The Expendable Vehicle and Satellite Development

Total Page:16

File Type:pdf, Size:1020Kb

The Expendable Vehicle and Satellite Development The Space Congress® Proceedings 1982 (19th) Making Space Work For Mankind Apr 1st, 8:00 AM The Expendable Vehicle and Satellite Development Harry J. Masoni Project Manager, Systems Engineering Laboratories, Space and Communications Group Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Masoni, Harry J., "The Expendable Vehicle and Satellite Development" (1982). The Space Congress® Proceedings. 4. https://commons.erau.edu/space-congress-proceedings/proceedings-1982-19th/session-4/4 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. THE EXPENDABLE VEHICLE AND SATELLITE DEVELOPMENT Harry J. Masoni Project Manager, Systems Engineering Laboratories Space and Communications Group Hughes Aircraft Company El Segundo, California ABSTRACT missions are those which avail themselves of the satellite's stationary or sweeping view The role of the expendable launch vehicle (ELV) of the earth to economically get a global look in the development of satellite systems is at portions of, or the entire, earth's surface. explored. Essentially an outgrowth of the bal­ Definite advantages are thus afforded for listic missile which was first used for mili­ vital earth tasks such as: communications of tary applications 4 decades ago, the ELV is wideband information via high frequency line- used for a wide spectrum of peacetime appli­ of-sight radio links, large area photographic cations including the launching of earth observations applicable to meteorology, high orbiting satellites which provide inter- and resolution photography for assessment of intra-national communications, large area visible earth resources, and navigation aid photography for weather analysis and predic­ for aircraft and ships. tion, and high resolution imagery capability for earth resources evaluation. The launch It is possible to define any of the above mis­ constraints and considerations which the sions in terms of a generic spacecraft con­ satellite designer must address are reviewed. figuration, as depicted in Figure 1, which consists of a basic spacecraft bus and mission A survey of three payloads developed by Hughes payload. The spacecraft bus functions to: Aircraft Company for launch by expendable 1) establish and maintain a desired orbit and boosters is included. The HS 376 series of attitude following insertion into an approxi­ communications satellites are capable of mate orbit by the expendable launch vehicle, transmitting digital data, digital and analog 2) command and control the spacecraft and voice, and television in a typical geosynchro­ retrieve bus status and payload data via radio nous orbit application. The Geostationary link, and 3) provide power, thermal control, Meteorological Satellite (GMS) records and and mechanical support for the payload. transmits visual and IR images of the entire earth. The multispectral scanner (MSS) is an Communications payloads typically consist of imagery system used aboard the low altitude any up- and downlink radio system wherein LANDSAT spacecraft which creates images in wideband information transmitted via radio four spectral bands for evaluation of earth waves from an earth terminal is received, resources. amplified, and routed to a distant earth ter­ minal. There it enters into the local ground INTRODUCTION communication network. * Information transfer occurs in near real time. Payloads for non­ The development of advanced electronics and communications type spacecraft receive imaging materials technology since an expendable or field/particles information and transmit launch vehicle successfully placed a satellite this data to mission control. This informa­ into earth orbit over 2 decades ago, has given tion may be stored on board the spacecraft rise to a vast array of spacecraft missions bus and transmitted at an appropriate time. designed to benefit mankind. The objectives of these peaceful missions fall into two gen­ The expendable launch vehicle (ELV) is a key eral categories: science exploration and element in the design evolution of every space­ earth applications. Scientific missions deal craft system. It dictates the shape and vol­ with the uncovering of new knowledge of the ume within which the spacecraft must fit and earth and its environment, the solar system, the maximum allowable weight which can be and the stars that cannot be obtained via lofted into the desired trajectory. The earth-bound instruments. Earth applications acoustic noise and mechanical vibration envi- 4-16 ronment produced by the launch vehicle largely harness not only ties together these PAF sub­ establishes the design criteria for the space­ systems, but provides the flow of power and craft structure. signal transfer between the ground and the spacecraft during prelaunch checkout. This paper is confined to the earth orbiting satellite and its interplay with the expend­ Certain satellite missions require spin sta­ able launch vehicle. Due to its broad use and bilization during operation subsequent to application, the geosynchronous orbiting separation of the spacecraft from the launch satellite mission will be used as an example vehicle. This spin rate can be supplied in developing the role of the ELV and its im­ either by a spin table on the launch vehicle's pact on the spacecraft design. The discussion upper stage or by a propulsion system on and methodology, however, can be easily board the spacecraft bus. Of course, the extended to nongeosynchronous missions. A latter technique adds weight, cost and com­ survey of three satellites is provided in the plexity