Food Preservative Sorbic Acid Deregulates Hepatic Fatty Acid Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Food Preservative Sorbic Acid Deregulates Hepatic Fatty Acid Metabolism Volume 28 Issue 2 Article 2 2020 Food preservative sorbic acid deregulates hepatic fatty acid metabolism Follow this and additional works at: https://www.jfda-online.com/journal Part of the Food Science Commons, Medicinal Chemistry and Pharmaceutics Commons, Pharmacology Commons, and the Toxicology Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Chen, Chia-Hui; Ho, Sin-Ni; Hu, Po-An; Kou, Yu Ru; and Lee, Tzong-Shyuan (2020) "Food preservative sorbic acid deregulates hepatic fatty acid metabolism," Journal of Food and Drug Analysis: Vol. 28 : Iss. 2 , Article 2. Available at: https://doi.org/10.38212/2224-6614.1055 This Original Article is brought to you for free and open access by Journal of Food and Drug Analysis. It has been accepted for inclusion in Journal of Food and Drug Analysis by an authorized editor of Journal of Food and Drug Analysis. ORIGINAL ARTICLE Food preservative sorbic acid deregulates hepatic fatty acid metabolism Chia-Hui Chen a,1, Sin-Ni Ho b,1, Po-An Hu a,1,YuRuKoub, Tzong-Shyuan Lee a,* a Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan b Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan Abstract Sorbic acid (SA) is one of the most commonly used food preservatives worldwide. Despite SA having no hepato- toxicity at legal dosages, its effect on hepatic lipid metabolism is still unclear. We investigated the effect of SA on hepatic lipid metabolism and its mechanism of action in C57BL/6 mice. Daily treatment with SA (1 g/kg in diet) for 4 weeks did not alter the body weight, organ weight, and blood lipids in mice. However, hepatic lipid accumulation, particularly that of triglycerides, fatty acids, and glycerol, but not cholesteryl ester and free cholesterol, was increased with SA treatment. Mechanistically, SA decreased the expression of proteins related to de novo fatty acid lipogenesis, fatty acid internali- zation, and very low-density lipoprotein (VLDL) secretion-related pathways, including sterol regulatory element- binding proteins, acetyl-coA carboxylase, fatty acid synthase, liver fatty acid-binding protein, CD36, and apolipoprotein E. In contrast, SA increased the expression of diacylglycerol O-acyltransferase 2, the key enzyme for triacylglycerol synthesis. Moreover, SA downregulated the protein expression of autophagy-related and b-oxidation-related pathways, the two major metabolic pathways for lipid metabolism, including LC-3, beclin-1, autophagy related protein 5 (ATG-5) and ATG-7, acyl-CoA synthetase long chain family member 1, carnitine palmitoyltransferase Ia, peroxisome pro- liferator-activated receptor a (PPARa), PPARg, and PPARg coactivator-1. Collectively, SA deregulates de novo lipo- genesis and fatty acid internalization, VLDL secretion, autophagy, and b-oxidation in the liver, leading to impaired lipid clearance and ultimately, resulting in lipid accumulation in the liver. Keywords: Autophagy, b-oxidation, Fatty acid metabolism, Liver, Sorbic acid 1. Introduction regulations limit the concentration to 0.5e2 g/kg of food [2]. For instance, SA cannot exceed 2 g/kg orbic acid (SA), also known as 2,4-hex- in meat products, in soy sauce, miso, jam, and S adienoic acid, is a natural organic compound. ketchup to a maximum concentration of 1 g/kg It is derived from the berries of the mountain and in drinks to a maximum concentration of 0.5 rowan tree. Since the 1930s, SA has been used as a [2]. Ling et al. reported that the use of SA at the preservative for food and wine due to its ability to current dosage in the Taiwanese diet does not prevent spoilage caused by yeast, fungi and pose a risk for public health and safety [2]. molds, as well as some bacteria. To cater to huge However, an elegant study by Luo et al. demon- demand, SA is produced by a chemical synthesis strated that diets supplemented with SA (2 g/kg) method. Currently, preservatives are being for 35 days increased plasma levels of albumin, widely used with the purpose to extend the triglycerides, high-density lipoprotein (HDL), and expiration date of foods [1]. In Taiwan, SA can be low-density lipoprotein (LDL) in pigs [3]. used legally in 34 specific food items and The liver is the major organ for controlling lipid homeostasis in the human body including that of Received 7 September 2019; accepted 27 November 2019. Available online 27 June 2020 * Corresponding author at: Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan. Fax: þ886-2-2396-4350. E-mail address: [email protected] (T.