Comparison of Tissue Preservation Using Formalin and Ethanol As Preservative Formula

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Tissue Preservation Using Formalin and Ethanol As Preservative Formula View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Althea Medical Journal 359 Comparison of Tissue Preservation using Formalin and Ethanol as Preservative Formula See Woan Shian,1 Arifin Soenggono,2 Sawkar Vijay Pramod3 1Faculty of Medicine Universitas Padjadjaran, 2Department of Anatomy and Cell Biology, 3Department of Surgery Faculty of Medicine Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital Bandung Abstract Background: Tissue preservation can be performed through embalming, by providing the chemical embalming fluid to the human remains. Formalin’s preservative formula is the foundation for modern methodsstudy was of to embalming. compare the Unfortunately, tissue preservation this preservative using formalin formula and has ethanol several as disadvantages.preservative formula. While Ethanol’s Methods:preservative This formula study wasis a carriedconsiderable out from agent September–October to replace formalin’s 2014 preservative in the Laboratory formula. of theThe Department aim of this of Anatomy, Faculty of Medicine, Universitas Padjadjaran. The study used the laboratory experimental method with consecutive sampling of 16 Wistar Rats. Thirty two soleus muscles and thirty two colons were collected and divided into two groups. Each group consisted of 16 soleus muscles and 16 colons. Group 1 wasof bacteria preserved were with determined formalin’s before preservative and after formula treatment. and Group 2 was preserved with ethanol’s preservative Results:formula. The two groups were preserved for six weeks. The tissue’s color, consistency, odor and the growth growth of Tissues bacteria preserved in tissues with but failedethanol’s to retain preservative the consistency. formula hadAll the better data tissue were preservation analyzed with in Chi-square the aspect oftest. color and odor, compared with formalin’s preservative formula. Both preservative formulas showed no Conclusions: preservative formula. [AMJ.2016;3(3):359–63] Ethanol’s preservative formula preserves better quality of tissue compared to formalin’s Keywords: Ethanol, formalin, tissue preservation Introduction infection on contact with dead body, prevent over-hardening and retention of color of tissues and organs, prevent desiccation, inhibit In the framework of undergraduate medical fungal or bacterial growth and has lesser risk education, cadavers are main educational of being a potential environmental chemical tools which are intended for dissection and hazards and biohazards.3,4 to demonstrate prosected specimen through 1,2 Formalin, which is composed of a visual, auditory and tactile pathways. Hence, saturated water solution containing 39–40% tissue preservation plays a pivotal role which of formaldehyde, is discovered in the year is to preserve cadavers, maintaining its life- 1869.3 After formalin was determined to be an like physical characteristics and prevents its 3 excellent preservative, it became the foundation decomposition. This can be done through for modern methods of embalming.3,4 However, embalming, which is an art and science in formalin as preservative formula has several disadvantages for embalming purposes. which is composed of chemical to the human 3 modernremains. culture The aims by of giving embalming the embalming for anatomical fluid health problems, causes over hardening of purposes are to prevent putrefaction progress tissues, coagulates blood, convert tissues to on the cadavers, ensure that there is no risk of Formalin’s preservative formula will lead to Correspondence: See Woan Shian, Faculty of Medicine, Universitasa grey Padjadjaran, hue when Jalan itRaya mixes Bandung-Sumedang with blood, Km.21,fixes Jatinangor, Sumedang, Indonesia, Phone: +6287822004420 Email: [email protected] Althea Medical Journal. 