which the satellite designer must, hope that the reader will develop an apprecia­ once again, be cognizant of early in the sys­ tion for the wide range of applications tem development. afforded by satellite technology. TRAJECTORY PLANNING LAUNCH VEHICLE INTERFACES Different satellite missions often require The mechanical interface between the space­ different orbit plane orientations and craft and the launch vehicle represents the periods. Some examples are shown in the brief single most important constraint on the space­ survey presented in the later sections of this craft design. The interface is depicted for paper. For purposes of identifying the a three stage Delta launch vehicle in Fig­ interrelationship of the expendable vehicle ure 2. For every launch vehicle and fairing, and the spacecraft design for this important a payload dynamic envelope is defined by the mission phase, the earth synchronous, or geo­ launch vehicle supplier. The dynamic envel­ stationary, orbit will be used as an example. ope is the volume in the fairing within which the dynamic motions of the spacecraft must be The geostationary orbit is one which affords contained while the fairing is attached during the satellite a stationary position in space the boost phase. The launch vehicle supplier as viewed from the earth. The orbit must must calculate the maximum excursions of the therefore lie in the equatorial plane. It fairing in order to define this volume. Snub- must be circular to eliminate any retrograde bers against the fairing may be required to motion. Finally, it must have a 24 hour hold these excursions to acceptable levels. period. The circular orbit synchronous alti­ Various windows, some removable, are required tude is approximately 35,800 km. in the fairing for access to and inspection of the spacecraft. The spacecraft designer The launch vehicle is a multistage rocket, must use the launch vehicle dynamics flight and it places the spacecraft into a coast environment to calculate the dynamic motions transfer orbit that has an apogee at synchro- of the spacecraft. nouse altitude. The transfer orbit is inclined relative to the equatorial plane. The importance of understanding this inter­ Perigee velocity is approximately 1524 m/sec face can not be emphasized strongly enough. and a final boost velocity of 1829 m/sec is It relates, for example, directly to the required to circularize the orbit and cor­ allowable solar panel area of the spacecraft rect inclination due to off-equator launch. and hence, its power-producing capability. Available power is directly related to system The most weight efficient way to achieve syn­ performance for many mission payloads. The chronous orbit is to have the spacecraft per­ designer must be aware at the inception of the form the apogee orbit injection with a high design process whether or not deployments of thrust solid rocket engine, often referred to antennas, solar panels, or scientific instru­ as an apogee kick motor (AKM). This allows ments are required to mitigate the size and the smallest launch vehicle for a given in- shape constraints imposed by the launch orbit spacecraft weight, but the spacecraft vehicle payload envelope. must cope with large offset thrust pitching moments produced by the solid rocket. These A payload attach fitting (PAF) attaches the perturbing forces can be readily attenuated by spacecraft to the propulsive third stage, spinning the spacecraft along an axis paral­ depicted as a solid rocket motor for the lel to the thrust. In some instances, a Delta application. The PAF also provides a liquid propulsion system may be used in place platform for mounting the electrical, mechan­ of the solid rocket. The attendant lower ical, and ordnance equipment
Recommended publications
  • In-Depth Review of Satellite Imagery / Earth Observation Technology in Official Statistics Prepared by Canada and Mexico
    In-depth review of satellite imagery / earth observation technology in official statistics Prepared by Canada and Mexico Julio A. Santaella Conference of European Statisticians 67th plenary session Paris, France June 28, 2019 Earth observation (EO) EO is the gathering of information about planet Earth’s physical, chemical and biological systems. It involves monitoring and assessing the status of, and changes in, the natural and man-made environment Measurements taken by a thermometer, wind gauge, ocean buoy, altimeter or seismograph Photographs and satellite imagery Radar and sonar images Analyses of water or soil samples EO examples EO Processed information such as maps or forecasts Source: Group on Earth Observations (GEO) In-depth review of satellite imagery / earth observation technology in official statistics 2 Introduction Satellite imagery uses have expanded over time Satellite imagery provide generalized data for large areas at relatively low cost: Aligned with NSOs needs to produce more information at lower costs NSOs are starting to consider EO technology as a data collection instrument for purposes beyond agricultural statistics In-depth review of satellite imagery / earth observation technology in official statistics 3 Scope and definition of the review To survey how various types of satellite data and the techniques used to process or analyze them support the GSBPM To improve coordination of statistical activities in the UNECE region, identify gaps or duplication of work, and address emerging issues In-depth review of satellite imagery / earth observation technology in official statistics 4 Overview of recent activities • EO technology has developed progressively, encouraging the identification of new applications of this infrastructure data.