-S. Lee). 1 These authors equally contributed to this work. https://doi.org/10.38212/2224-6614.1055 2224-6614/© 2020 Food and Drug Administration. This is an open access article under the CC BY NC ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). JOURNAL OF FOOD AND DRUG ANALYSIS 2020;28:206e216 207 cholesterol and triglycerides, with fluxes in de novo lipid synthesis in the liver, and from dietary, circu- Abbreviations lating, and peripheral local lipid pools [4,5]. It is SA sorbic acid well-established that de novo lipogenesis in the liver ATG5 autophagy related protein 5 and lipids from dietary fats are the main sources for ATG7 autophagy related protein 7 ORIGINAL ARTICLE maintaining physiological function [4,5]. Under VLDL very low-density lipoprotein physiological conditions, about 70e80% of total PPARa peroxisome proliferator-activated receptor a daily cholesterol and fatty acids are produced in the PPARg peroxisome proliferator-activated receptor g HDL high-density lipoprotein liver [6,7]. Hepatic lipid homeostasis is dynamically LDL low-density lipoprotein regulated by integrating several aspects of meta- CPT1a carnitine palmitoyltransferase 1a bolic pathways including de novo lipogenesis, fatty ACCa acyl-CoA synthetase a acid uptake, triglyceride synthesis, b-oxidation of ACOX1 acyl-CoA oxidase fatty acids, secretion of very-low-density lipoprotein ApoB apolipoprotein B PGC1a peroxisome proliferator-activated receptor g (VLDL), and lipoprotein internalization (chylomi- coactivator 1Àa cron remnants, VLDL, intermediate-density lipo- SREBP1 sterol regulatory element-binding protein 1 protein, LDL, and HDL) from circulation [8e12]. It SREBP2 sterol regulatory element-binding protein 2 has been well-documented that the balance be- ACSL1 acyl-CoA synthetase tween de novo lipogenesis and lipid metabolism is a DGAT1 diacylglycerol acyltransferase 1 DGAT2 diacylglycerol acyltransferase 2 crucial factor for maintaining whole-body lipid ho- FAS fatty acid synthase meostasis [8,12]. For example, increased hepatic HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase lipogenesis and decreased b-oxidation of fatty acids L-FABP liver fatty acid-binding protein may result in excessive lipid accumulation in the DGAT2 diacylglycerol acyltransferase 2 liver and hyperlipidemia, which are important risk MTP microsomal triglyceride transfer protein WAT white adipose tissue factors in the development of fatty liver and related BAT brown adipose tissue metabolic diseases [13,14]. During the past decades, HDL-c HDL-cholesterol adequate evidence suggests that the deregulation of hepatic lipid metabolism by genetic factors, clinical drugs, and environmental pollutants leads to CoA oxidase (ACOX1), apolipoprotein B (ApoB), hyperlipidemia, fatty liver, and metabolic disorders and peroxisome proliferator-activated receptor g [15e18]. However, less is known about the effect of coactivator 1a (PGC1), alanine aminotransferase SA on hepatic lipid metabolism. To this end, in- (ALT) and aspartate aminotransferase (AST) assay vestigations delineating the effect and molecular kits were procured from Abcam (Cambridge, UK). mechanisms of SA in hepatic lipid metabolism and Mouse antibodies for sterol regulatory element- related diseases are warranted. binding protein 1 (SREBP1) and sterol regulatory Given the impact of SA in increasing the level of element-binding protein 2 (SREBP2) were procured plasma lipid, we aimed to characterize the effect and from BD Bioscience (San Jose, CA, USA). Mouse molecular mechanisms of SA regarding hepatic antibodies for b-actin, peroxisome proliferator-acti- lipid metabolism. We first investigated the effect of vated receptor g (PPARg), rabbit antibodies for acyl- SA on plasma lipid level and hepatic lipid accu- CoA synthetase (ACSL1), beclin-1, diacylglycerol mulation in wild-type (WT) mice and then exam- acyltransferase 1 (DGAT1), fatty acid synthase ined whether SA affected the molecular (FAS), 