2016;3(3) 360 AMJ September 2016 discolorations, dehydrates tissues, constricts of glycerin, 50ml of phenol, 200g of sodium capillaries and has a suffocating odor.2,3,5,6 In chloride and 600ml of water whereas the addition, ethanol has been phased out for Product Type 22 ‘Embalming and taxidermist 700ml of ethanol, 200ml of phenol, 40ml of 3 Based on several ethanol’sglycerin, 10g preservative of sodium chloride,formula 30mlconsisted of water of researches, ethanol has several advantages and 30ml of formalin. asfluids’ preservative by 1 September formula 2006. and has less risk to Then, the Wistar rats were dissected to health problems.7 Therefore, ethanol can be collect 32 soleus muscles and 32 colons. considered to replace formalin as preservative Firstly, a Wistar rat was put into an inverted formula.3 This study was conducted to compare beaker for anesthesia. The inverted beaker the tissue preservation using formalin and consisted of cotton that was soaked with the ethanol as preservative formula. lethal volume of ether. Next, the Wistar rat was placed on a dissecting tray with needles Methods to secure it. Then, the dissection started by cutting down from the neck to the lower abdomen. Another two lines were cut towards This study was carried out from September– left and right from the end of the center line. October 2014 in the Laboratory of Department The visceral organs were removed and the of Anatomy, Faculty of Medicine, Universitas blood was washed with NaCl 0.9%. Afterward, Padjadjaran. All experiments performed on the the soleus muscles and colons were collected. laboratory animals in this study were approved The dissection procedure was repeated for all by the Health Research Ethics Committee, the Wistar rats. Faculty of Medicine, Universitas Padjadjaran. After all the tissue samples were collected, Formalin and ethanol preservative formula the soleus muscles and colons were divided were obtained from the Laboratory of into two groups. Group 1 was preserved with Department of Anatomy, Faculty of Medicine, Universitas Padjadjaran. The study used the laboratory experimental formula. Each tissue was preserved with 6ml method with consecutive sampling of sixteen formalin’s preservative formula and Group 2 was preserved with ethanol’s preservative healthy male Wistar Rats as study subjects. The two groups were preserved for six The inclusion criteria for the study subjects 0 ofweeks preservative in a temperature fluid in one of 10plastic container. were healthy Wistar rats which were 8 color, consistency, odor and the growth of weeks old male and weighing between 250g, bacteria were determined beforeC. andThe after tissue’s the whereby the exclusion criteria was the Wistar preservation. rats which did not move actively. The colors of the tissues were accessed The preservative chemicals were prepared visually, the odors of the tissues were accessed one week before the dissection by measuring by smelling and the consistencies of the the preservative chemicals according to the tissues were accessed by tactile sensation. volume using a measurement beaker and The growths of bacteria of the tissues were determined by the results on blood agar. The formula consisted of 150ml of formalin, 200ml beam balance. The formalin’s preservative Table 1 Color of Tissue Before and After Preservation Formalin’s Ethanol’s p-value Color Preservative Formula Preservative Formula (Chi-square Test) Before 0.599 Pink 16 16 Pale Red 16 16 After 0.000 Grayish Chocolate 16 0 Reddish Pink 0 16 Grayish White 16 0 Yellowish White 0 16 Althea Medical Journal. 2016;3(3) See Woan Shian, Arifin Soenggono, Sawkar Vijay Pramod: Comparison of Tissue Preservation using Formalin 361 and Ethanol as Preservative Formula Figure 1 Color of Soleus Muscle: (a) soleus muscle before preservation showed pink color. (b)soleus muscle preserved by formalin’s preservative formula preservation showed grayish chocolate color. (c)soleus muscle preserved by ethanol’s preservative formula preservation showed reddish pink color. Figure 2 Color of Colon: (a) colon before preservation showed pale red color. (b)colon preserved by formalin’s preservative formula preservation showed grayish white color.