    [Show full text]
  • Detecting, Tracking and Imaging Space Debris
    r bulletin 109 — february 2002 Detecting, Tracking and Imaging Space Debris D. Mehrholz, L. Leushacke FGAN Research Institute for High-Frequency Physics and Radar Techniques, Wachtberg, Germany W. Flury, R. Jehn, H. Klinkrad, M. Landgraf European Space Operations Centre (ESOC), Darmstadt, Germany Earth’s space-debris environment tracked, with estimates for the number of Today’s man-made space-debris environment objects larger than 1 cm ranging from 100 000 has been created by the space activities to 200 000. that have taken place since Sputnik’s launch in 1957. There have been more than 4000 The sources of this debris are normal launch rocket launches since then, as well as many operations (Fig. 2), certain operations in space, other related debris-generating occurrences fragmentations as a result of explosions and such as more than 150 in-orbit fragmentation collisions in space, firings of satellite solid- events. rocket motors, material ageing effects, and leaking thermal-control systems. Solid-rocket Among the more than 8700 objects larger than 10 cm in Earth orbits, motors use aluminium as a catalyst (about 15% only about 6% are operational satellites and the remainder is space by mass) and when burning they emit debris. Europe currently has no operational space surveillance aluminium-oxide particles typically 1 to 10 system, but a powerful radar facility for the detection and tracking of microns in size. In addition, centimetre-sized space debris and the imaging of space objects is available in the form objects are formed by metallic aluminium melts, of the 34 m dish radar at the Research Establishment for Applied called ‘slag’.
    [Show full text]
  • Spacecraft Network Operations Demonstration Using
    Nodes Spacecraft Network Operations Demonstration Using Multiple Spacecraft in an Autonomously Configured Space Network Allowing Crosslink Communications and Multipoint Scientific Measurements Nodes is a technology demonstration mission that was launched to the International Space Station on December 6, 2015. The two Nodes satellites subsequently deployed from the Station on May 16, 2016 to demonstrate new network capabilities critical to the operation of swarms of spacecraft. The Nodes satellites accomplished all of their planned mission objectives including three technology ‘firsts’ for small spacecraft: commanding a spacecraft not in direct contact with the ground by crosslinking commands through a space network; crosslinking science data from one Nodes satellite to the second Nodes spacecraft deployed into low Earth orbit satellite before sending it to the ground; and communication, one ultra high frequency autonomous reconfiguration of the space (UHF) radio for crosslink communication, and communications network using the capability an additional UHF beacon radio to transmit of Nodes to automatically select which state-of-health information. satellite is best suited to serve as the ground relay each day. The Nodes science instruments, identical to those on the EDSN satellites, collected The Nodes mission consists of two 1.5- data on the charged particle environment unit (1.5U) CubeSats, each weighing at an altitude of about 250 miles (400 approximately 4.5 pounds (2 kilograms) and kilometers) above Earth. These Energetic measuring about 4 inches x 4 inches x 6.5 Particle Integrating Space Environment inches (10 centimeters x 10 centimeters x Monitor (EPISEM) radiation sensors were 16 centimeters). This mission followed last provided by Montana State University in year’s attempted launch of the eight small Bozeman, Montana, under contract to satellites of the Edison Demonstration of NASA.