3-hydroxy-3-methylglutaryl-CoA reductase mechanisms in hepatic lipid metabolism. Our find- (HMGCR), liver fatty acid-binding protein (L- ings demonstrated that SA might reduce the pro- FABP), and peroxisome proliferator-activated re- duction and uptake of fatty acids in the liver and ceptor a (PPARa), goat antibodies for diacylglycerol decrease the lipid clearance and metabolism, acyltransferase 2 (DGAT2), and microsomal tri- resulting in hepatic lipid accumulation. glyceride transfer protein (MTP) were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, 2. Materials and methods USA). Rabbit antibodies for autophagy related pro- tein 5 (ATG5), autophagy related protein 7 (ATG7), 2.1. Reagents CD36 and low-density lipoprotein receptor (LDLR) were from Novus Biologicals (Littleton, Co, USA). SA and oil red O dyes were obtained from Rabbit antibody for LC3A/B was purchased from SigmaeAldrich
Recommended publications
  • The Harmful Effects of Food Preservatives on Human Health Shazia Khanum Mirza1, U.K
    Journal of Medicinal Chemistry and Drug Discovery ISSN: 2347-9027 International peer reviewed Journal Special Issue Analytical Chemistry Teacher and Researchers Association National Convention/Seminar Issue 02, Vol. 02, pp. 610-616, 8 January 2017 Available online at www.jmcdd.org To Study The Harmful Effects Of Food Preservatives On Human Health Shazia Khanum Mirza1, U.K. Asema2 And Sayyad Sultan Kasim3. 1 -Research student , Dept of chemistry, Maulana Azad PG & Research centre, Aurangabad. 2-3 -Assist prof. Dept of chemistry,Maulana Azad college Arts sci & com.Aurangabad. ABSTRACT Food chemistry is the study of chemical processes and interactions of all biological and non- biological components. Food additives are chemicals added to foods to keep them fresh or to enhance their color, flavor or texture. They may include food colorings, flavor enhancers or a range of preservatives .The chemical added to a particular food for a particular reason during processing or storage which could affect the characteristics of the food, or become part of the food Preservatives are additives that inhibit the growth of bacteria, yeasts, and molds in foods. Additives and preservatives are used to maintain product consistency and quality, improve or maintain nutritional value, maintain palatability and wholesomeness, provide leavening(yeast), control pH, enhance flavour, or provide colour Some additives have been used for centuries; for example, preserving food by pickling (with vinegar), salting, as with bacon, preserving sweets or using sulfur dioxide as in some wines. Some preservatives are known to be harmful to the human body. Some are classified as carcinogens or cancer causing agents. Keywords : Food , Food additives, colour, flavour , texture, preservatives.
    [Show full text]
  • Food Preservative Capabilities of Grape (Vitis Vinifera) and Clementine Mandarin (Citrus Reticulata) By-Products Extracts in South Africa
    sustainability Article Food Preservative Capabilities of Grape (Vitis vinifera) and Clementine Mandarin (Citrus reticulata) By-products Extracts in South Africa Trust M. Pfukwa 1, Olaniyi A. Fawole 2,3, Marena Manley 1 , Pieter A. Gouws 1, Umezuruike Linus Opara 2,3 and Cletos Mapiye 4,* 1 Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; [email protected] (T.M.P.); [email protected] (M.M.); [email protected] (P.A.G.) 2 Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; [email protected] (O.A.F.); [email protected] (U.L.O.) 3 Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa 4 Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa * Correspondence: [email protected]; Tel.: +27-21-808-2640 Received: 15 February 2019; Accepted: 19 March 2019; Published: 22 March 2019 Abstract: The drive towards sustainable food systems coupled with increased consumer sophistication have prompted innovation in waste valorization. Grape and citrus processing by-products, abundant in the Mediterranean and tropical regions, respectively, are expanding and are sustainable sources of bioactive phytochemicals that can be used as natural preservatives for foods. Phytochemical composition, antioxidant, and antimicrobial properties of extracts from grape pomace (GPE), seeds (GSE), and clementine mandarin peel and pulp (MPE) grown in South Africa were analyzed.
