Label Reading and Food Allergies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Harmful Effects of Food Preservatives on Human Health Shazia Khanum Mirza1, U.K
Journal of Medicinal Chemistry and Drug Discovery ISSN: 2347-9027 International peer reviewed Journal Special Issue Analytical Chemistry Teacher and Researchers Association National Convention/Seminar Issue 02, Vol. 02, pp. 610-616, 8 January 2017 Available online at www.jmcdd.org To Study The Harmful Effects Of Food Preservatives On Human Health Shazia Khanum Mirza1, U.K. Asema2 And Sayyad Sultan Kasim3. 1 -Research student , Dept of chemistry, Maulana Azad PG & Research centre, Aurangabad. 2-3 -Assist prof. Dept of chemistry,Maulana Azad college Arts sci & com.Aurangabad. ABSTRACT Food chemistry is the study of chemical processes and interactions of all biological and non- biological components. Food additives are chemicals added to foods to keep them fresh or to enhance their color, flavor or texture. They may include food colorings, flavor enhancers or a range of preservatives .The chemical added to a particular food for a particular reason during processing or storage which could affect the characteristics of the food, or become part of the food Preservatives are additives that inhibit the growth of bacteria, yeasts, and molds in foods. Additives and preservatives are used to maintain product consistency and quality, improve or maintain nutritional value, maintain palatability and wholesomeness, provide leavening(yeast), control pH, enhance flavour, or provide colour Some additives have been used for centuries; for example, preserving food by pickling (with vinegar), salting, as with bacon, preserving sweets or using sulfur dioxide as in some wines. Some preservatives are known to be harmful to the human body. Some are classified as carcinogens or cancer causing agents. Keywords : Food , Food additives, colour, flavour , texture, preservatives. -
Ventive Behaviors of Consumers with Food Allergies About Dining Out: a Focus Group Study Junehee Kwon1* and Yee Ming Lee2 1Dept
Food Protection Trends, Vol. 32, No. 12, Pages 736–746 Copyright© 2012, International Association for Food Protection ARTICLES 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322-2864 Exploration of Past Exper- iences, Attitudes and Pre- ventive Behaviors of Consumers with Food Allergies about Dining Out: A Focus Group Study JUNEHEE KWON1* and YEE MING LEE2 1Dept. of Hospitality Management and Dietetics, Kansas State University, 108 Justin Hall, Manhattan, KS 66506, USA; 2Dept. of Nutrition, Dietetics, and Hospitality Management, Auburn University, 328 Spindle Hall, Auburn, AL 36849, USA SUMMARY This study investigated the attitudes and behaviors of consumers with food allergies toward dining out. Four focus groups with 17 individuals with food allergies were conducted to learn about their dining experiences. All sessions were audio-recorded, transcribed verbatim, and organized for extracting key concepts. Eight participants experienced allergic reactions after dining out at the restaurants, and many had unpleasant experiences when dining out. Participants perceived cross- contact, hidden ingredients, and miscommunication as potential causes of food allergic reactions. Participants identified lack of training, awareness, and knowledge about food allergy, and other operational restrictions such as lack of resources, as barriers to providing allergen-free food in restaurants. Buffet, ethnic, and specialty restaurants were seen as high-risk dining places due to potential risks of cross-contacts and hidden allergens in sauces. The participants took various precautions such as asking for clarifications of ingredients and seeking restaurants that are familiar to them. Consumers with food allergies experienced many difficulties in restaurants due to restaurant employees’ lack of knowledge and training regarding food allergy. -
No. 34 the Right to Adequate Food
UNITED NATIONS The Right to Adequate Food Human Rights Human Rights Fact Sheet No. 34 The Right to Adequate Food Fact Sheet No. 34 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations or the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Material contained in this publication may be freely quoted or reprinted, provided credit is given and a copy of the publication containing the reprinted material is sent to the Office of the United Nations High Commissioner for Human Rights, Palais des Nations, 8–14 avenue de la Paix, CH–1211 Geneva 10, Switzerland. ii CONTENTS Page Abbreviations . iv Introduction . 1 I. WHAT IS THE RIGHT TO FOOD? . 2 A. Key aspects of the right to food . 2 B. Common misconceptions about the right to food. 3 C. The link between the right to food and other human rights . 5 D. The right to food in international law. 7 II. HOW DOES THE RIGHT TO FOOD APPLY TO SPECIFIC GROUPS?. 9 A. The rural and urban poor . 10 B. Indigenous peoples. 12 C. Women . 14 D. Children. 16 III. WHAT ARE THE OBLIGATIONS ON STATES AND THE RESPONSIBILITIES OF OTHERS? . 17 A. Three types of obligations. 17 B. Progressive and immediate obligations . 19 C. Obligations with international dimensions . 22 D. The responsibilities of others. -
Quality Control a Model Program for the Food Industry
