2U11/13U624 A2

Total Page:16

File Type:pdf, Size:1020Kb

2U11/13U624 A2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date ft i 20 October 2011 (20.10.2011) 2U11/13U624 A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, C12N 5/10 (2006.01) CI2N 5/074 (2010.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, C12N 15/113 (2010.01) C07H 21/00 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/US201 1/032679 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 15 April 201 1 (15.04.201 1) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/325,003 16 April 2010 (16.04.2010) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 61/387,220 28 September 2010 (28.09.2010) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (71) Applicant (for all designated States except US): IM¬ LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, MUNE DISEASE INSTITUTE, INC. [US/US]; 3 SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Blackfan Circle, CLSB 3rd Floor, Boston, MA 021 15 GW, ML, MR, NE, SN, TD, TG). (US). Declarations under Rule 4.17 : (72) Inventors; and — as to applicant's entitlement to apply for and be granted (75) Inventors/Applicants (for US only): ROSSI, Derrick a patent (Rule 4.1 7(H)) [CA/US]; 162 Metropolitan Avenue, Roslindale, MA 0213 1 (US). WARREN, Luigi [GB/US]; 170 Brookline — as to the applicant's entitlement to claim the priority of Avenue, #6 12, Boston, MA 02215 (US). the earlier application (Rule 4.17(Hi)) (74) Agents: RESNICK, David et al; Nixon Peabody LLP, Published: 100 Summer Street, Boston, MA 021 10 (US). — without international search report and to be republished (81) Designated States (unless otherwise indicated, for every upon receipt of that report (Rule 48.2(g)) kind of national protection available): AE, AG, AL, AM, — with sequence listing part of description (Rule 5.2(a)) (54) Title: SUSTAINED POLYPEPTIDE EXPRESSION FROM SYNTHETIC, MODIFIED RNAS AND USES THEREOF < o (57) Abstract: Described herein are synthetic, modified RNAs for changing the phenotype of a cell, such as expressing a polypep o tide or altering the developmental potential. Accordingly, provided herein are compositions, methods, and kits comprising syn thetic, modified RNAs for changing the phenotype of a cell or cells. These methods, compositions, and kits comprising synthetic, modified RNAs can be used either to express a desired protein in a cell or tissue, or to change the differentiated phenotype of a cell to that of another, desired cell type. SUSTAINED POLYPEPTIDE EXPRESSION FROM SYNTHETIC, MODIFIED RNAS AND USES THEREOF CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Serial No.: 61/325,003 filed on April 16, 2010 and U.S. Provisional Patent Application Serial No.: 61/387,220 filed on September 28, 2010, the contents of which are incorporated herein by reference in their entirety. SEQUENCE LISTING [0002] The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on April 8, 2011, is named 67442PCT.txt and is 7,196,077 bytes in size. FIELD OF THE INVENTION [0003] The field of the invention relates to synthetic, modified RNAs and uses thereof. BACKGROUND [0004] The ability to change the phenotype of a cell or cells, either to express a desired protein or to change the differentiated phenotype of the cell to that of another, desired cell type, has applications in both research and therapeutic settings. The phenotype of a cell is most commonly modified by expression of protein(s) from exogenous DNA or from recombinant viral vectors. These approaches have the potential for unintended mutagenic effects. [0005] One area of interest is the modification of cellular differentiation such that cells are directed to different developmental lineages. As one example, generating insulin-producing pancreatic β cells from acinar pancreatic cells or other somatic cell types, has the potential to treat diabetes. As but one other example, the ability to redifferentiate a tumor cell or tumor stem cell to a non-cancerous cell type can provide a therapy for cancer. Current protocols for altering cell fate tend to focus on the expression of factors, such as differentiation factors, dedifferentiation factors, transdifferentiation factors, and reprogramming factors, using viral- or DNA-mediated expression. [0006] An area of recent focus is the production of pluripotent or multipotent stem cells from non-embryonic sources. Induction of pluripotency was originally achieved by Yamanaka and colleagues using retroviral vectors to enforce expression of four transcription factors, KLF4, c-MYC, OCT4, and SOX2 (KMOS) (Takahashi, K. and S. Yamanaka, Cell, 2006. 