    [Show full text]
  • The Effect of Preservatives and Flavour Additive on the Production of Oxygen-Free Radicals by Isolated Human Neutrophils
    International Journal of Nutrition and Food Sciences 2014; 3(3): 210-215 Published online May 30, 2014 (http://www.sciencepublishinggroup.com/j/ijnfs) doi: 10.11648/j.ijnfs.20140303.23 The effect of preservatives and flavour additive on the production of oxygen-free radicals by isolated human neutrophils E. Al-Shammari 1, R. Bano 1, * , S. Khan 1, I. Shankity 2 1Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Ksa 2Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Ksa Email address: [email protected] (R. Bano) To cite this article: E. Al-Shammari, R. Bano, S. Khan, I. Shankity. The Effect of Preservatives and Flavour Additive on the Production of Oxygen-Free Radicals by Isolated Human Neutrophils. International Journal of Nutrition and Food Sciences. Vol. 3, No. 3, 2014, pp. 210-215. doi: 10.11648/j.ijnfs.20140303.23 Abstract: Introduction: Researchers have recently described a relationship between food additives and immune system responses. A decline in immune response has also been observed in people who are in contact with food additives, such as preservatives and flavours found in different foods. Objectives: The objective of the present study was to investigate the in vitro effect of food additives, such as vanillin, Monosodium L- glutamate, Sodium Benzoate, and potassium nitrate, on the production of oxygen free radicals (OFRs) by isolated human nutrophils. Methods: The study was based on the isolation of neutrophils (polymorphonuclear leukocytes; PMNs) from normal blood to determine the effects of preservatives and flavouring additives on the production of Oxygen Free Radicals by stimulated PMNs.
    [Show full text]
  • Formaldehyde
    FORMALDEHYDE ____________________Name ____________________________________________DateDate alsocalled…formalin,formicaldehyde,methanal,methylaldehyde,methyleneoxide, oxomethane,oxymethylene,morbicidacid.Formaldehydeisreleasedbythesecommon preservatives: quaternium-15 (Dowicilor1-(3-chloroallyl)-3,5,7-triaza-1-azonia-adamantane- chloride),DMDMhydantoin (Glydantor1,3-dimethylol-5,5-dimethylhydantoin), diazolidinyl urea (GermallII), imidazolidinylurea (Germall,imidurea), 2-bromo-2-nitropropane-1,3-diol (Bronopol),andinindustry trisnitromethane (TrisNitro). Whatisit? Formaldehydeisadisinfectantandpreservative. Wheremightitbefound? Photographicdeveloper Make-upremover,toner Mildewresistantfinish,preservative Moisturizingcream,lotion Embalmingfluid,tissuefixative Make-up,concealer,powder Waterproofglue,adhesive,rubbercement Blush,bronzer Latexemulsions,inksolutions,etchingmaterial Mascara,eyepencil,shadow Water-basedpaint,paintprimer,paintstripper Shampoo,bodycleanser Wax,polish,woodcleaner,waterprooffinish Hairconditioner,tonic,spray Plywood,masonite,particleboard,MDF Hairstylinggel,mousse Asphaltshingles,flooring,fillingagents Sunscreen,sunlesstanner Smokefromwood,coal,kerosene,charcoal Bodypowder,talcumpowder Naturalgascombustion,cigar&cigarettesmoke Mouthwash Aftershave,antiperspirant Howtoavoidit: Bubblebath,liquidsoap Toeliminateexposuretoformaldehyde,checkthe Femininehygienespray,rinse completeingredientlist ofeachproductyouuse. Nailpolish,cuticleremover Checkprescriptionmedicinesandcreamstoo. Fingernailhardener Lookforanyofthenamesabove.Forproducts
    [Show full text]
  • Concentrate Ingredient List
