Life of Foods

Total Page:16

File Type:pdf, Size:1020Kb

Life of Foods Influence of some physical treatments and natural food preservatives on the diversity of microorganisms in certain Egyptian juices By Mohamed Nagah Zayed Ibrahiem Abu El-Naga B.Sc. (Microbiology - chemistry), Fac. Sci., Al-Azhar Univ., Egypt, 2003. THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN Microbiology Department of Botany & Microbiology Faculty of Science Al-Azhar University Cairo 2009 SUPERVISION SHEET Influence of some physical treatments and natural food preservatives on the diversity of microorganisms in certain Egyptian juices By Mohamed Nagah Zayed Ibrahiem Abu El-Naga B.Sc. (Microbiology - chemistry), Fac. Sci., Al-Azhar Univ., Egypt, 2003. SUPERVISION COMMITTEE Prof. Dr. Backry Mohamed Haroun Prof. of Microbiol., Fac. of Sci., Al-Azhar University. Prof. Dr. Mohie El-Din Zohier El-Fouly Prof. of Microbiol., National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority. Dr. Hala Ahmed Hussein Assistant Prof. of Microbiol., National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority. Acknowledgment Praise and gratitude is to ALLAH SOBHANAHU WATAALA, the God of all creatures, for guiding me to the right way. I wish to express my appreciation to Dr. Backry Mohamed Haroun, Professor of Microbiology, Botany and Microbiology Department, Faculty of Science, Al-Azhar University, for helpful advice, encouragement and for sharing in the supervision. Sincere thanks and deep gratitude to Dr. Mohie El-Din Zohier El-Fouly, Professor of Microbiology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for helpful advice, encouragement, sharing in the supervision and lively interest he showed during the entire thesis. I wish to express my grateful acknowledgment to Dr. Hala Ahmed Hussein, Assistant Professor of Microbiology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for suggesting the subject of study, progress of the work, helpful advice, encouragement, sharing in the supervision and lively interest she showed during the entire thesis. I would especially like to thank Prof. Dr. El-Said Ghazal, Professor of Microbiology, and the head of Botany and Microbiology Department, Faculty of Science, Al-Azhar University, for offering facilities, continuous encouragement and sustainment. Also, I would like to express my appreciation and thanks to Prof. Dr. Bothaina M. Youssef Professor and Head of Microbiology Department at NCRRT. Sincere thanks to Prof. Dr. T. M. El-Mongy, Professors of Food Microbiology of National Center for Radiation Research and Technology, for help through out conducting my experiments. Finally, special thanks to Said El-Sayed Desouky, Assistant lecturer, Botany and Microbiology Department, Faculty of Science, Al-Azhar University, for his cooperation and great help in this study. Last, but not least I wish to express my grateful thanks, to all Members of Microbiology Department, and to all my Colleagues at Microbiology Department, NCRRT. DEDICATION I dedicate this work to my Parents, as well as to my Sisters and my Brother and a special dedication for my Mother for her great support. Mohamed Nagah CONTENTS CONTENTS Page INTRODUCTION ................................................................. 1 REVIEW OF LITERATURE..................................... 4 1. Fruit Juices and soft Drinks .......................................... 4 2. Food additives ............................................................................... 7 2.1. Introduction...................................................................................... 7 2.2. Types of additives……………………………………………… 8 2.2.1. Preservatives................... ……………………………………… 8 2.3. Risks of additives…………………………………………… 9 2.4. Balancing risks and benefits…………………………… 11 2.5. Categories of Risk………………………………………………… 14 2.5.1. Phenyl ethylamine………………………………………………… 16 2.5.2. Azo Dyes and Benzoates…………………………………… 16 2.5.3. Sulfites ………………………………………………………………… 17 2.5.4. Nitrites……………………………………………………………………………… 18 2.5.5. Other Agents………………………………………………… 20 3. The use of natural antimicrobials……………………………………… 22 3.1. Natural preservatives................................................... 25 3.1.1. Nisin…………………………………………………………………… 25 • Mechanism of action……………………………………. 