126(4): p. 663-76 ; Takahashi, K., et al., Cell, 2007. 131(5): p. 861-72). Attempts to derive induced pluripotent stem (iPS) cells have also been made using excisable lentiviral and transposon vectors, or through repeated application of transient plasmid, episomal, and adenovirus vectors (Chang, C.-W., et al., Stem Cells, 2009. 27(5): p. 1042-1049; Kaji, K., et al., Nature, 2009. 458(7239): p. 771-5; Okita, K., et al., Science, 2008. 322(5903): p. 949-53; Stadtfeld, M., et al., Science, 2008. 322(5903): p. 945-9; Woltjen, K., et al., Nature, 2009; Yu, J., et al., Science, 2009: p. 1172482; Fusaki, N., et al., Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(8): p. 348-62). Human pluripotent cells have also been derived using two DNA-free methods: serial protein transduction with recombinant proteins incorporating cell-penetrating peptide moieties (Kim, D., et al., Cell Stem Cell, 2009. 4(6): p. 472-476; Zhou, H., et al., Cell Stem Cell, 2009. 4(5): p. 381-4), and infectious transgene delivery using the Sendai virus, which has a completely RNA-based reproductive cycle (Fusaki, N., et al., Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(8): p. 348-62). SUMMARY [0007] Provided herein are compositions, methods, and kits for changing the phenotype of a cell or cells. These methods, compositions, and kits can be used either to express a desired protein in a cell or tissue, or to change the differentiated phenotype of a cell to that of another, desired cell type. Significantly, the methods, compositions, and kits described herein do not utilize exogenous DNA or viral vector-based methods for the expression of protein(s), and thus, do not cause permanent modification of the genome or have the potential for unintended mutagenic effects. [0008] The compositions, methods, and kits described herein are based upon the direct introduction of synthetic RNAs into a cell, which, when translated, provide a desired protein or proteins. Higher eukaryotic cells have evolved cellular defenses against foreign, "non-self," RNA that ultimately result in the global inhibition of cellular protein synthesis, resulting in cellular toxicity. This response involves, in part, the production of Type I or Type II interferons, and is generally referred to as the "interferon response" or the "cellular innate immune response." The cellular defenses normally recognize synthetic RNAs as foreign, and induce this cellular innate immune response. The inventors have recognized that the ability to achieve sustained or repeated expression of an exogenously directed protein using synthetic RNA is hampered by the induction of this innate immune response. In the methods described herein, the effect of the cellular innate immune response is mitigated by using synthetic RNAs that are modified in a manner that avoids or reduces the response. Avoidance or reduction of the innate immune response permit sustained expression from exogenously introduced RNA necessary, for example, to modify the developmental phenotype of a cell. In one aspect, sustained expression is achieved by repeated introduction of synthetic, modified RNAs into a target cell or its progeny. [0009] The modified, synthetic RNAs described herein, in one aspect, can be introduced to a cell in order to induce exogenous expression of a protein of interest in a cell. The ability to direct exogenous expression of a protein of interest using the modified, synthetic RNAs described herein is useful, for example, in the treatment of disorders caused by an endogenous genetic defect in a cell or organism that impairs or prevents the ability of that cell or organism to produce the protein of interest. Accordingly, in some embodiments, compositions and methods comprising the modified, synthetic RNAs described herein can be used for the purposes of gene therapy. [0010] The modified, synthetic RNAs described herein can advantageously be used in the alteration of cellular fates and/or developmental potential. The ability to express a protein from an exogenous RNA permits both the alteration or reversal of the developmental potential of a cell, i.e., the reprogramming of the cell, and the directed differentiation of a cell to a more differentiated phenotype.