    [Show full text]
  • Build a Spacecraft Activity
    UAMN Virtual Family Day: Amazing Earth Build a Spacecraft SMAP satellite. Image: NASA. Discover how scientists study Earth from above! Scientists use satellites and spacecraft to study the Earth from outer space. They take pictures of Earth's surface and measure cloud cover, sea levels, glacier movements, and more. Materials Needed: Paper, pencil, craft materials (small recycled boxes, cardboard pieces, paperclips, toothpicks, popsicle sticks, straws, cotton balls, yarn, etc. You can use whatever supplies you have!), fastening materials (glue, tape, rubber bands, string, etc.) Instructions: Step 1: Decide what you want your spacecraft to study. Will it take pictures of clouds? Track forest fires? Measure rainfall? Be creative! Step 2: Design your spacecraft. Draw a picture of what your spacecraft will look like. It will need these parts: Container: To hold everything together. Power Source: To create electricity; solar panels, batteries, etc. Scientific Instruments: This is the why you launched your satellite in the first place! Instruments could include cameras, particle collectors, or magnometers. Communication Device: To relay information back to Earth. Image: NASA SpacePlace. Orientation Finder: A sun or star tracker to show where the spacecraft is pointed. Step 3: Build your spacecraft! Use any craft materials you have available. Let your imagination go wild. Step 4: Your spacecraft will need to survive launching into orbit. Test your spacecraft by gently shaking or spinning it. How well did it hold together? Adjust your design and try again! Model spacecraft examples. Courtesy NASA SpacePlace. Activity adapted from NASA SpacePlace: spaceplace.nasa.gov/build-a-spacecraft/en/ UAMN Virtual Early Explorers: Amazing Earth Studying Earth From Above NASA is best known for exploring outer space, but it also conducts many missions to investigate Earth from above.
    [Show full text]
  • NTIA Technical Report TR-78-9 Current Activities in Small Earth
    NTtA-REPORT -78-9 Current Activities in Small Earth Terminal Satellite Domestic Telecommunications Paul I. Wells u.s. DEPARTMENT OF COMMERCE Juanita M. Kreps, Secretary Henry Geller, Assistant Secretary for Communications and Information August 1978 TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES vi ABSTRACT 1 1. INTRODUCTION. 1 2 . DOMESTIC S,ATELLITES - PRESENT AND PLANNED 2 2.1. Domestic Satellite Technical Characteristics 6 2.1.1. Western Union WESTAR Satellite 6 2.1.2. RCA Americom SATCOM Satellite 6 2.1.3. Comsat General COMSTAR Satellite 8 2.1.4. S~tellite Business Systems ~pacecraft 10 2.2. Domestic Satellite Channel Capacity 10 2.3. Multiple Access in Satellite Communications 11 3. DOMESTIC EARTH STATIONS - PRESENT AND PLANNED 14 3.1. Domesti~ Earth Station Applications 15 3 .1.1. Point~to-poi,nt Communication Services 15 3 .1. 2. Point-'to-Multipoint Communication Services 16 3.2. Domestic Earth Stati6rt Facilities 17 3.3. Domestic Eart'h Station Equipment Costs 19 4. PREPARATION FOR THE GENERAL WARC IN 1979 31 4.1. Allocations for Fixed- and Broad~asting- Satellite Service 36 4.1.1. 2.50 GHz to 2.69 GHz 52 4.1.2. 3.4 GHz to 3.7 GHZ 56 4.1.3. 3.70 GHz to 4.20 GHz 57 4 . 1. 4. 4.40 GHz to 4.70 GHz 57 4.1.5. 5.725 GHz to 5.925 GHz 58 4.1.6. 7.25 GHz to 7.75 GHz 58 4.1.7. 7.90 GHz to 8.40 GHz 58 4.1.8.
    [Show full text]
  • Positioning: Drift Orbit and Station Acquisition
    Orbits Supplement GEOSTATIONARY ORBIT PERTURBATIONS INFLUENCE OF ASPHERICITY OF THE EARTH: The gravitational potential of the Earth is no longer µ/r, but varies with longitude. A tangential acceleration is created, depending on the longitudinal location of the satellite, with four points of stable equilibrium: two stable equilibrium points (L 75° E, 105° W) two unstable equilibrium points ( 15° W, 162° E) This tangential acceleration causes a drift of the satellite longitude. Longitudinal drift d'/dt in terms of the longitude about a point of stable equilibrium expresses as: (d/dt)2 - k cos 2 = constant Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF EARTH ASPHERICITY VARIATION IN THE LONGITUDINAL ACCELERATION OF A GEOSTATIONARY SATELLITE: Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN & MOON ATTRACTION Gravitational attraction by the sun and moon causes the satellite orbital inclination to change with time. The evolution of the inclination vector is mainly a combination of variations: period 13.66 days with 0.0035° amplitude period 182.65 days with 0.023° amplitude long term drift The long term drift is given by: -4 dix/dt = H = (-3.6 sin M) 10 ° /day -4 diy/dt = K = (23.4 +.2.7 cos M) 10 °/day where M is the moon ascending node longitude: M = 12.111 -0.052954 T (T: days from 1/1/1950) 2 2 2 2 cos d = H / (H + K ); i/t = (H + K ) Depending on time within the 18 year period of M d varies from 81.1° to 98.9° i/t varies from 0.75°/year to 0.95°/year Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN RADIATION PRESSURE Due to sun radiation pressure, eccentricity arises: EFFECT OF NON-ZERO ECCENTRICITY L = difference between longitude of geostationary satellite and geosynchronous satellite (24 hour period orbit with e0) With non-zero eccentricity the satellite track undergoes a periodic motion about the subsatellite point at perigee.