(c)soleus muscle preserved by ethanol’s preservative formula preservation showed yellowish white color procedure of detection of the growth of bacteria the p-value was more than 0.05. began by putting the tissue samples into test However, for the comparison of color of tubes which contained brain-heart infusion the tissues after using formalin and ethanol media. After the samples were incubated at a temperature of 370C for 24 hours, each sample difference because the p value was less than was inoculated on blood agar. Then, results as0.05. a preservative The color of theformula, tissue itthat had was a significantpreserved were obtained after the incubation of blood agar for 24 hours at a temperature of 370C. more similar to the color of the tissue before Furthermore, data of color, consistency, by the ethanol’s preservative formula was odor and growth of bacteria of the tissues preservative formula. Thus, the color of the before and after preservation were statistically preservation rather than the formalin’s analyzed using the Chi-square test. Statistically formula was better than the color of the tissue tissue preserved by the ethanol’s preservative Analysis was performed by comparing the formula (Table 1). significant was considered when p<0.05. preservedThe comparison by the formalin’sof odor preservativeof tissue preservation after using formalin and ethanol tissuepreservative preservation formula group.between the formalin’s preservative formula group and the ethanol’s difference because the p-value was less
Recommended publications
  • The Harmful Effects of Food Preservatives on Human Health Shazia Khanum Mirza1, U.K
    Journal of Medicinal Chemistry and Drug Discovery ISSN: 2347-9027 International peer reviewed Journal Special Issue Analytical Chemistry Teacher and Researchers Association National Convention/Seminar Issue 02, Vol. 02, pp. 610-616, 8 January 2017 Available online at www.jmcdd.org To Study The Harmful Effects Of Food Preservatives On Human Health Shazia Khanum Mirza1, U.K. Asema2 And Sayyad Sultan Kasim3. 1 -Research student , Dept of chemistry, Maulana Azad PG & Research centre, Aurangabad. 2-3 -Assist prof. Dept of chemistry,Maulana Azad college Arts sci & com.Aurangabad. ABSTRACT Food chemistry is the study of chemical processes and interactions of all biological and non- biological components. Food additives are chemicals added to foods to keep them fresh or to enhance their color, flavor or texture. They may include food colorings, flavor enhancers or a range of preservatives .The chemical added to a particular food for a particular reason during processing or storage which could affect the characteristics of the food, or become part of the food Preservatives are additives that inhibit the growth of bacteria, yeasts, and molds in foods. Additives and preservatives are used to maintain product consistency and quality, improve or maintain nutritional value, maintain palatability and wholesomeness, provide leavening(yeast), control pH, enhance flavour, or provide colour Some additives have been used for centuries; for example, preserving food by pickling (with vinegar), salting, as with bacon, preserving sweets or using sulfur dioxide as in some wines. Some preservatives are known to be harmful to the human body. Some are classified as carcinogens or cancer causing agents. Keywords : Food , Food additives, colour, flavour , texture, preservatives.
    [Show full text]
  • Food Preservative Capabilities of Grape (Vitis Vinifera) and Clementine Mandarin (Citrus Reticulata) By-Products Extracts in South Africa
    sustainability Article Food Preservative Capabilities of Grape (Vitis vinifera) and Clementine Mandarin (Citrus reticulata) By-products Extracts in South Africa Trust M. Pfukwa 1, Olaniyi A. Fawole 2,3, Marena Manley 1 , Pieter A. Gouws 1, Umezuruike Linus Opara 2,3 and Cletos Mapiye 4,* 1 Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; [email protected] (T.M.P.); [email protected] (M.M.); [email protected] (P.A.G.) 2 Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; [email protected] (O.A.F.); [email protected] (U.L.O.) 3 Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa 4 Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa * Correspondence: [email protected]; Tel.: +27-21-808-2640 Received: 15 February 2019; Accepted: 19 March 2019; Published: 22 March 2019 Abstract: The drive towards sustainable food systems coupled with increased consumer sophistication have prompted innovation in waste valorization. Grape and citrus processing by-products, abundant in the Mediterranean and tropical regions, respectively, are expanding and are sustainable sources of bioactive phytochemicals that can be used as natural preservatives for foods. Phytochemical composition, antioxidant, and antimicrobial properties of extracts from grape pomace (GPE), seeds (GSE), and clementine mandarin peel and pulp (MPE) grown in South Africa were analyzed.
