Effect of a Caloric Restriction Based On

Total Page:16

File Type:pdf, Size:1020Kb

Effect of a Caloric Restriction Based On UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA DOCTORAL THESIS Biology PhD “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging” INSTITUTO MADRILEÑO DE ESTUDIOS AVANZADOS EN ALIMENTACIÓN (IMDEA FOOD INSTITUTE) VÍCTOR MICÓ MORENO Madrid, 2018 UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA DOCTORAL THESIS Biology PhD “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging” INSTITUTO MADRILEÑO DE ESTUDIOS AVANZADOS EN ALIMENTACIÓN (IMDEA FOOD INSTITUTE) Memoria presentada por: Víctor Micó Moreno Para optar al grado de: DOCTOR EN BIOLOGÍA Doña Lidia Ángeles Daimiel Ruíz, Doctora en Biología Celular y Genética por la Universidad Autónoma de Madrid, investigadora del Instituto IMDEA Alimentación, informa favorablemente la solicitud de autorización de defensa de la tesis doctoral con el Título: “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging”, presentada por Don Víctor Micó Moreno para optar al grado de Doctor en Biología. Este trabajo ha sido realizado en el Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA Alimentación) bajo su dirección, y cumple satisfactoriamente las condiciones requeridas por el Departamento de Biología de la Universidad Autónoma de Madrid para optar al Título de Doctor. Ha actuado como tutor académico, y presenta su conformidad el Dr. Carlos Francisco Sentís Castaño, vicedecano de Personal Docente e Investigador y profesor titular del Departamento de Biología de la Facultad de Ciencias de la Universidad Autónoma de Madrid. Y para que así conste, firman el presente informe: Carlos Francisco Sentís Castaño, Lidia Ángeles Daimiel Ruiz Vicedecano de Personal Docente Investigadora Junior e Investigador Nutritional Genomics and Profesor Titular Epigenomics Group Departamento de Biología Precision Nutrition and Obesity Facultad de Ciencias Universidad IMDEA Alimentación Autónoma de Madrid. Esta tesis ha sido realizada gracias a la financiación obtenida a través del Instituto de Salud Carlos III (FIS/AES PI14/01374 and PI17/00508), XIV edición de las Becas de Investigación Manuel de Oya otorgadas por la Fundación Cerveza y Salud, Ayudas Merck Serono de Investigación otorgadas por la Fundación Salud 2000 además de un contrato en IMDEA Alimentación financiado por fondos FEDER europeos así como fondos de la Comunidad Autónoma de Madrid. La realización de la estancia internacional de investigación ha sido financiada por Short-Term Scientific Mission program de POSITIVe Cost Action y por Exchange Award de The European Foundation for Alcohol Research “ERAB”. “Nada en la vida debe temerse, solo debe ser entendida” Marie Curie A mis padres Paco y Amparo A mi hermana Sara A Laura Durante la realización de esta tesis doctoral ha habido muchas personas con las que he compartido parte o todo el camino hasta llegar a su final, con los que he tenido la suerte de compartir muchísimas experiencias y, a los que esta tesis, y lo que ello ha significado, pertenece también y me gustaría recordar. A la Dra. Lidia Daimiel, directora de esta tesis, y a la que puedo considerar mi mentora en el mundo de la ciencia. Desde el año 2012, momento en el que entré en IMDEA alimentación realizando prácticas extracurriculares de la universidad bajo su tutoría, comenzamos un camino de 6 años que ha resultado en esta tesis. Gracias por acompañarme en el mundo de la ciencia y el apoyo y confianza depositado en mí. Al Prof. José María Ordovás, director del departamento, el cuál ha sido un placer trabajar en su grupo, y aprender de él. A todo PREDITEAM, Laura B., Javi, Laura D. y Paloma, sin vuestra ayuda y apoyo no hubiera sido posible presentar esta tesis, que también pertenece a vosotros. A Ruth, gracias por todo tu apoyo porque, aunque nos conocemos sólo desde hace un año y medio, me llevo una amistad, muchos buenos momentos y el programa “amadrina un becario”. A todos los estudiantes a los que he tenido la suerte de enseñar, porque también he aprendido mucho de vosotros. A todo el equipo de medicina y enfermería y administración de los centros de atención primaria que han participado en nuestros estudios, así como a todos los voluntarios. A todas las personas que tuve la suerte de conocer durante mi estancia en el King´s College London, pero en especial a la Dra. Ana Rodríguez Mateos por acogerme en su grupo y a “Los científicos”: Geoffrey, Paul y Michele. Thanks for all good moments in London guys! A todos los imdea@s, especialmente Mónica, Su, Silvia, Lara, Cris, Josune, María, Jorge y a todos los predocs que hemos compartido alegrías y penas