Recommended publications
  • Lower Genomic Stability of Induced Pluripotent Stem Cells Reflects
    Zhang et al. Cancer Commun (2018) 38:49 https://doi.org/10.1186/s40880-018-0313-0 Cancer Communications ORIGINAL ARTICLE Open Access Lower genomic stability of induced pluripotent stem cells refects increased non‑homologous end joining Minjie Zhang1,2†, Liu Wang3†, Ke An1,2†, Jun Cai1, Guochao Li1,2, Caiyun Yang1, Huixian Liu1, Fengxia Du1, Xiao Han1,2, Zilong Zhang1,2, Zitong Zhao1,2, Duanqing Pei4, Yuan Long5, Xin Xie5, Qi Zhou3 and Yingli Sun1* Abstract Background: Induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) share many common features, including similar morphology, gene expression and in vitro diferentiation profles. However, genomic stability is much lower in iPSCs than in ESCs. In the current study, we examined whether changes in DNA damage repair in iPSCs are responsible for their greater tendency towards mutagenesis. Methods: Mouse iPSCs, ESCs and embryonic fbroblasts were exposed to ionizing radiation (4 Gy) to introduce dou- ble-strand DNA breaks. At 4 h later, fdelity of DNA damage repair was assessed using whole-genome re-sequencing. We also analyzed genomic stability in mice derived from iPSCs versus ESCs. Results: In comparison to ESCs and embryonic fbroblasts, iPSCs had lower DNA damage repair capacity, more somatic mutations and short indels after irradiation. iPSCs showed greater non-homologous end joining DNA repair and less homologous recombination DNA repair. Mice derived from iPSCs had lower DNA damage repair capacity than ESC-derived mice as well as C57 control mice. Conclusions: The relatively low genomic stability of iPSCs and their high rate of tumorigenesis in vivo appear to be due, at least in part, to low fdelity of DNA damage repair.
    [Show full text]
  • Effect of a Caloric Restriction Based On
    UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA DOCTORAL THESIS Biology PhD “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging” INSTITUTO MADRILEÑO DE ESTUDIOS AVANZADOS EN ALIMENTACIÓN (IMDEA FOOD INSTITUTE) VÍCTOR MICÓ MORENO Madrid, 2018 UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA DOCTORAL THESIS Biology PhD “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging” INSTITUTO MADRILEÑO DE ESTUDIOS AVANZADOS EN ALIMENTACIÓN (IMDEA FOOD INSTITUTE) Memoria presentada por: Víctor Micó Moreno Para optar al grado de: DOCTOR EN BIOLOGÍA Doña Lidia Ángeles Daimiel Ruíz, Doctora en Biología Celular y Genética por la Universidad Autónoma de Madrid, investigadora del Instituto IMDEA Alimentación, informa favorablemente la solicitud de autorización de defensa de la tesis doctoral con el Título: “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging”, presentada por Don Víctor Micó Moreno para optar al grado de Doctor en Biología. Este trabajo ha sido realizado en el Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA Alimentación) bajo su dirección, y cumple satisfactoriamente las condiciones requeridas por el Departamento de Biología de la Universidad Autónoma de Madrid para optar al Título de Doctor. Ha actuado como tutor académico, y presenta su conformidad el Dr. Carlos Francisco Sentís Castaño, vicedecano de Personal Docente e Investigador y profesor titular del Departamento de Biología de la Facultad de Ciencias de la Universidad Autónoma de Madrid.
    [Show full text]
  • A Conserved Set of Maternal Genes? Insights from a Molluscan Transcriptome
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Nottingham ePrints Liu, M. Maureen and Davey, John W. and Jackson, Daniel J. and Blaxter, Mark L. and Davison, Angus (2014) A conserved set of maternal genes? Insights from a molluscan transcriptome. International Journal of Developmental Biology, 58 . pp. 501-511. ISSN 0214- 6282 Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/30007/1/ft501%20%283%29.pdf Copyright and reuse: The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. · To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available. · Copies of full items can be used for personal research or study, educational, or not- for-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. · Quotations or similar reproductions must be sufficiently acknowledged. Please see our full end user licence at: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions: The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version.
    [Show full text]
  • Htra1 Is a Novel Transcriptional Target of RUNX2 That Promotes Osteogenic Differentiation
    Cellular Physiology Cell Physiol Biochem 2019;53:832-850 DOI: 10.33594/00000017610.33594/000000176 © 2019 The Author(s).© 2019 Published The Author(s) by and Biochemistry Published online: online: 9 9November November 2019 2019 Cell Physiol BiochemPublished Press GmbH&Co. by Cell Physiol KG Biochem 832 Press GmbH&Co. KG, Duesseldorf IyyanarAccepted: et 7al.: November Runx2 Regulates 2019 Htra1 During Osteogenesiswww.cellphysiolbiochem.com This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna- tional License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Original Paper Htra1 is a Novel Transcriptional Target of RUNX2 That Promotes Osteogenic Differentiation Paul P.R. Iyyanara,b Merlin P. Thangaraja B. Frank Eamesc Adil J. Nazaralia aLaboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada, bDivision of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA, cDepartment of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada Key Words Runx2 • Htra1 • Osteoblast differentiation • Matrix mineralization Abstract Background/Aims: Runt-related transcription factor 2 (Runx2) is a master regulator of osteogenic differentiation, but most of the direct downstream targets of RUNX2 during osteogenesis are unknown. Likewise, High-temperature requirement factor A1 (HTRA1) is a serine protease expressed in bone, yet the role of Htra1 during osteoblast differentiation remains elusive. We investigated the role of Htra1 in osteogenic differentiation and the transcriptional regulation of Htra1 by RUNX2 in primary mouse mesenchymal progenitor cells. Methods: Overexpression of Htra1 was carried out in primary mouse mesenchymal progenitor cells to evaluate the extent of osteoblast differentiation.