    [Show full text]
  • The Effect of Preservatives and Flavour Additive on the Production of Oxygen-Free Radicals by Isolated Human Neutrophils
    International Journal of Nutrition and Food Sciences 2014; 3(3): 210-215 Published online May 30, 2014 (http://www.sciencepublishinggroup.com/j/ijnfs) doi: 10.11648/j.ijnfs.20140303.23 The effect of preservatives and flavour additive on the production of oxygen-free radicals by isolated human neutrophils E. Al-Shammari 1, R. Bano 1, * , S. Khan 1, I. Shankity 2 1Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Ksa 2Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Ksa Email address: [email protected] (R. Bano) To cite this article: E. Al-Shammari, R. Bano, S. Khan, I. Shankity. The Effect of Preservatives and Flavour Additive on the Production of Oxygen-Free Radicals by Isolated Human Neutrophils. International Journal of Nutrition and Food Sciences. Vol. 3, No. 3, 2014, pp. 210-215. doi: 10.11648/j.ijnfs.20140303.23 Abstract: Introduction: Researchers have recently described a relationship between food additives and immune system responses. A decline in immune response has also been observed in people who are in contact with food additives, such as preservatives and flavours found in different foods. Objectives: The objective of the present study was to investigate the in vitro effect of food additives, such as vanillin, Monosodium L- glutamate, Sodium Benzoate, and potassium nitrate, on the production of oxygen free radicals (OFRs) by isolated human nutrophils. Methods: The study was based on the isolation of neutrophils (polymorphonuclear leukocytes; PMNs) from normal blood to determine the effects of preservatives and flavouring additives on the production of Oxygen Free Radicals by stimulated PMNs.
    [Show full text]
  • Formaldehyde
    FORMALDEHYDE ____________________Name ____________________________________________DateDate alsocalled…formalin,formicaldehyde,methanal,methylaldehyde,methyleneoxide, oxomethane,oxymethylene,morbicidacid.Formaldehydeisreleasedbythesecommon preservatives: quaternium-15 (Dowicilor1-(3-chloroallyl)-3,5,7-triaza-1-azonia-adamantane- chloride),DMDMhydantoin (Glydantor1,3-dimethylol-5,5-dimethylhydantoin), diazolidinyl urea (GermallII), imidazolidinylurea (Germall,imidurea), 2-bromo-2-nitropropane-1,3-diol (Bronopol),andinindustry trisnitromethane (TrisNitro). Whatisit? Formaldehydeisadisinfectantandpreservative. Wheremightitbefound? Photographicdeveloper Make-upremover,toner Mildewresistantfinish,preservative Moisturizingcream,lotion Embalmingfluid,tissuefixative Make-up,concealer,powder Waterproofglue,adhesive,rubbercement Blush,bronzer Latexemulsions,inksolutions,etchingmaterial Mascara,eyepencil,shadow Water-basedpaint,paintprimer,paintstripper Shampoo,bodycleanser Wax,polish,woodcleaner,waterprooffinish Hairconditioner,tonic,spray Plywood,masonite,particleboard,MDF Hairstylinggel,mousse Asphaltshingles,flooring,fillingagents Sunscreen,sunlesstanner Smokefromwood,coal,kerosene,charcoal Bodypowder,talcumpowder Naturalgascombustion,cigar&cigarettesmoke Mouthwash Aftershave,antiperspirant Howtoavoidit: Bubblebath,liquidsoap Toeliminateexposuretoformaldehyde,checkthe Femininehygienespray,rinse completeingredientlist ofeachproductyouuse. Nailpolish,cuticleremover Checkprescriptionmedicinesandcreamstoo. Fingernailhardener Lookforanyofthenamesabove.Forproducts
    [Show full text]
  • Food Preservative Sorbic Acid Deregulates Hepatic Fatty Acid Metabolism
    Volume 28 Issue 2 Article 2 2020 Food preservative sorbic acid deregulates hepatic fatty acid metabolism Follow this and additional works at: https://www.jfda-online.com/journal Part of the Food Science Commons, Medicinal Chemistry and Pharmaceutics Commons, Pharmacology Commons, and the Toxicology Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Chen, Chia-Hui; Ho, Sin-Ni; Hu, Po-An; Kou, Yu Ru; and Lee, Tzong-Shyuan (2020) "Food preservative sorbic acid deregulates hepatic fatty acid metabolism," Journal of Food and Drug Analysis: Vol. 28 : Iss. 2 , Article 2. Available at: https://doi.org/10.38212/2224-6614.1055 This Original Article is brought to you for free and open access by Journal of Food and Drug Analysis. It has been accepted for inclusion in Journal of Food and Drug Analysis by an authorized editor of Journal of Food and Drug Analysis. ORIGINAL ARTICLE Food preservative sorbic acid deregulates hepatic fatty acid metabolism Chia-Hui Chen a,1, Sin-Ni Ho b,1, Po-An Hu a,1,YuRuKoub, Tzong-Shyuan Lee a,* a Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan b Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan Abstract Sorbic acid (SA) is one of the most commonly used food preservatives worldwide. Despite SA having no hepato- toxicity at legal dosages, its effect on hepatic lipid metabolism is still unclear. We investigated the effect of SA on hepatic lipid metabolism and its mechanism of action in C57BL/6 mice.