    321 Goldsboro Street • Newton Grove, NC 28366 1-800-742-8334 • Fax 770-234-6333 www.1-800-Shaved-Ice.com Concentrate Ingredient List Notice - Concentrate ingredients may occasionally change due to suppliers and flavor profiles. Always check the ingredient label on the bottle to ensure accuracy. Concentrate Ingredients Flavor Bahama Mama Water, Citric Acid, Propylene Glycol, Artificial Flavor, FD & C Red #40,Yellow #5, Xanthan Gum, Sodium Benzoate (preservative),Natural Gums, Polydimethylsilozane. Banana Water, Propylene Glycol, FD & C Yellow #5, Citric Acid, Natural and Artificial Flavors, Natural Gums,Sodium Benzoate (preservative) Black Cherry Water, Citric Acid, Tartaric Acid, Granulated Sugar, FD & C Red #40 and Blue #1, Propylene Glycol, Natural and Artificial Flavors, and Sodium Benzoate (preservative). Blackberry Water, Citric Acid, Natural and Artificial Flavors, FD & C Red #40, FD & C Blue #1, Sodium Benzoate (preservative). Blue Bubble Gum Water, Propylene Glycol, Natural and Artificial Flavors, Natural Gums, FD & C Blue #1 and Sodium Benzoate (preservative). Blue Coconut Water, Sugar, Propylene Glycol, FD & C Blue #1, Natural Gums, Natural and Artificial Flavors, Phosphoric Acid, Potassium Sorbate, Sodium Benzoate (preservative) Blue Cotton Candy Water, Citric Aicd, Natural and Artificial Flavors, Propylene Glycol, FD&C Blue #1, Natural Gums, Titanium Dioxide, Sodium Benzoate and Phosphoric Acid. Blue Eagle Water, Proyplene Glycol, Natural and Artificial Flalvors, Granulated Sugar, Natural Gums, FD & C #1 and Sodium Benzoate (preservative). Blue Hawaiian Water, Propylene Glycol, Natural and Artificial Flavors, Citric Acid, Natural Gums, FD & C Blue #1, Sodium Benzoate (preservative) and Potassium Sorbate (preservative) Blue Raspberry Water,Citric Acid, Propylene Glycol, Natural and Artificial Flavors and FD & C Blue #1.
    [Show full text]
  • HOW TO: Salt and Preservatives in Organic Food
    What should I know about using salt and preservatives in organic food? Salt plays an important role in processed food products both for its flavoring properties and as a preservative. For those reasons both salt and sea salt are allowed in organic products as long as the salt or sea salt does not have any prohibited additives. Here we discuss the use of salt, prohibited additives, and answer common questions. Are additives allowed in the salt I use in my organic products? Though salt and sea salt are allowed in all categories of organic products, anti-caking/free-flow agents and whiteners are generally not allowed in these products. Common anti-caking/free- flow agents that are not allowed include: • Calcium silicate • Ferric ammonium citrate • Sodium ferrocyanide • Magnesium silicate • Magnesium carbonate • Propylene glycol • Aluminum calcium silicate • Sodium aluminosilicate Makers of organic products must be able to show that the salt does not contain any of the above flow agents, anti-caking agents, or any whiteners. The producer may need to contact the manufacturer of the salt to get a statement of what is in the salt, or may be required to locate a salt that is free of whiteners and anti-caking and flow agents. There is one exception to this rule, salt formulated with magnesium carbonate is allowed in products labeled as “made with organic ingredients.” However, using salt formulated with magnesium carbonate is prohibited in products labeled “organic” (products containing at least 95% organic ingredients) or “100% organic”. It is possible that salt could be formulated with an anti-caking or flow agent not on the list above.