durante la tesis, por todas las horas compartidas, todos los buenos momentos, todos los misterios e historias ocurridas en IMDEA tratados de ser descubiertos y, en definitiva, haber sido una segunda familia. A mis amig@s de CYTA, Ana, Laura, Mario, Miguel, Isa y Cris, por los momentos compartidos y por los momentos que aún nos queda por compartir. A todos mis compañeros “inmigrantes” del máster, pero en especial a Patri y Elena, por todos los buenos momentos y por finalmente entender que es la p en estadística. A Raquel, de Nutrición, por cumplir aquello que decíamos cuando estudiábamos ¿te imaginas que terminamos doctorándonos? A mis padres, Paco y Amparo, ya que todo lo que ha sucedido ha sido gracias a ellos y nunca habéis dejado de darme vuestro apoyo incondicional y a mi hermana Sara, que me has marcado el camino que yo he continuado y que nunca has dejado de apoyarme y confiar en mí. Y por último, me gustaría agradecer y dedicar esta tesis a Laura ya que esta tesis no hubiera sido posible sin todo su apoyo, cariño y comprensión. Gracias por ser mi compañera tanto en este camino como en la vida y estar siempre a mi lado tanto en los buenos como en los malos momentos INDEX INDEX ABSTRACT / RESUMEN ................................................................................................................... 1 ABBREVIATIONS ............................................................................................................................. 5 INTRODUCTION ............................................................................................................................ 11 1. Aging situation of European and Spanish population ......................................................... 13 2. Interventions focusing on increasing longevity and promoting healthy aging ................... 15 2.1 Pharmacological interventions .......................................................................................... 15 2.2 Interventions on lifestyle .................................................................................................. 16 2.3. Nutritional interventions .................................................................................................. 16 2.3.1. Evidences from studies in animal models ................................................................. 17 2.3.2. Evidences from studies in human populations ......................................................... 18 3. The Mediterranean Diet: a great allied in healthy aging ........................................................ 23 3.1 MD: a healthy diet pattern ................................................................................................ 23 3.2. The role of olive oil in health ............................................................................................ 24 3.3. The role of beer in health ................................................................................................. 25 3. Nutrient sensor pathways ................................................................................................... 27 4.1. Description of the IGF-1/PI3K/AKT/FOXO/mTOR and AMPK/SIRT1/PGC1α pathways and their role in metabolic and cardiovascular diseases ............................................................... 28 4.2. Relationship of nutrient sensing pathways with aging .................................................... 29 5. MicroRNAs ........................................................................................................................... 32 5.1. Synthesis and function of microRNAs .............................................................................. 32 5.2. Relationship between microRNAs and metabolism and metabolic diseases. Modulation mediated by diet. .................................................................................................................... 34 5.3. Circulating microRNAs: biomarkers of health status and response to treatment. .......... 35 5.4. MicroRNAs associated with aging .................................................................................... 36 5.5. Modulation mediated by microRNAs of nutrient sensing pathways ............................... 37 5.5.1. Regulation mediated by microRNAs of the IGF1/PI3K/AKT/mTOR pathway ............ 37 5.5.2. Regulation mediated by microRNAs of the AMPK/SIRT1/PGC1α pathway .............. 39 I INDEX 5.6. Effect of CR on the levels of microRNAs........................................................................... 39 5.7. Exogenous microRNAs ....................................................................................................
