proposed change.
    [Show full text]
  • Open House 2014 Abstract Volume Saskatchewan Geological Survey
    December 1st to 3rd, 2014 Open House 2014 Abstract Volume Saskatchewan Geological Survey December 1 to 3, 2014 Open House 2014 Abstract Volume Saskatchewan Geological Survey Printed under the authority of the Government of Saskatchewan Although the Saskatchewan Ministry of the Economy has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Ministry of the Economy and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: “Lying down on the job”. Saskatchewan Geological Survey junior geological assistant Levi Paradis, examining polygonal cracks of the Athabasca Group on the southwest shore of Johnson Island, Lake Athabasca. Cross-section of the cracks suggests an earlier desiccation event followed by a fluid escape event. Smaller desiccation cracks and sandstone ripples are present within the larger polygonal features. (UTM 613943 m E, 6577875 m N, NAD 83, Zone 12). This volume may be downloaded from: www.economy.gov.sk.ca/previousoh Saskatchewan Geological Survey ii Open House 2014, Abstract Volume Contents page Technical Session 1: Uranium Geoscience A Geophysical Expressions of Ore Systems, Not Deposits – Our Current Understanding ....................................................................................................................... Ken Witherly 2 A Basin Development, Lithogeochemistry and Mineralization of the Athabasca Basin, Canada................................................................................................ Paul Ramaekers 3 * Spectacular Conglomerates of the Northwest Athabasca Basin: An Overview ............... Sean A. Bosman 4 A Fault Architecture, Associated Structures and Uranium Mineralization, Eastern Athabasca Basin: A Provisional Empirical Classification ..........................................................
    [Show full text]
  • Primary Uranium Extraction
    Primary Extraction IAEA - INT2019 Interregional Workshop on Case Study of Conventional Uranium Production: from Exploration to Closure October 14 to 18th, 2019, Prague, Czech Republic Agenda • Uranium Market Fundamentals • Cost of Production around the Globe • Where are the World’s Uranium Resources • Current Mining Methods and costs • Production capacity of the Athabasca Basin • What are some potential new mines in Canada Uranium Market Fundamentals • The greatest sensitivity when assessing most uranium deposits is in understanding what market conditions will be by the time you are able to bring the deposit into production (5 to 10-year time lag). • Compared to other metal groups, the price of uranium has been challenging over the past ten years. Gold and base metals are near or above their ten year average price, but uranium remains well below it’s average ten year price range. • Challenging market post-Fukushima 10 Year U3O8 10 Year Copper Spot Price Spot Price World Production & Consumption World Uranium Resources (WNA/IAEA) Australia has the largest amount of U resources, based on USD $130 per kg of U. However the “quality” of the resources in terms of grade and cost sensitivity to the price of uranium must be taken into account. Production method Canada which is in the top 3 for Uranium Resources and production has not yet used ISR as a primary extraction method (table is from WNA) Uranium Mining Methods Uranium is currently mined in one of four ways: • In-situ leach mining – ISL [also ISR or solution mining] • Underground with
    [Show full text]
  • History of Mining in Saskatchewan
    History of Mining In Saskatchewan Early Mining in Saskatchewan The earliest mining occurred when earth’s inhabitants started using various stones for tools or certain clays for cooking vessels. The earliest recorded occupation in Saskatchewan was around 9000 B.C. at the Niska site in the southern part of the province. Ample evidence of the use of stone tools, arrow heads, and spear heads, etc. has been found in the area. Much of the material used by these early inhabitants was imported or traded from other regions of North America. The study of the stone tools provides us with information about the people’s work, their history, their religion, their travels and their relationships with other groups or nations. Stone is readily available throughout most of Saskatchewan. This was especially important for Saskatchewan’s First Nations people who moved their camps frequently in search for food. The stones available were not all suitable for tools and they needed a constant supply of stone material that broke cleanly or was hard enough for pounding. Consequently, they made regular trips to the source areas or traded with people who lived near the sources. For these early residents of our province, the exchange of goods was more than just a means of acquiring things. Bartering and gift exchange was a means of creating and reinforcing relationships between individuals, families and nations. For thousands of years, goods have been exchanged through networks that extended across North America. Although perishable goods were also traded, our records are in the form of shell or stone artefacts.
    [Show full text]
  • TITLE: Cameco Corporation: Uranium Mining and Aboriginal Development in Saskatchewan[1]
    This case was written by Saleem H. Ali for the purpose of entering the 2000 Aboriginal Management Case Writing Competition. TITLE: Cameco Corporation: Uranium Mining and Aboriginal Development in Saskatchewan[1] The Setting The topic of Bernard Michel's speech was general in nature, yet quite specific in substance: "Corporate Citizenship and the Saskatchewan Uranium Industry." He had been invited by the Uranium Institute in London, UK to share his company's experiences in negotiating agreements with Native communities in Northern Saskatchewan. As the President and Chief Executive Officer of Cameco, the world's largest uranium mining company, his speech was much anticipated by the audience. The Uranium mines of Saskatchewan are an interesting laboratory for the study of corporate community relations......The community relations programme's first action was to listen through public hearings to the communities' expressed concerns.......Today 80% of Saskatchewan's residents, compared with 65% in 1990, support continued uranium mining. This reflects the industry's community relations initiative. Cameco's shares also trade at 3.5 times their 1991 issue price. Only a small segment of anti-nuclear activists takes a negative view. Relationships with local communities, like uranium ore, are a valuable resource needing competent development.[2] Originally from France, and a graduate of the Ecole Polytechnique in Paris, Michel, had spent the past two decades in Canada working for various mining interests. Having served as Senior Vice President, Executive Vice President and President for a subsidiary of the French nuclear conglomerate Cogema, Amok Ltd, Michel had eminent credentials to join Cameco in 1988.
    [Show full text]