    [Show full text]
  • Concentrate Ingredient List
    321 Goldsboro Street • Newton Grove, NC 28366 1-800-742-8334 • Fax 770-234-6333 www.1-800-Shaved-Ice.com Concentrate Ingredient List Notice - Concentrate ingredients may occasionally change due to suppliers and flavor profiles. Always check the ingredient label on the bottle to ensure accuracy. Concentrate Ingredients Flavor Bahama Mama Water, Citric Acid, Propylene Glycol, Artificial Flavor, FD & C Red #40,Yellow #5, Xanthan Gum, Sodium Benzoate (preservative),Natural Gums, Polydimethylsilozane. Banana Water, Propylene Glycol, FD & C Yellow #5, Citric Acid, Natural and Artificial Flavors, Natural Gums,Sodium Benzoate (preservative) Black Cherry Water, Citric Acid, Tartaric Acid, Granulated Sugar, FD & C Red #40 and Blue #1, Propylene Glycol, Natural and Artificial Flavors, and Sodium Benzoate (preservative). Blackberry Water, Citric Acid, Natural and Artificial Flavors, FD & C Red #40, FD & C Blue #1, Sodium Benzoate (preservative). Blue Bubble Gum Water, Propylene Glycol, Natural and Artificial Flavors, Natural Gums, FD & C Blue #1 and Sodium Benzoate (preservative). Blue Coconut Water, Sugar, Propylene Glycol, FD & C Blue #1, Natural Gums, Natural and Artificial Flavors, Phosphoric Acid, Potassium Sorbate, Sodium Benzoate (preservative) Blue Cotton Candy Water, Citric Aicd, Natural and Artificial Flavors, Propylene Glycol, FD&C Blue #1, Natural Gums, Titanium Dioxide, Sodium Benzoate and Phosphoric Acid. Blue Eagle Water, Proyplene Glycol, Natural and Artificial Flalvors, Granulated Sugar, Natural Gums, FD & C #1 and Sodium Benzoate (preservative). Blue Hawaiian Water, Propylene Glycol, Natural and Artificial Flavors, Citric Acid, Natural Gums, FD & C Blue #1, Sodium Benzoate (preservative) and Potassium Sorbate (preservative) Blue Raspberry Water,Citric Acid, Propylene Glycol, Natural and Artificial Flavors and FD & C Blue #1.