Recommended publications
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0267582 A1 BARD Et Al
    US 2010O267582A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0267582 A1 BARD et al. (43) Pub. Date: Oct. 21, 2010 (54) DIFFERENTAL, EXPRESSION OF (60) Provisional application No. 60/575.279, filed on May MOLECULES ASSOCATED WITH ACUTE 27, 2004. STROKE Publication Classification (75) Inventors: ALISON E. BARD, BETHESDA, MD (US); DAVID F. MOORE, (51) Int. Cl. ROCKVILLE, MD (US); EHUD C40B 30/04 (2006.01) GOLDIN, ROCKVILLE, MD (US) CI2O I/68 (2006.01) C40B 40/08 (2006.01) Correspondence Address: KLARQUIST SPARKMAN, LLP (OTT-NIH) (52) U.S. Cl. .................................... 506/9; 435/6; 506/17 121 S.W. SALMONSTREET, SUITE #1600 PORTLAND, OR 97204-2988 (US) (57) ABSTRACT (73) Assignees: THE GOVERNMENT OF THE Methods are provided for evaluating a stroke, for example for UNITED STATES OF AMERICA determining whether a subject has had an ischemic stroke, AS REPRESENTED BY THE determining the severity or likely neurological recovery of a SECRETARY OF THE Subject who has had an ischemic stroke, and determining a DEPARTMENT: OF HEALTH treatment regimen for a subject who has had an ischemic AND HUMAN SERVICES stroke, as are arrays and kits that can be used to practice the methods. In particular examples, the method includes screen (21) Appl. No.: 12/829,229 ing for expression in ischemic stroke related genes (or pro teins), such as white blood cell activation and differentiation (22) Filed: Jul. 1, 2010 genes (or proteins), genes (or proteins) related to hypoxia, genes (or proteins) involved in vascular repair, and genes (or Related U.S. Application Data proteins) related to a specific peripheral blood mononuclear (60) Division of application No.
    [Show full text]
  • Compartmentation of NAD+-Dependent Signalling ⇑ ⇑ Friedrich Koch-Nolte A, , Stefan Fischer B, Friedrich Haag A, Mathias Ziegler B
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 585 (2011) 1651–1656 journal homepage: www.FEBSLetters.org Review Compartmentation of NAD+-dependent signalling ⇑ ⇑ Friedrich Koch-Nolte a, , Stefan Fischer b, Friedrich Haag a, Mathias Ziegler b, a Institute of Immunology, University Medical Center, Martinistr. 52, 20246 Hamburg, Germany b Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway article info abstract Article history: NAD+ plays central roles in energy metabolism as redox carrier. Recent research has identified Received 25 February 2011 important signalling functions of NAD+ that involve its consumption. Although NAD+ is synthesized Revised 21 March 2011 mainly in the cytosol, nucleus and mitochondria, it has been detected also in vesicular and extracel- Accepted 21 March 2011 lular compartments. Three protein families that consume NAD+ in signalling reactions have been Available online 31 March 2011 characterized on a molecular level: ADP-ribosyltransferases (ARTs), Sirtuins (SIRTs), and NAD+ glyco- Edited by Sergio Papa, Gianfranco Gilardi hydrolases (NADases). Members of these families serve important regulatory functions in various and Wilhelm Just cellular compartments, e.g., by linking the cellular energy state to gene expression in the nucleus, by regulating nitrogen metabolism in mitochondria, and by sensing tissue damage in the extracel- + Keywords: lular compartment. Distinct NAD pools may be crucial for these processes. Here, we review the cur- + NAD+ rent knowledge about the compartmentation and biochemistry of NAD -converting enzymes that + ADP-ribosyltransferase control NAD signalling. Sirtuins Ó 2011 Federation of European Biochemical Societies.