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • Satellite/Teletext News
    SATELLITE/TELETEXTSATELLITE /TELETEXT NEWSNEWS GARY ARLEN CONTRIBUTING EDITOR WPIX BECOMES WPIX-TV,WPIX -TV, the popular New York City televisiontelevision Channel 1111., isis becoming the newest satellite superstation, transmitted nationwide vviaia a transponder on Westar 66.. WPIX.WPIX , with its full SUPERSTATION compcomplementlement of New York -area sports events, movies, and other programming,programming, will be beamed by United Video, the the same satellite carrier that made WGN WGN-TV, -TV, Chicago, Chicago , into a superstationsuperstation.. ESPN MAY ESPN, the mostly mostly sports network on Satcom 3R, may begin scrambling itsits satellite transmistransmis-­ sion by year's end. The company is in the preliminapreliminaryry stages of analyzing analyzing how, or or if, iitt could could SCRAMBLE begin encoding its signals:signals; it would would be the the first ad- ad-supported supported cable /satellitesatellite network to to installinstall such scrambscramblingling to prevent reception by unauthorized earth stations. ESPN claims that that pick-pick­ ups by home and apartment earth stations diminishes the value of its programming to cable cab le­ - TV operators who pay for the 24-hour24 -hour channel. HBO is already well well along onoil scrambling tests,tests, and Showtime cabcablele /paypay TV network is considering a scrambling system. SKYSKY-HIGH -HIGH More than 550,000550.000 backyard earth stations will be installed this yearyear., twice the number set up during 1983,1983. according to a forecast by KLM Electronics PresidentPresident Peter Dalton, an official of PREDICTIONS the home earth-stationearth -station association, SPACE. IfIf Dalton'sDalton 's prediction comes true,true. upwards of 875,000875,000 dishes will be in place by the end of 1984, including units at apartmentsapartments., schools.schools, and office buildingsbuildings,, as well as home satellite receiversreceivers.
    [Show full text]
  • Satellite Orbits
    Course Notes for Ocean Colour Remote Sensing Course Erdemli, Turkey September 11 - 22, 2000 Module 1: Satellite Orbits prepared by Assoc Professor Mervyn J Lynch Remote Sensing and Satellite Research Group School of Applied Science Curtin University of Technology PO Box U1987 Perth Western Australia 6845 AUSTRALIA tel +618-9266-7540 fax +618-9266-2377 email <[email protected]> Module 1: Satellite Orbits 1.0 Artificial Earth Orbiting Satellites The early research on orbital mechanics arose through the efforts of people such as Tyco Brahe, Copernicus, Kepler and Galileo who were clearly concerned with some of the fundamental questions about the motions of celestial objects. Their efforts led to the establishment by Keppler of the three laws of planetary motion and these, in turn, prepared the foundation for the work of Isaac Newton who formulated the Universal Law of Gravitation in 1666: namely, that F = GmM/r2 , (1) Where F = attractive force (N), r = distance separating the two masses (m), M = a mass (kg), m = a second mass (kg), G = gravitational constant. It was in the very next year, namely 1667, that Newton raised the possibility of artificial Earth orbiting satellites. A further 300 years lapsed until 1957 when the USSR achieved the first launch into earth orbit of an artificial satellite - Sputnik - occurred. Returning to Newton's equation (1), it would predict correctly (relativity aside) the motion of an artificial Earth satellite if the Earth was a perfect sphere of uniform density, there was no atmosphere or ocean or other external perturbing forces. However, in practice the situation is more complicated and prediction is a less precise science because not all the effects of relevance are accurately known or predictable.