    [Show full text]
  • HOW TO: Salt and Preservatives in Organic Food
    What should I know about using salt and preservatives in organic food? Salt plays an important role in processed food products both for its flavoring properties and as a preservative. For those reasons both salt and sea salt are allowed in organic products as long as the salt or sea salt does not have any prohibited additives. Here we discuss the use of salt, prohibited additives, and answer common questions. Are additives allowed in the salt I use in my organic products? Though salt and sea salt are allowed in all categories of organic products, anti-caking/free-flow agents and whiteners are generally not allowed in these products. Common anti-caking/free- flow agents that are not allowed include: • Calcium silicate • Ferric ammonium citrate • Sodium ferrocyanide • Magnesium silicate • Magnesium carbonate • Propylene glycol • Aluminum calcium silicate • Sodium aluminosilicate Makers of organic products must be able to show that the salt does not contain any of the above flow agents, anti-caking agents, or any whiteners. The producer may need to contact the manufacturer of the salt to get a statement of what is in the salt, or may be required to locate a salt that is free of whiteners and anti-caking and flow agents. There is one exception to this rule, salt formulated with magnesium carbonate is allowed in products labeled as “made with organic ingredients.” However, using salt formulated with magnesium carbonate is prohibited in products labeled “organic” (products containing at least 95% organic ingredients) or “100% organic”. It is possible that salt could be formulated with an anti-caking or flow agent not on the list above.
    [Show full text]
  • Food Additives
    Food additives Department of Chemistry The Open University of Sri Lanka 1 Published by The Open University of Sri Lanka 2014 Food additives Introduction In previous lessons, we considered the chemistry of synthetic polymers, natural polymers and biomolecules such as carbohydrates, amino acids, proteins, fatty acids and lipids. In this lesson, we intend to study pros and cons of food additives. People around the world use natural and artificial food additives particularly to improve the taste and appearance of food without thinking of their effects on their health. Do you have the practice of checking the list of food additives given in the label when you buy food items? Centuries ago and even today people smoke fish/meat and add certain chemicals to them (e.g. salt) to improve their shelf life. Particularly in eastern countries, people add spices and indigenous herbs to food to improve its taste and colour. Some food varieties are seasonal (and abundant during the season) and are not available throughout the year. But preserved food is made available around the year, enabling us to enjoy food in different forms, even in places where it is not available or produced. Consumption of food additives may have certain health risks. Carcinogenesis (i.e. causation of cancers), hyperactivity in children, precipitation of allergies, and migraine are some known health risks associated with food additives. It is high time you knew more about what you eat. Let us examine the definition of a food additive. Food additives can be defined as chemical substances deliberately added to food, directly or indirectly, in known or regulated quantities, for purposes of assisting in the processing of food, preservation of food, or in improving the flavour, texture, or appearance of food.
    [Show full text]
  • Life of Foods
    Influence of some physical treatments and natural food preservatives on the diversity of microorganisms in certain Egyptian juices By Mohamed Nagah Zayed Ibrahiem Abu El-Naga B.Sc. (Microbiology - chemistry), Fac. Sci., Al-Azhar Univ., Egypt, 2003. THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN Microbiology Department of Botany & Microbiology Faculty of Science Al-Azhar University Cairo 2009 SUPERVISION SHEET Influence of some physical treatments and natural food preservatives on the diversity of microorganisms in certain Egyptian juices By Mohamed Nagah Zayed Ibrahiem Abu El-Naga B.Sc. (Microbiology - chemistry), Fac. Sci., Al-Azhar Univ., Egypt, 2003. SUPERVISION COMMITTEE Prof. Dr. Backry Mohamed Haroun Prof. of Microbiol., Fac. of Sci., Al-Azhar University. Prof. Dr. Mohie El-Din Zohier El-Fouly Prof. of Microbiol., National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority. Dr. Hala Ahmed Hussein Assistant Prof. of Microbiol., National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority. Acknowledgment Praise and gratitude is to ALLAH SOBHANAHU WATAALA, the God of all creatures, for guiding me to the right way. I wish to express my appreciation to Dr. Backry Mohamed Haroun, Professor of Microbiology, Botany and Microbiology Department, Faculty of Science, Al-Azhar University, for helpful advice, encouragement and for sharing in the supervision. Sincere thanks and deep gratitude to Dr. Mohie El-Din Zohier El-Fouly, Professor of Microbiology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for helpful advice, encouragement, sharing in the supervision and lively interest he showed during the entire thesis.