    [Show full text]
  • Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
    Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog.
    [Show full text]
  • Metabolic Regulation of Epigenetic Modifications and Cell
    cancers Review Metabolic Regulation of Epigenetic Modifications and Cell Differentiation in Cancer Pasquale Saggese 1, Assunta Sellitto 2 , Cesar A. Martinez 1, Giorgio Giurato 2 , Giovanni Nassa 2 , Francesca Rizzo 2 , Roberta Tarallo 2 and Claudio Scafoglio 1,* 1 Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; [email protected] (P.S.); [email protected] (C.A.M.) 2 Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; [email protected] (A.S.); [email protected] (G.G.); [email protected] (G.N.); [email protected] (F.R.); [email protected] (R.T.) * Correspondence: [email protected]; Tel.: +1-310-825-9577 Received: 20 October 2020; Accepted: 11 December 2020; Published: 16 December 2020 Simple Summary: Cancer cells change their metabolism to support a chaotic and uncontrolled growth. In addition to meeting the metabolic needs of the cell, these changes in metabolism also affect the patterns of gene activation, changing the identity of cancer cells. As a consequence, cancer cells become more aggressive and more resistant to treatments. In this article, we present a review of the literature on the interactions between metabolism and cell identity, and we explore the mechanisms by which metabolic changes affect gene regulation. This is important because recent therapies under active investigation target both metabolism and gene regulation. The interactions of these new therapies with existing chemotherapies are not known and need to be investigated.
    [Show full text]
  • Global Profiling of Metabolic Adaptation to Hypoxic Stress in Human Glioblastoma Cells
    Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. Kucharzewska, Paulina; Christianson, Helena; Belting, Mattias Published in: PLoS ONE DOI: 10.1371/journal.pone.0116740 2015 Link to publication Citation for published version (APA): Kucharzewska, P., Christianson, H., & Belting, M. (2015). Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. PLoS ONE, 10(1), [e0116740]. https://doi.org/10.1371/journal.pone.0116740 Total number of authors: 3 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 07. Oct. 2021 RESEARCH ARTICLE Global Profiling of Metabolic Adaptation to Hypoxic Stress in Human Glioblastoma Cells Paulina Kucharzewska1, Helena C.
    [Show full text]
  • Epigenetic Regulation in B-Cell Maturation and Its Dysregulation in Autoimmunity
    OPEN Cellular and Molecular Immunology (2018) 15, 676–684 www.nature.com/cmi REVIEW Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity Haijing Wu1, Yaxiong Deng1, Yu Feng1, Di Long1, Kongyang Ma2, Xiaohui Wang2, Ming Zhao1, Liwei Lu2 and Qianjin Lu1 B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells. Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell biology and its role in autoimmune development. Thus this review aims to summarize current research progress in epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune conditions such as lupus, rheumatoid arthritis and type 1 diabetes. Cellular and Molecular Immunology advance online publication, 29 January 2018; doi:10.1038/cmi.2017.133 Keywords:
    [Show full text]
  • 1 Novel Expression Signatures Identified by Transcriptional Analysis
    ARD Online First, published on October 7, 2009 as 10.1136/ard.2009.108043 Ann Rheum Dis: first published as 10.1136/ard.2009.108043 on 7 October 2009. Downloaded from Novel expression signatures identified by transcriptional analysis of separated leukocyte subsets in SLE and vasculitis 1Paul A Lyons, 1Eoin F McKinney, 1Tim F Rayner, 1Alexander Hatton, 1Hayley B Woffendin, 1Maria Koukoulaki, 2Thomas C Freeman, 1David RW Jayne, 1Afzal N Chaudhry, and 1Kenneth GC Smith. 1Cambridge Institute for Medical Research and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK 2Roslin Institute, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK Correspondence should be addressed to Dr Paul Lyons or Prof Kenneth Smith, Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK. Telephone: +44 1223 762642, Fax: +44 1223 762640, E-mail: [email protected] or [email protected] Key words: Gene expression, autoimmune disease, SLE, vasculitis Word count: 2,906 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in their licence (http://ard.bmj.com/ifora/licence.pdf). http://ard.bmj.com/ on September 29, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009.