31 3.1.2. Organic acids ………………………………………………………… 36 3.1.2.1. Mode of action………………………………………………… 38 3.1.2.2. Resistance mechanisms…………………………………… 42 3.1.2.3. Citric acid ………………………………………………………… 48 3.1.2.4. Lactic Acid………………………………………………………… 49 3.1.3. Spices and their essential oils……………………… 53 3.2. Physical treatments…………………………................... 58 3.2.1. Gamma irradiation ……………………………………… 58 3.2.1.1. Types of radiation ……………………………………… 58 3.2.1.2. Living cell and radiation……………………………… 60 3.2.1.3. Dose survival curves…………………………………… 61 3.2.1.4. The decimal reduction doses (D10 value) 61 3.2.1.5. Effect of radiation on microorganisms…… 61 3.2.1.6. Direct action ………………………………………………… 62 3.2.1.7. Indirect action…………………………………………………… 63 3.2.1.8. Effect of radiation on water molecules… 64 3.2.2. Heat treatment………………………………………………………… 67 3.2.2.1. Introduction..................………………………………….... 67 3.2.2.2. Thermal technologies………………………………… 67 3.2.2.3. Pasteurization……………………………………………… 68 3.2.2.4. The decimal reduction time……………………… 68 3.2.2.5. Mechanism of action………………………………… 69 MATERIALS AND METHODS.... ………………… 71 • Materials……………………………...........…………… 71 1. Samples………………………………………………………............................... 71 2. Source of samples………………………………............................………… 71 3. Samples sorts……………………...........................…………………………… 72 4. Source of preservatives…………………….....................…………………… 72 5. Irradiation source…………………………………………………..................…… 72 6. Isolation media………………………………………………................................ 73 • Methods…………………………......................…………………………… 76 1. Microbial counts ……………………………................................……………… 76 2. Isolation of bacteria……………………………............................…………… 76 3. Isolation of yeast............................................................ 76 4. Identification……………………………………...........................……………… 77 5. Selection of most common isolates……………………………………. 78 6. Effect of some natural preservatives……….............………………… 78 7. Effect of some physical treatments……………………..............……… 79 8. Effect of the combination treatments…………...............…………… 80 9. Storage………………………………………………………….............................… 81 RESULTS AND DISCUSSION………………………..... 83 1. Isolation and identification……………………………….. 83 2. Single treatments……………………………………......................………….. 93 2.1. Physical treatments……………............………………………. 93 2.1.1. Gamma irradiation………………………………….........................… 93 2.1.2. Pasteurized temperature…….........................…………………… 99 2.2. Natural treatments…………………..........................………………………………… 105 2.2.1. Nisin……………………………………….……………… 105 2.2.2. Organic acid ………………………………………… 112 2.2.2.1. Citric acid …………………………… 112 2.2.2.2. Lactic acid…………………………… 117 2.2.3. Cinnamon……………………………………………… 124 3. Combination treatments …………………. 130 3.1. Combination with Gamma Irradiation….. 130 3.1.1. Combination of Gamma irradiation with citric acid 131 3.1.2. Combination of Gamma irradiation with lactic acid 134 3.1.3. Combination of Gamma irradiation with cinnamon 138 3.1.4. Combination of Gamma irradiation with Nisin 142 3.1.5. Comparison between gamma irradiation single and combined treatments 147 3.2. Combination with Pasteurized temperature 149 3.2.1. Combination of pasteurized temperature with Nisin 149 3.2.2. Combination of pasteurized temperature with citric acid 152 3.2.3. Combination of pasteurized temp with lactic acid 154 3.2.4. Combination of pasteurized temp with cinnamon 156 3.2.5. Comparison between the selected natural preservatives alone 160 and in combination with pasteurized temperature. 3.3. Combination of natural preservatives…………… 163 3.3.1. Combination of Nisin with citric acid and lactic acid……………… 163 3.3.2. Combination of Nisin with cinnamon………………………………………… 170 3.3.3. Comparison between the selected natural preservatives in single treatment and in combination with nisin. 174 4. Combination of gamma irradiation with 177 pasteurized temperature…………………………………………. 5. Storage………………………………………………………………………………… 179 6. General Discussion………………………………………………………………… 182 SUMMRAY…………………………………………………………… 188 CONCOLUSION AND RECOMMENDATION 198 REFERENCES…………………………………………………… 199 ARABIC SUMMARY……………………………………………… 1 Table LIST of TABLES Page (a) Properties of some organic acids used as additives. 