    [Show full text]
  • Sodium Reduction and Its Effects on Food Safety, Food Quality, and Human Health a Brief Review of the Literature
    FRI BRIEFINGS Sodium Reduction and Its Effects on Food Safety, Food Quality, and Human Health A Brief Review of the Literature M. Ellin Doyle, Ph.D. Food Research Institute, University of Wisconsin–Madison Madison, WI 53706 Contents Introduction....................................................................................................................................1 Health Effects of Salt .....................................................................................................................2 General...................................................................................................................................2 Hypertension .........................................................................................................................3 Cardiovascular Disease (CVD) ..............................................................................................4 Bone Disease..........................................................................................................................4 Functions of Sodium Compounds in Foods ...................................................................................5 Flavor .....................................................................................................................................5 Texture/Processing.................................................................................................................5 Preservation ...........................................................................................................................6
    [Show full text]
  • The 14 Allergens.Pdf
    The 14 Allergens There are 14 major allergens which need to be declared when used as ingredients. The following list tells you what these allergens are and provide some examples of foods where they may be found in: Egg This is often found in cakes, some meat products, mayonnaise, mousses, pasta, quiche, sauces and foods brushed or glazed with egg. Milk This is found in butter, cheese, cream, milk powders and yoghurt. It is often used in foods glazed with milk, powdered soups and sauces. Soya This can be found in beancurd, edamame beans, miso paste, textured soya protein, soya flour or tofu. It is often used in some desserts, ice cream, meat products, sauces and vegetarian products. Nuts This includes almonds, hazelnuts, walnuts, cashews, pecan nuts, Brazil nuts, pistachio nuts, macadamia or Queensland nuts. These can be found in breads, biscuits, crackers, desserts, ice cream, marzipan (almond paste), nut oils and sauces. Ground, crushed or flaked almonds are often used in Asian dishes such as curries or stir fries. Peanuts These can be found in biscuits, cakes, curries, desserts and sauces such as for satay. They are also found in groundnut oil and peanut flour. Ingredients containing gluten This includes wheat (such as spelt and Khorasan wheat/Kamut), rye, barley and oats. It is often found in foods containing flour, such as some baking powders, batter, breadcrumbs, bread, cakes, couscous, meat products, pasta, pastry, sauces, soups and foods dusted with flour. The cereal will need to be declared. However it is up to you if you want to declare the presence of gluten with this.
    [Show full text]
  • Food Preservation Chemical Methods
    COURSE TITLE: FOOD AND INDUSTRIAL MICROBIOLOGY COURSE NO. - DTM-321: CREDIT HRS-3 (2+1) FOOD PRESERVATION CHEMICAL METHODS RAKESH KUMAR ASSOCIATE PROFESSOR (DAIRY MICROBIOLOGY) FACULTY OF DAIRY TECHNOLOGY S.G.I.D.T., BVC CAMPUS, P.O.- BVC, DIST.-PATNA-800014 According to FSSAI rules → class I and class II preservatives Class I preservatives Class II preservatives a. Common salt a. Benzoic acid including salts b. Sugar b. Sulphurous acid including salts c. Dextrose c. [Nitrates of] nitrites of sodium or potassium d. Glucose d. Sorbic acid including its sodium, potassium and calcium salts e. Spices e. Niacin f. Vinegar or acetic acid f. Propionic acid including salts g. Honey g. Methyl or propyl para-hydroxy benzoate h. Edible vegetable oil h. Sodium diacetate i. Sodium, potassium and calcium salts of lactic acid Addition of class I preservatives in any food is not restricted. Use of class II preservatives is restricted. They shall be added to only specified product and at a concentration not exceeding the proportion specified for the product. Use of more than one class II preservative is prohibited. No person shall use in or upon a food more than one class II preservative Chemical Preservatives ✓ The purpose of using a chemical agent as a preservative is to retard food spoilage caused by microorganisms. ✓ As per one estimate of WHO, it was declared that 20% of the world’s food is lost by different type of spoilages. ✓ Partial prevention of this spoilage can be achieved through the use of refrigeration, drying, freezing and fermentation. ✓ The use of chemical additives or preservatives will prolong the shelf life of the food even further.
    [Show full text]