    [Show full text]
  • Activation of the AMPK/Sirt1 Pathway by a Leucine
    METABOLISM CLINICAL AND EXPERIMENTAL 65 (2016) 1679– 1691 Available online at www.sciencedirect.com Metabolism www.metabolismjournal.com Activation of the AMPK/Sirt1 pathway by a leucine–metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans Jheelam Banerjee⁎, Antje Bruckbauer, Michael B. Zemel NuSirt BioPharma Inc., 11020 Solway School Road, Knoxville, TN 37931, USA ARTICLE INFO ABSTRACT Article history: Background. We have previously shown leucine (Leu) to activate Sirt1 by lowering its KM for Received 28 January 2016 NAD+, thereby amplifying the effects of other sirtuin activators and improving insulin Accepted 29 June 2016 sensitivity. Metformin (Met) converges on this pathway both indirectly (via AMPK) and by direct activation of Sirt1, and we recently found Leu to synergize with Met to improve insulin Keywords: sensitivity and glycemic control while achieving ~80% dose-reduction in diet-induced obese AMPK mice. Accordingly, we sought here to define the mechanism of this interaction. Sirt1 Methods. Muscle cells C2C12 and liver cells HepG2 were used to test the effect of Met–Leu on Insulin sensitivity Sirt1 activation. Caenorhabditis elegans was used for glucose utilization and life span studies. Leucine Results. Leu (0.5 mmol/L) + Met (50–100 μmol/L) synergistically activated Sirt1 (p < 0.001) at + Metformin low (≤100 μmol/L) NAD levels while Met exerted no independent effect. This was associated with an increase in AMPK and ACC, phosphorylation, and increased fatty acid oxidation, which was prevented by AMPK or Sirt inhibition or silencing. Met–Leu also increased P-IRS1/IRS1 and P-AKT/AKT and in insulin-independent glucose disposal in myotubes (~50%, p < 0.002) evident within 30 min as well as a 60% reduction in insulin EC50.
    [Show full text]
  • Unexpected Side Effects of Everyday Medication Through Sirtuin1 Modulation
    223-232 9/1/08 16:06 Page 223 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 21: 223-232, 2008 223 Aging and anti-aging: Unexpected side effects of everyday medication through sirtuin1 modulation NICOLE ENGEL2 and ULRICH MAHLKNECHT1,2 1Saarland University Medical Center, Department of Hematology/Oncology, José Carreras Center for Immunotherapy and Gene Therapy, D-66424 Homburg/Saar; 2Department of Hematology/Oncology, University of Heidelberg Medical Center, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany Received August 28, 2007; Accepted October 19, 2007 Abstract. The sirtuin 1 protein (SIRT1) is a member of the Introduction class III NAD+-dependent histone deacetylases, which are also referred to as the ‘sirtuins’. The sirtuins and silent Reversible DNA and protein modification, such as acetylation information regulator 1 (SIRT1) in particular, are known to and deacetylation, are involved in the regulation of tran- play a role in the response to DNA damage, metabolism, scriptional activity and influence protein enzymatic activity. longevity and carcinogenesis. SIRT1 regulates different Acetylation of histone N-terminal lysine residues is carried cellular processes such as proliferation, differentiation and out by histone acetyltransferases (HATs) and is associated apoptosis through deacetylation of important regulatory with increased transcriptional activity in eukaryotic cells proteins such as p53, FOXO3a and NFκB. A number of through chromatin relaxation and may be reversed by different modifiers of SIRT1 expression and activity have competing histone deacetylase (HDAC) enzymatic activities, been discovered and even food and cosmetic additives (e.g. which cause histone deacetylation and thus chromatin resveratrol and dihydrocoumarin) have been suggested to condensation and subsequently repression of gene expression either activate or inhibit the activity of human SIRT1.