    [Show full text]
  • Food Additives
    Food additives Department of Chemistry The Open University of Sri Lanka 1 Published by The Open University of Sri Lanka 2014 Food additives Introduction In previous lessons, we considered the chemistry of synthetic polymers, natural polymers and biomolecules such as carbohydrates, amino acids, proteins, fatty acids and lipids. In this lesson, we intend to study pros and cons of food additives. People around the world use natural and artificial food additives particularly to improve the taste and appearance of food without thinking of their effects on their health. Do you have the practice of checking the list of food additives given in the label when you buy food items? Centuries ago and even today people smoke fish/meat and add certain chemicals to them (e.g. salt) to improve their shelf life. Particularly in eastern countries, people add spices and indigenous herbs to food to improve its taste and colour. Some food varieties are seasonal (and abundant during the season) and are not available throughout the year. But preserved food is made available around the year, enabling us to enjoy food in different forms, even in places where it is not available or produced. Consumption of food additives may have certain health risks. Carcinogenesis (i.e. causation of cancers), hyperactivity in children, precipitation of allergies, and migraine are some known health risks associated with food additives. It is high time you knew more about what you eat. Let us examine the definition of a food additive. Food additives can be defined as chemical substances deliberately added to food, directly or indirectly, in known or regulated quantities, for purposes of assisting in the processing of food, preservation of food, or in improving the flavour, texture, or appearance of food.
    [Show full text]
  • Life of Foods
    Influence of some physical treatments and natural food preservatives on the diversity of microorganisms in certain Egyptian juices By Mohamed Nagah Zayed Ibrahiem Abu El-Naga B.Sc. (Microbiology - chemistry), Fac. Sci., Al-Azhar Univ., Egypt, 2003. THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN Microbiology Department of Botany & Microbiology Faculty of Science Al-Azhar University Cairo 2009 SUPERVISION SHEET Influence of some physical treatments and natural food preservatives on the diversity of microorganisms in certain Egyptian juices By Mohamed Nagah Zayed Ibrahiem Abu El-Naga B.Sc. (Microbiology - chemistry), Fac. Sci., Al-Azhar Univ., Egypt, 2003. SUPERVISION COMMITTEE Prof. Dr. Backry Mohamed Haroun Prof. of Microbiol., Fac. of Sci., Al-Azhar University. Prof. Dr. Mohie El-Din Zohier El-Fouly Prof. of Microbiol., National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority. Dr. Hala Ahmed Hussein Assistant Prof. of Microbiol., National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority. Acknowledgment Praise and gratitude is to ALLAH SOBHANAHU WATAALA, the God of all creatures, for guiding me to the right way. I wish to express my appreciation to Dr. Backry Mohamed Haroun, Professor of Microbiology, Botany and Microbiology Department, Faculty of Science, Al-Azhar University, for helpful advice, encouragement and for sharing in the supervision. Sincere thanks and deep gratitude to Dr. Mohie El-Din Zohier El-Fouly, Professor of Microbiology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for helpful advice, encouragement, sharing in the supervision and lively interest he showed during the entire thesis.
    [Show full text]
  • Sodium Reduction and Its Effects on Food Safety, Food Quality, and Human Health a Brief Review of the Literature
    FRI BRIEFINGS Sodium Reduction and Its Effects on Food Safety, Food Quality, and Human Health A Brief Review of the Literature M. Ellin Doyle, Ph.D. Food Research Institute, University of Wisconsin–Madison Madison, WI 53706 Contents Introduction....................................................................................................................................1 Health Effects of Salt .....................................................................................................................2 General...................................................................................................................................2 Hypertension .........................................................................................................................3 Cardiovascular Disease (CVD) ..............................................................................................4 Bone Disease..........................................................................................................................4 Functions of Sodium Compounds in Foods ...................................................................................5 Flavor .....................................................................................................................................5 Texture/Processing.................................................................................................................5 Preservation ...........................................................................................................................6
    [Show full text]
  • The 14 Allergens.Pdf
    The 14 Allergens There are 14 major allergens which need to be declared when used as ingredients. The following list tells you what these allergens are and provide some examples of foods where they may be found in: Egg This is often found in cakes, some meat products, mayonnaise, mousses, pasta, quiche, sauces and foods brushed or glazed with egg. Milk This is found in butter, cheese, cream, milk powders and yoghurt. It is often used in foods glazed with milk, powdered soups and sauces. Soya This can be found in beancurd, edamame beans, miso paste, textured soya protein, soya flour or tofu. It is often used in some desserts, ice cream, meat products, sauces and vegetarian products. Nuts This includes almonds, hazelnuts, walnuts, cashews, pecan nuts, Brazil nuts, pistachio nuts, macadamia or Queensland nuts. These can be found in breads, biscuits, crackers, desserts, ice cream, marzipan (almond paste), nut oils and sauces. Ground, crushed or flaked almonds are often used in Asian dishes such as curries or stir fries. Peanuts These can be found in biscuits, cakes, curries, desserts and sauces such as for satay. They are also found in groundnut oil and peanut flour. Ingredients containing gluten This includes wheat (such as spelt and Khorasan wheat/Kamut), rye, barley and oats. It is often found in foods containing flour, such as some baking powders, batter, breadcrumbs, bread, cakes, couscous, meat products, pasta, pastry, sauces, soups and foods dusted with flour. The cereal will need to be declared. However it is up to you if you want to declare the presence of gluten with this.