    [Show full text]
  • Homeobox A10 Promotes the Proliferation and Invasion of Bladder Cancer Cells Via Regulation of Matrix Metalloproteinase‑3
    ONCOLOGY LETTERS 18: 49-56, 2019 Homeobox A10 promotes the proliferation and invasion of bladder cancer cells via regulation of matrix metalloproteinase‑3 CHUNLEI LIU1*, MINGZHU GE2*, JUN MA1*, YANHUI ZHANG1, YANHUI ZHAO1 and TAO CUI1 Departments of 1Urology and 2Ultrasound, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China Received February 9, 2018; Accepted January 31, 2019 DOI: 10.3892/ol.2019.10312 Abstract. Homeobox A10 (HOXA10) belongs to the family Smoking and obesity are risk factors for BC (2), and genetic of HOX genes, which are closely connected with embryonic mutations and abnormal protein expression serve important development and serve important roles in various tumors. roles in the genesis, development and progression of BC (4). However, the role of HOXA10 in bladder cancer (BC) remains Therefore, exploring new anomalous molecules involved in unclear. In the present study, the role of HOXA10 in BC and the development of BC may advance the understanding of the underlying mechanisms by which it promotes the disease the mechanisms behind this disease and contribute to the progression were investigated. Immunohistochemical analysis improvement of treatment strategies. demonstrated that the expression of the HOXA10 protein Homeobox A10 (HOXA10) belongs to the family of HOX was significantly higher in BC tissues as compared with that genes, which are classified into four subgroups, namely HOX in adjacent normal tissues. Subsequent statistical analysis A-D (5), and are closely connected with embryonic develop- revealed that upregulation of HOXA10 was significantly ment (6). HOXA10 encodes a DNA-binding transcription factor associated with the pathological grade and clinical stage of that serves vital roles in regulating gene expression, viability BC patients.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • SUPPLEMENTARY MATERIAL Bone Morphogenetic Protein 4 Promotes
    www.intjdevbiol.com doi: 10.1387/ijdb.160040mk SUPPLEMENTARY MATERIAL corresponding to: Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells SUMIYO MIMURA, MIKA SUGA, KAORI OKADA, MASAKI KINEHARA, HIROKI NIKAWA and MIHO K. FURUE* *Address correspondence to: Miho Kusuda Furue. Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan. Tel: 81-72-641-9819. Fax: 81-72-641-9812. E-mail: [email protected] Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.160040mk TABLE S1 PRIMER LIST FOR QRT-PCR Gene forward reverse AP2α AATTTCTCAACCGACAACATT ATCTGTTTTGTAGCCAGGAGC CDX2 CTGGAGCTGGAGAAGGAGTTTC ATTTTAACCTGCCTCTCAGAGAGC DLX1 AGTTTGCAGTTGCAGGCTTT CCCTGCTTCATCAGCTTCTT FOXD3 CAGCGGTTCGGCGGGAGG TGAGTGAGAGGTTGTGGCGGATG GAPDH CAAAGTTGTCATGGATGACC CCATGGAGAAGGCTGGGG MSX1 GGATCAGACTTCGGAGAGTGAACT GCCTTCCCTTTAACCCTCACA NANOG TGAACCTCAGCTACAAACAG TGGTGGTAGGAAGAGTAAAG OCT4 GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAA PAX3 TTGCAATGGCCTCTCAC AGGGGAGAGCGCGTAATC PAX6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT p75 TCATCCCTGTCTATTGCTCCA TGTTCTGCTTGCAGCTGTTC SOX9 AATGGAGCAGCGAAATCAAC CAGAGAGATTTAGCACACTGATC SOX10 GACCAGTACCCGCACCTG CGCTTGTCACTTTCGTTCAG Suppl. Fig. S1. Comparison of the gene expression profiles of the ES cells and the cells induced by NC and NC-B condition. Scatter plots compares the normalized expression of every gene on the array (refer to Table S3). The central line