    [Show full text]
  • Global Proteomic Detection of Native, Stable, Soluble Human Protein Complexes
    GLOBAL PROTEOMIC DETECTION OF NATIVE, STABLE, SOLUBLE HUMAN PROTEIN COMPLEXES by Pierre Claver Havugimana A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Molecular Genetics University of Toronto © Copyright by Pierre Claver Havugimana 2012 Global Proteomic Detection of Native, Stable, Soluble Human Protein Complexes Pierre Claver Havugimana Doctor of Philosophy Graduate Department of Molecular Genetics University of Toronto 2012 Abstract Protein complexes are critical to virtually every biological process performed by living organisms. The cellular “interactome”, or set of physical protein-protein interactions, is of particular interest, but no comprehensive study of human multi-protein complexes has yet been reported. In this Thesis, I describe the development of a novel high-throughput profiling method, which I term Fractionomic Profiling-Mass Spectrometry (or FP-MS), in which biochemical fractionation using non-denaturing high performance liquid chromatography (HPLC), as an alternative to affinity purification (e.g. TAP tagging) or immuno-precipitation, is coupled with tandem mass spectrometry-based protein identification for the global detection of stably- associated protein complexes in mammalian cells or tissues. Using a cell culture model system, I document proof-of-principle experiments confirming the suitability of this method for monitoring large numbers of soluble, stable protein complexes from either crude protein extracts or enriched sub-cellular compartments. Next, I document how, using orthogonal functional genomics information generated in collaboration with computational biology groups as filters, we applied FP-MS co-fractionation profiling to construct a high-quality map of 622 predicted unique soluble human protein complexes that could be biochemically enriched from HeLa and HEK293 nuclear and cytoplasmic extracts.
    [Show full text]
  • Resveratrol and Vascular Function
    International Journal of Molecular Sciences Review Resveratrol and Vascular Function Huige Li 1,* , Ning Xia 1, Solveig Hasselwander 1 and Andreas Daiber 2,* 1 Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; [email protected] (N.X.); [email protected] (S.H.) 2 Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany * Correspondence: [email protected] (H.L.); [email protected] (A.D.) Received: 25 March 2019; Accepted: 24 April 2019; Published: 30 April 2019 Abstract: Resveratrol increases the production of nitric oxide (NO) in endothelial cells by upregulating the expression of endothelial NO synthase (eNOS), stimulating eNOS enzymatic activity, and preventing eNOS uncoupling. At the same time, resveratrol inhibits the synthesis of endothelin-1 and reduces oxidative stress in both endothelial cells and smooth muscle cells. Pathological stimuli-induced smooth muscle cell proliferation, vascular remodeling, and arterial stiffness can be ameliorated by resveratrol as well. In addition, resveratrol also modulates immune cell function, inhibition of immune cell infiltration into the vascular wall, and improves the function of perivascular adipose tissue. All these mechanisms contribute to the protective effects of resveratrol on vascular function and blood pressure in vivo. Sirtuin 1, AMP-activated protein kinase, and estrogen receptors represent the major molecules mediating the vascular effects of resveratrol. Keywords: resveratrol; endothelium; endothelial nitic oxide synthase; sirtuin 1; cardiovascular disease; vascular function 1. Resveratrol and its Molecular Targets The polyphenolic phytoalexin 3,5,40-trihydroxy-trans-stilbene, better known under its trivial name resveratrol, can be found in numerous plants, such as white hellebore (Veratrum grandiflorum), mulberry (Morus rubra), peanut (Archis hypogaea), and grapes (Vitis vinifera)[1–3].
    [Show full text]