42 Screening and isolation of microorganisms (1) 86 contaminated certain Egyptian juices. Identification of contaminated microorganisms isolated (2) 90 from certain Egyptian juices. Effect of different doses of gamma irradiation on the (3) 96 viable counts of the selected organisms. Effect of pasteurized temperature 90 C ْ at different time (4) 102 on selected organisms. Effect of different conc. of nisin on the selected (5) 109 organisms. Effect of different conc. of citric acid on P. aeruginosa and (6) 114 S. aureus. (7) Effect of different conc. of citric acid on Debaryomyces sp. 115 (8) Effect of different conc. of lactic acid on Debaryomyces sp. 118 Effect of different conc. of lactic acid on P. aeruginosa and S. (9) 119 aureus. Effect of different conc. of cinnamon on S. aureus and (10) 126 Debaryomyces sp. (11) Effect of different conc. of cinnamon
Recommended publications
  • The Harmful Effects of Food Preservatives on Human Health Shazia Khanum Mirza1, U.K
    Journal of Medicinal Chemistry and Drug Discovery ISSN: 2347-9027 International peer reviewed Journal Special Issue Analytical Chemistry Teacher and Researchers Association National Convention/Seminar Issue 02, Vol. 02, pp. 610-616, 8 January 2017 Available online at www.jmcdd.org To Study The Harmful Effects Of Food Preservatives On Human Health Shazia Khanum Mirza1, U.K. Asema2 And Sayyad Sultan Kasim3. 1 -Research student , Dept of chemistry, Maulana Azad PG & Research centre, Aurangabad. 2-3 -Assist prof. Dept of chemistry,Maulana Azad college Arts sci & com.Aurangabad. ABSTRACT Food chemistry is the study of chemical processes and interactions of all biological and non- biological components. Food additives are chemicals added to foods to keep them fresh or to enhance their color, flavor or texture. They may include food colorings, flavor enhancers or a range of preservatives .The chemical added to a particular food for a particular reason during processing or storage which could affect the characteristics of the food, or become part of the food Preservatives are additives that inhibit the growth of bacteria, yeasts, and molds in foods. Additives and preservatives are used to maintain product consistency and quality, improve or maintain nutritional value, maintain palatability and wholesomeness, provide leavening(yeast), control pH, enhance flavour, or provide colour Some additives have been used for centuries; for example, preserving food by pickling (with vinegar), salting, as with bacon, preserving sweets or using sulfur dioxide as in some wines. Some preservatives are known to be harmful to the human body. Some are classified as carcinogens or cancer causing agents. Keywords : Food , Food additives, colour, flavour , texture, preservatives.
    [Show full text]
  • Effects of Salts on Preservation and Metabolic Activities of Fish and Meat Microflora
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322520649 EFFECTS OF SALTS ON PRESERVATION AND METABOLIC ACTIVITIES OF FISH AND MEAT MICROFLORA Article · January 2018 CITATIONS READS 0 63 3 authors: Oranusi Solomon Abah Kingsley Covenant University Ota Ogun State, Nigeria Covenant University Ota Ogun State, Nigeria 99 PUBLICATIONS 755 CITATIONS 4 PUBLICATIONS 1 CITATION SEE PROFILE SEE PROFILE Selina Anosike Covenant University Ota Ogun State, Nigeria 9 PUBLICATIONS 4 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Biogas and biofertilizer production from local biomasses View project Food safety; Public and environmental health View project All content following this page was uploaded by Oranusi Solomon on 16 January 2018. The user has requested enhancement of the downloaded file. EFFECTS OF SALTS ON PRESERVATION AND METABOLIC ACTIVITIES OF FISH AND MEAT MICROFLORA ORANUSI, 5.*, ABAH, K. A. AND ANOSIKE S.O. Department of Biological Sciences, Covenant University, Ota, Nigeria *Corresponding Author; Email: [email protected]; +2348065299155 Abstract Foods usually carry a mixed population ofmicroorganisms derived from both the natural microfloro of the food plant or animo/ and those introduced during handling, processing, and storage. Salt is a widely used additive and preservative, which, influences microorganisms in different concentrations. This study aims to determine the effect of salts on food preservation and metabolic activities of food microfloro. Two food samples (row fish and raw lean meat) were investigated. Sodium chloride (NaCI), Potassium chloride {KCI} and Calcium chloride {CoCI,) were grouped into varying concentrations of2, 2.5 and 4.5% respectively.