    [Show full text]
  • Microrna-206 Promotes Skeletal Muscle Regeneration and Delays Progression of Duchenne Muscular Dystrophy in Mice
    microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice Ning Liu, … , Rhonda Bassel-Duby, Eric N. Olson J Clin Invest. 2012;122(6):2054-2065. https://doi.org/10.1172/JCI62656. Research Article Muscle biology Skeletal muscle injury activates adult myogenic stem cells, known as satellite cells, to initiate proliferation and differentiation to regenerate new muscle fibers. The skeletal muscle–specific microRNA miR-206 is upregulated in satellite cells following muscle injury, but its role in muscle regeneration has not been defined. Here, we show that miR- 206 promotes skeletal muscle regeneration in response to injury. Genetic deletion of miR-206 in mice substantially delayed regeneration induced by cardiotoxin injury. Furthermore, loss of miR-206 accelerated and exacerbated the dystrophic phenotype in a mouse model of Duchenne muscular dystrophy. We found that miR-206 acts to promote satellite cell differentiation and fusion into muscle fibers through suppressing a collection of negative regulators of myogenesis. Our findings reveal an essential role for miR-206 in satellite cell differentiation during skeletal muscle regeneration and indicate that miR-206 slows progression of Duchenne muscular dystrophy. Find the latest version: https://jci.me/62656/pdf Research article microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice Ning Liu,1 Andrew H. Williams,1 Johanna M. Maxeiner,1 Svetlana Bezprozvannaya,1 John M. Shelton,2 James A. Richardson,1,3 Rhonda Bassel-Duby,1 and Eric N. Olson1 1Department of Molecular Biology, 2Department of Internal Medicine, and 3Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
    [Show full text]
  • Classification of Geosynchronous Objects
    esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by ESA’s Space Debris Office Reference GEN-DB-LOG-00211-OPS-GR Issue 20 Revision 0 Date of Issue 28 May 2018 Status Issued Document Type Technical Note Distribution ESA UNCLASSIFIED - Limited Distribution European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2018. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1523 objects for which orbital data are available (of which 0 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 519 are actively controlled, 795 are drifting above, below or through GEO, 189 are in a libration orbit and 19 are in a highly inclined orbit. For 1 object the status could not be determined. Furthermore, there are 59 uncontrolled objects without orbital data (of which 54 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1582. If you detect any error or if you have any comment or question please contact: Stijn Lemmens European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-902634 E-mail: [email protected] Page 1 / 187 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 28 May 2018 Issue 20 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) .
    [Show full text]
  • Sts-41B Press Kit February 1984
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE SHUTTLE MISSION STS-41B PRESS KIT FEBRUARY 1984 UNTETHERED EVA; SHUTTLE PALLETT SATELLITE (SPAS-01A); PALAPA-B2 AND WESETAR VI DEPLOYMENT Edited by Richard W. Orloff, 01/2001/Page 1 STS-41B INSIGNIA S83-45520 -- The orbiter is flanked in the oval by an illustration of a PAM-D assisted satellite deployment; and an astronaut making the first non-tethered extravehicular activity; and eleven stars. The crew member at right is equipped with the manned maneuvering unit, a debuting backpack/motor apparatus allowing for much greater freedom of movement than that experienced by any previous space travelers performing EVA. The artist was Robert McCall. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced. PHOTO CREDIT: NASA or National Aeronautics and Space Administration. Edited by Richard W. Orloff, 01/2001/Page 2 RELEASE NO: 84-4 January 1984 CONTACTS Jim Kukowski/David Garrett Headquarters, Washington, D.C. (Phone: 202/453-8590) Dick Young Kennedy Space Center, Fla. (Phone: 305/867-2468) Terry White Johnson Space Center, Houston, Texas (Phone: 713/483-5111) Bob Ruhl Marshall Space Flight Center, Huntsville, Ala. (Phone: 205/453-0034) Ralph B. Jackson Dryden Flight Research Facility, Edwards, Calif. (Phone: 805/258-8381) Jim Elliott Goddard Space Flight Center, Greenbelt, Md.
    [Show full text]