    [Show full text]
  • Quantigene Flowrna Probe Sets Currently Available
    QuantiGene FlowRNA Probe Sets Currently Available Accession No. Species Symbol Gene Name Catalog No. NM_003452 Human ZNF189 zinc finger protein 189 VA1-10009 NM_000057 Human BLM Bloom syndrome VA1-10010 NM_005269 Human GLI glioma-associated oncogene homolog (zinc finger protein) VA1-10011 NM_002614 Human PDZK1 PDZ domain containing 1 VA1-10015 NM_003225 Human TFF1 Trefoil factor 1 (breast cancer, estrogen-inducible sequence expressed in) VA1-10016 NM_002276 Human KRT19 keratin 19 VA1-10022 NM_002659 Human PLAUR plasminogen activator, urokinase receptor VA1-10025 NM_017669 Human ERCC6L excision repair cross-complementing rodent repair deficiency, complementation group 6-like VA1-10029 NM_017699 Human SIDT1 SID1 transmembrane family, member 1 VA1-10032 NM_000077 Human CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) VA1-10040 NM_003150 Human STAT3 signal transducer and activator of transcripton 3 (acute-phase response factor) VA1-10046 NM_004707 Human ATG12 ATG12 autophagy related 12 homolog (S. cerevisiae) VA1-10047 NM_000737 Human CGB chorionic gonadotropin, beta polypeptide VA1-10048 NM_001017420 Human ESCO2 establishment of cohesion 1 homolog 2 (S. cerevisiae) VA1-10050 NM_197978 Human HEMGN hemogen VA1-10051 NM_001738 Human CA1 Carbonic anhydrase I VA1-10052 NM_000184 Human HBG2 Hemoglobin, gamma G VA1-10053 NM_005330 Human HBE1 Hemoglobin, epsilon 1 VA1-10054 NR_003367 Human PVT1 Pvt1 oncogene homolog (mouse) VA1-10061 NM_000454 Human SOD1 Superoxide dismutase 1, soluble (amyotrophic lateral sclerosis 1 (adult))
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0267582 A1 BARD Et Al
    US 2010O267582A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0267582 A1 BARD et al. (43) Pub. Date: Oct. 21, 2010 (54) DIFFERENTAL, EXPRESSION OF (60) Provisional application No. 60/575.279, filed on May MOLECULES ASSOCATED WITH ACUTE 27, 2004. STROKE Publication Classification (75) Inventors: ALISON E. BARD, BETHESDA, MD (US); DAVID F. MOORE, (51) Int. Cl. ROCKVILLE, MD (US); EHUD C40B 30/04 (2006.01) GOLDIN, ROCKVILLE, MD (US) CI2O I/68 (2006.01) C40B 40/08 (2006.01) Correspondence Address: KLARQUIST SPARKMAN, LLP (OTT-NIH) (52) U.S. Cl. .................................... 506/9; 435/6; 506/17 121 S.W. SALMONSTREET, SUITE #1600 PORTLAND, OR 97204-2988 (US) (57) ABSTRACT (73) Assignees: THE GOVERNMENT OF THE Methods are provided for evaluating a stroke, for example for UNITED STATES OF AMERICA determining whether a subject has had an ischemic stroke, AS REPRESENTED BY THE determining the severity or likely neurological recovery of a SECRETARY OF THE Subject who has had an ischemic stroke, and determining a DEPARTMENT: OF HEALTH treatment regimen for a subject who has had an ischemic AND HUMAN SERVICES stroke, as are arrays and kits that can be used to practice the methods. In particular examples, the method includes screen (21) Appl. No.: 12/829,229 ing for expression in ischemic stroke related genes (or pro teins), such as white blood cell activation and differentiation (22) Filed: Jul. 1, 2010 genes (or proteins), genes (or proteins) related to hypoxia, genes (or proteins) involved in vascular repair, and genes (or Related U.S. Application Data proteins) related to a specific peripheral blood mononuclear (60) Division of application No.
    [Show full text]