    [Show full text]
  • Five Keys to Safer Food Manual
    FIVE KEYS TO SAFER FOOD MANUAL DEPARTMENT OF FOOD SAFETY, ZOONOSES AND FOODBORNE DISEASES FIVE KEYS TO SAFER FOOD MANUAL DEPARTMENT OF FOOD SAFETY, ZOONOSES AND FOODBORNE DISEASES INTRODUCTION Food safety is a significant public health issue nsafe food has been a human health problem since history was first recorded, and many food safety Uproblems encountered today are not new. Although governments all over the world are doing their best to improve the safety of the food supply, the occurrence of foodborne disease remains a significant health issue in both developed and developing countries. It has been estimated that each year 1.8 million people die as a result of diarrhoeal diseases and most of these cases can be attributed to contaminated food or water. Proper food preparation can prevent most foodborne diseases. More than 200 known diseases are transmitted through food.1 The World Health Organization (WHO) has long been aware of the need to educate food handlers about their responsibilities for food safety. In the early 1990s, WHO developed the Ten Golden Rules for Safe Food Preparation, which were widely translated and reproduced. However, it became obvious that something simpler and more generally applicable was needed. After nearly a year of consultation with food safety expertsandriskcommunicators, WHOintroducedtheFive KeystoSaferFoodposterin2001.TheFive Keys toSaferFoodposterincorporatesallthemessagesoftheTen Golden Rules for Safe Food Preparation under simpler headings that are more easily remembered and also provides more details on the reasoning behind the suggested measures. The Five Keys to Safer Food Poster The core messages of the Five Keys to Safer Food are: (1) keep clean; (2) separate raw and cooked; (3) cook thoroughly; (4) keep food at safe temperatures; and (5) use safe water and raw materials.
    [Show full text]
  • Suitability of Food Additives: Combating Chemophobia and Consumer Misunderstanding
    Suitability of Food Additives: Combating Chemophobia and Consumer Misunderstanding Priscilla Zawislak Ashland, Inc. International Food Additives Council Safety of Food Additives • Food additives have been used safely for decades. • Food additives are thoroughly studied, including extensive toxicological testing and consideration of quality and specifications, before they are approved for use in food. • Testing includes short-term and long-term toxicity studies, including carcinogenicity studies with a built in safety factor to account for uncertainties. Suitability of Food Additives • Food additives afford us the convenience and enjoyment of a wide variety of appetizing, nutritious, fresh and palatable foods. • Food additives are critical to safe and nutritious foods and beverages. • Food additives used for technical purposes in finished foods fall into four main categories: Support nutrition delivery Support the maintenance of food quality and freshness Aid in processing and preparation of foods Make foods appealing to the consumer Feeding the World • Global Population Growth: 7 billion by 2010 9 billion by 2050 • That is 75 million more people to feed each year. • Almost 1 billion don’t have enough food today. • Food additives provide a solution to keep food safe and minimize food waste. Food Additives Have Many Technological Functions in Foods • Codex International Numbering System (INS) lists 23 functional classes for food additives, such as gelling agent, emulsifier, anticaking agent, etc. • System is hierarchical in that each of the 23 functional classes has sub-classes with additional functions. Good Manufacturing Practices (GMP) • GMPs state lowest level of food additive necessary to achieve technological function should be used in finished foods and beverages.