    [Show full text]
  • Food Preservation Chemical Methods
    COURSE TITLE: FOOD AND INDUSTRIAL MICROBIOLOGY COURSE NO. - DTM-321: CREDIT HRS-3 (2+1) FOOD PRESERVATION CHEMICAL METHODS RAKESH KUMAR ASSOCIATE PROFESSOR (DAIRY MICROBIOLOGY) FACULTY OF DAIRY TECHNOLOGY S.G.I.D.T., BVC CAMPUS, P.O.- BVC, DIST.-PATNA-800014 According to FSSAI rules → class I and class II preservatives Class I preservatives Class II preservatives a. Common salt a. Benzoic acid including salts b. Sugar b. Sulphurous acid including salts c. Dextrose c. [Nitrates of] nitrites of sodium or potassium d. Glucose d. Sorbic acid including its sodium, potassium and calcium salts e. Spices e. Niacin f. Vinegar or acetic acid f. Propionic acid including salts g. Honey g. Methyl or propyl para-hydroxy benzoate h. Edible vegetable oil h. Sodium diacetate i. Sodium, potassium and calcium salts of lactic acid Addition of class I preservatives in any food is not restricted. Use of class II preservatives is restricted. They shall be added to only specified product and at a concentration not exceeding the proportion specified for the product. Use of more than one class II preservative is prohibited. No person shall use in or upon a food more than one class II preservative Chemical Preservatives ✓ The purpose of using a chemical agent as a preservative is to retard food spoilage caused by microorganisms. ✓ As per one estimate of WHO, it was declared that 20% of the world’s food is lost by different type of spoilages. ✓ Partial prevention of this spoilage can be achieved through the use of refrigeration, drying, freezing and fermentation. ✓ The use of chemical additives or preservatives will prolong the shelf life of the food even further.
    [Show full text]
  • Principles of Preservation
    PRINCIPLES OF PRESERVATION Principles of Food Preservation A good method of food preservation is one that slows down or prevents altogether the action of the agents of spoilage. Also, during the process of food preservation, the food should not be damaged. In order to achieve this, certain basic methods were applied on different types of foods. For example in earlier days, in very cold weather condition, ice was used to preserve foods. Thus, very low temperature became an efficient method for preventing food spoilage. Let us now list the principles of food preservation. 1. Removal of micro-organisms or inactivating them: This is done by removing air, water (moisture), lowering or increasing temperature, increasing the concentration of salt or sugar or acid in foods. If you want to preserve green leafy vegetables, you have to remove the water from the leaves so that micro organisms cannot survive. You do this by drying the green leaves till all the moisture evaporates. 2. Inactivating enzymes: Enzymes found in foods can be inactivated by changing their conditions such as temperature and moisture, when you preserve peas, one of the methods of preservations is to put them for a few minutes in boiling water. This method also known as blanching inactivates enzymes and thus, helps in preserving the food. 3. Removal of insects, worms and rats: By storing foods in dry, air tight containers the insects, worms or rats are prevented from destroying it. Control Control of microorganisms • Heat • Cold • Drying • Acids • Sugar and salt • Oxygen concentration • Smoke • Radiation • Chemicals (preservatives) Control of enzymes • Heat • Oxygen removal • Acids • Chemicals (antioxidants) Control of Other factors • Protective packaging • Sanitation Preservation methods 1.
    [Show full text]