    [Show full text]
  • Food Spoilage: Microorganisms and Their Prevention
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Asian Journal of Plant Science and Research, 2015, 5(4):47-56 ISSN : 2249-7412 CODEN (USA): AJPSKY Food Spoilage: Microorganisms and their prevention Seema Rawat Department of Botany and Microbiology, H. N. B. Garhwal (Central) University, Srinagar, Uttarakhand, India _____________________________________________________________________________________________ ABSTRACT Food spoilage can be defined as “any sensory change (tactile, visual, olfactory or flavour)” which the consumer considers to be unacceptable. Spoilage may occur at any stage along food chain. Spoilage may arise from insect damage, physical damage, indigenous enzyme activity in the animal or plant tissue or by microbial infections. Most natural foods have a limited life. Perishable foods such as fish, meat and bread have a short life span. Other food can be kept for a considerably longer time but decomposes eventually. Enzymes can bring about destruction of polymers in some foods while chemical reactions such as oxidation and rancidity decompose others but the main single cause of food spoilage is invasion by microorganisms such as moulds, yeast and bacteria. In case of mould spoilage a furry growth covers the food and it becomes soft and often smells bad. Bacterial contamination is more dangerous because very often food does not look bad even though severely infected, it may appear quite normal. The presence of highly dangerous toxins and bacterial spores is often not detected until after an outbreak of food poisoning, laboratory examination uncovers the infecting agent. Key words: Food spoilage, Enzymes, Bacterial contamination, Food poisoning, Perishable foods. _____________________________________________________________________________________________ INTRODUCTION Food spoilage is a metabolic process that causes foods to be undesirable or unacceptable for human consumption due to changes in sensory characteristics.
    [Show full text]
  • Japan Japan Invites Comments for Genome-Edited Foods Handling Procedure
    THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY. Voluntary - Public Date: 7/5/2019 GAIN Report Number: JA9096 Japan Post: Tokyo Japan Invites Comments for Genome-Edited Foods Handling Procedure Report Categories: Biotechnology and Other New Production Technologies Agricultural Situation Grain and Feed Approved By: Barrett Bumpas Prepared By: Suguru Sato Report Highlights: On June 27, 2019, the Ministry of Health, Labour and Welfare (MHLW) published a draft of the Handling Procedure of Foods and Food Additives Derived from Genome Editing Technology under Food Sanitation Act. Comments must be submitted in Japanese via an online system, mail, or fax by Friday, July 26, 2019. A WTO-SPS notification is unlikely since there are no legal changes. General Information: MHLW released a genome-edited food policy on March 27, 2019 (JA9050), however, internal discussion to establish the specific guideline for the handling of genome edited foods has continued. On June 27, 2019, MHLW published a draft of the Handling Procedure of Foods and Food Additives Derived from Genome Editing Technology under Food Sanitation Act. Comments must be submitted in Japanese via an online system, mail, or fax by Friday, July 26, 2019. A WTO-SPS notification is unlikely since there are no legal changes. How to Submit Comments 1. Comments on regulatory proposals by the Japanese Government can be sent electronically via the “e-Gov” system. The site can be found at: https://search.e- gov.go.jp/servlet/Public?CLASSNAME=PCMMSTDETAIL&id=495190105&Mode=0 1.
    [Show full text]
  • Description of Bacillus Laevolacticus (Ex Nakayarna and Yanoshi 1967) Sp
    INTERNATIONAL JOURN~OF SYSTEMATIC BACTERIOLOGY,OCt. 1994, p. 659-664 Vol. 44, No. 4 0020-7713/94/$04.00 + 0 Copyright 0 1994, International Union of Microbiological Societies Description of Bacillus laevolacticus (ex Nakayarna and Yanoshi 1967) sp. nov., norn. rev. I. ANDERSCH,? S. PIANKA, D. FRITZE,* AND D. CLAUS DSM-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 0-38124 Braunschweig, Germany The name “Bacillus laevolacticus” Nakayama and Yanoshi 1967 was not included on the Approved Lists of Bacterial Names and therefore has no standing in bacteriological nomenclature. In this study 22 catalase- positive, acid-tolerant, facultatively anaerobic, lactic acid-producingBacillus strains were examined taxonom- ically and compared with a number of strains belonging to phenetically similar Bacillus species (Bacillus coagulans, Bacillus smithii, “Bacillus vesiculiferous”) and with Sporolactobacillus. The G+ C contents (43 to 45 mol%), DNA-DNA homology values (72 to 98%), and results of phenetic similarity analyses revealed that the members of the 44B.laevolacticus” group were very homogeneous in their phenotypic and genotypic character- istics and clearly distinguishable from other Bacillus and SporolactobaciUus species. On the basis of these findings, revival of the name Bacillus laevolacticus is proposed. Traditionally, production of lactic acid is observed in micro- walls containing diaminopimelic acid were consistent with organisms which are grouped under the term “lactic acid the description of the genus Bacillus. Accordingly, these bacteria.” However, a considerable number of lactic acid- organisms were placed in a new genus, Sporolactobacillus, as producing, aerobic, spore-forming organisms have been de- Sporolactobacillus inulinus. Similar organisms, including scribed. These bacteria have been isolated from food or in “Sporolactobacillus laevas,” “Sporolactobacillus laevas var.
    [Show full text]
  • Unraveling the Underlying Heavy Metal Detoxification Mechanisms Of
    microorganisms Review Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species Badriyah Shadid Alotaibi 1, Maryam Khan 2 and Saba Shamim 2,* 1 Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; [email protected] 2 Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan; [email protected] * Correspondence: [email protected] Abstract: The rise of anthropogenic activities has resulted in the increasing release of various contaminants into the environment, jeopardizing fragile ecosystems in the process. Heavy metals are one of the major pollutants that contribute to the escalating problem of environmental pollution, being primarily introduced in sensitive ecological habitats through industrial effluents, wastewater, as well as sewage of various industries. Where heavy metals like zinc, copper, manganese, and nickel serve key roles in regulating different biological processes in living systems, many heavy metals can be toxic even at low concentrations, such as mercury, arsenic, cadmium, chromium, and lead, and can accumulate in intricate food chains resulting in health concerns. Over the years, many physical and chemical methods of heavy metal removal have essentially been investigated, but their disadvantages like the generation of chemical waste, complex downstream processing, and the uneconomical cost of both methods, have rendered them inefficient,. Since then, microbial bioremediation, particularly the Citation: Alotaibi, B.S.; Khan, M.; use of bacteria, has gained attention due to the feasibility and efficiency of using them in removing Shamim, S. Unraveling the heavy metals from contaminated environments. Bacteria have several methods of processing heavy Underlying Heavy Metal metals through general resistance mechanisms, biosorption, adsorption, and efflux mechanisms.
    [Show full text]
  • Ammonium Hydrogen Sulfite Water As an Authorized Food Additive and Establish Compositional Specifications and Use Standards for This Additive
    Amendment to the Ordinance for Enforcement of the Food Sanitation Act and the Specifications and Standards for Foods, Food Additives, Etc. The government of Japan will designate ammonium hydrogen sulfite water as an authorized food additive and establish compositional specifications and use standards for this additive. Background Japan prohibits the sale of food additives that are not designated by the Minister of Health, Labour and Welfare (hereinafter referred to as “the Minister”) under Article 12 of the Food Sanitation Act (Act No. 233 of 1947; hereinafter referred to as “the Act”). In addition, when specifications or standards for food additives are stipulated in the Specifications and Standards for Foods, Food Additives, Etc. (Public Notice of the Ministry of Health and Welfare No. 370, 1959), Japan prohibits the sale of those additives unless they meet the specifications or the standards pursuant to Article 13 of the Act. In response to a request from the Minister, the Committee on Food Additives of the Food Sanitation Council under the Pharmaceutical Affairs and Food Sanitation Council (hereinafter referred to as “the Committee”) has discussed the adequacy of the designation of ammonium hydrogen sulfite water as a food additive. The conclusion of the Committee is outlined below. Outline of conclusion The Minister should designate ammonium hydrogen sulfite water as a food additive unlikely to cause harm to human health pursuant to Article 12 of the Act and should establish compositional specifications and use standards for this additive pursuant to Article 13 of the Act (see Attachment for the details). Attachment Ammonium Hydrogen Sulfite Water 亜硫酸水素アンモニウム水 Standards for Use (draft) Permitted for use in grape juice used for wine production and grape wine only.
    [Show full text]
  • Role of Microorganisms in Biodegradation of Food Additive Azo Dyes: a Review
    Vol. 19(11), pp.799-805, November, 2020 DOI: 10.5897/AJB2020.17250 Article Number: F63AA1865367 ISSN: 1684-5315 Copyright ©2020 Author(s) retain the copyright of this article African Journal of Biotechnology http://www.academicjournals.org/AJB Review Role of microorganisms in biodegradation of food additive Azo dyes: A review Fatimah Alshehrei Department of Biology, Jamum College University, Umm AlQura University, Makkah24382, Saudi Arabia. Received 22 September, 2020; Accepted 27 October, 2020 Food additives Azo dyes are synthetic compounds added to foods to impart color and improve their properties. Some azo dyes have been banned as food additives due to toxic, mutagenic, and carcinogenic side effects. Long exposure to foods containing azo dye leads to chronic toxicity. Some microorganisms are capable to degrade these dyes and convert them to aromatic amines. In human body, microbiota can play a vital role in biodegradation of azo dyes by producing azo reductase. Aromatic amines are toxic, water-soluble and well absorbed via human intestine. In the current study, the role of microorganisms in biodegradation of six dyes related to azo group was discussed. These dyes are: Tartrazine E102, Sunset Yellow E110, Ponceau E124, Azorubine E122, Amaranth E123, and Allura Red E129 which are classified as the most harmful food additive dyes. Key word: Food additive, azo dyes, microorganisms, azo reductase, aromatic amines. INTRODUCTION Food additives are synthetic compounds added to food In the USA and European countries, some azo dyes have for many proposes such as maintaining the product from been banned as food additives due to toxic, mutagenic, deterioration or improving its safety, freshness, taste, and carcinogenic side effects (Chung, 2000).
    [Show full text]
  • High Oxygen As an Additional Factor in Food Preservation Promotor: Prof
    High Oxygen as an additional factor in Food Preservation Promotor: Prof. Dr. ir. F.M. Rombouts Hoogleraar in de Levensmiddelenhygiëne en microbiologie, Wageningen Universiteit Copromotors: Dr. L.G.M. Gorris SEAC, Unilever, Colworth House, Verenigd Koninkrijk Dr. E.J. Smid Groupleader Natural Ingredients, NIZO Food Research, Ede Samenstelling promotiecommissie: Prof. Dr. ir. J. Debevere (Universiteit Gent, België) Prof. Dr. G.J.E. Nychas (Agricultural University of Athens, Griekenland) Prof. Dr. J.T.M. Wouters (Wageningen Universiteit) Dr. J. Hugenholtz (NIZO Food Research, Ede) Athina Amanatidou High Oxygen as an additional factor in Food Preservation Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus, van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op dinsdag 23 oktober des namiddags te half twee in de Aula Amanatidou A.-High Oxygen as an additional factor in Food Preservation-2001 Thesis Wageningen University-With summary in Dutch- pp. 114 ISBN: 90-5808-474-4 To my parents, my brother and to Erik Abstract In this thesis, the efficacy of high oxygen as an additional hurdle for food preservation is studied. At high oxygen conditions and at low temperature, significant impairment of growth and viability of bacterial cells is found to occur as the result of free radical attack. The imposed oxidative stress leads - to an increase of intracellularly generated reactive oxygen species (mainly O2 , H2O2 and HO·), which disturbs the cellular homeostasis due to catabolic imbalance and results in growth inhibition. The so- called “free radical burst” probably is responsible for the induction of a host defence mechanism against the destructive impact of high oxygen.
    [Show full text]
  • What Are Food Additives?
    What are Food Additives? The pursuit of happiness through the enjoyment of food is a centuries old human endeavor. Taste, texture, freshness and eye appeal are major contributors to such enjoyment, made possible in our modern lifestyle through the use of highly specialized ingredients known as food additives. The broadest practical definition of a food additive is any substance that becomes part of a food product either directly or indirectly during some phase of processing, storage or packaging. Direct food additives, which are discussed in this publication, are those that have intentionally been included for a functional purpose by the food processor, whereas indirect additives are those migrating into food products in very small quantities as a result of growing, processing or packaging. Food additives afford us the convenience and enjoyment of a wide variety of appetizing, nutritious, fresh, and palatable foods. Their quantities in food are small, yet their impact is great. Without additives, we would be unfortunately lacking in the abundant and varied foods that we enjoy today. Food Additives – Ingredients with a Purpose Direct food additives serve four major purposes in our foods: 1. To provide nutrition – to improve or maintain the nutritional quality of food. For example, the addition of iodine to salt has contributed to the virtual elimination of simple goiter. The addition of Vitamin D to milk and other dairy products has accomplished the same thing with respect to rickets. Niacin in bread, cornmeal and cereals has helped eliminate pellagra, a disease characterized by central nervous system and skin disorders. Other nutritional food additives (such as thiamine and iron) are used for further fortification in the diet and as a result, diseases due to nutritional deficiencies, common in lesser developed countries, are now very rare in the United States.
    [Show full text]