Quality Control A Model Program for the Food Industry The dictionary defines quality as an important character, a degree of excellence or a necessary attribute. A group of activities designed to assure a standard of excellence is called Quality Control. Food is basic for life. Quality or excellence in our food supply should be an important concern to all food processors. Safety and wholesomeness are the most important attributes of food quality. The lack of quality as it relates to safety and wholesomeness can result in personal injury, sick-ness or death. Food- borne illness is an example of sickness or even death when unsafe foods are produced and eaten. Certain foods or food products are defined by regulations or policies called standards of identity. These standards of identity are definitions for a specific food product to avoid confusion or mislabeling of similar processed foods. Milk is a good example. The standard for skim milk is less than 1/2 percent fat, while the standard for whole milk is at least 3-1/4 percent fat. Quality defined by regulations, policies or standards is controlled by federal and state agencies. Failure to meet the degree of excellence defined by the regulations, policies or standards of identity is illegal. The government-controlled attributes of food are another important measure of food quality. Therefore, the first category of food quality iscritical attributes and includes factors that affect safety, wholesomeness or legality. Commitment + Awareness + Teamwork + Communication + Quality Control = Safe, Wholesome and Consistent Food Products Figure 1. Quality is everyone’s business. The organizational structure, a reporting system and open communication are necessary for success. -
Food Preservative Capabilities of Grape (Vitis Vinifera) and Clementine Mandarin (Citrus Reticulata) By-Products Extracts in South Africa
sustainability Article Food Preservative Capabilities of Grape (Vitis vinifera) and Clementine Mandarin (Citrus reticulata) By-products Extracts in South Africa Trust M. Pfukwa 1, Olaniyi A. Fawole 2,3, Marena Manley 1 , Pieter A. Gouws 1, Umezuruike Linus Opara 2,3 and Cletos Mapiye 4,* 1 Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; [email protected] (T.M.P.); [email protected] (M.M.); [email protected] (P.A.G.) 2 Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; [email protected] (O.A.F.); [email protected] (U.L.O.) 3 Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa 4 Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa * Correspondence: [email protected]; Tel.: +27-21-808-2640 Received: 15 February 2019; Accepted: 19 March 2019; Published: 22 March 2019 Abstract: The drive towards sustainable food systems coupled with increased consumer sophistication have prompted innovation in waste valorization. Grape and citrus processing by-products, abundant in the Mediterranean and tropical regions, respectively, are expanding and are sustainable sources of bioactive phytochemicals that can be used as natural preservatives for foods. Phytochemical composition, antioxidant, and antimicrobial properties of extracts from grape pomace (GPE), seeds (GSE), and clementine mandarin peel and pulp (MPE) grown in South Africa were analyzed. -
The Effect of Preservatives and Flavour Additive on the Production of Oxygen-Free Radicals by Isolated Human Neutrophils
International Journal of Nutrition and Food Sciences 2014; 3(3): 210-215 Published online May 30, 2014 (http://www.sciencepublishinggroup.com/j/ijnfs) doi: 10.11648/j.ijnfs.20140303.23 The effect of preservatives and flavour additive on the production of oxygen-free radicals by isolated human neutrophils E. Al-Shammari 1, R. Bano 1, * , S. Khan 1, I. Shankity 2 1Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Ksa 2Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Ksa Email address: [email protected] (R. Bano) To cite this article: E. Al-Shammari, R. Bano, S. Khan, I. Shankity. The Effect of Preservatives and Flavour Additive on the Production of Oxygen-Free Radicals by Isolated Human Neutrophils. International Journal of Nutrition and Food Sciences. Vol. 3, No. 3, 2014, pp. 210-215. doi: 10.11648/j.ijnfs.20140303.23 Abstract: Introduction: Researchers have recently described a relationship between food additives and immune system responses. A decline in immune response has also been observed in people who are in contact with food additives, such as preservatives and flavours found in different foods. Objectives: The objective of the present study was to investigate the in vitro effect of food additives, such as vanillin, Monosodium L- glutamate, Sodium Benzoate, and potassium nitrate, on the production of oxygen free radicals (OFRs) by isolated human nutrophils. Methods: The study was based on the isolation of neutrophils (polymorphonuclear leukocytes; PMNs) from normal blood to determine the effects of preservatives and flavouring additives on the production of Oxygen Free Radicals by stimulated PMNs. -
Formaldehyde
FORMALDEHYDE ____________________Name ____________________________________________DateDate alsocalled…formalin,formicaldehyde,methanal,methylaldehyde,methyleneoxide, oxomethane,oxymethylene,morbicidacid.Formaldehydeisreleasedbythesecommon preservatives: quaternium-15 (Dowicilor1-(3-chloroallyl)-3,5,7-triaza-1-azonia-adamantane- chloride),DMDMhydantoin (Glydantor1,3-dimethylol-5,5-dimethylhydantoin), diazolidinyl urea (GermallII), imidazolidinylurea (Germall,imidurea), 2-bromo-2-nitropropane-1,3-diol (Bronopol),andinindustry trisnitromethane (TrisNitro). Whatisit? Formaldehydeisadisinfectantandpreservative. Wheremightitbefound? Photographicdeveloper Make-upremover,toner Mildewresistantfinish,preservative Moisturizingcream,lotion Embalmingfluid,tissuefixative Make-up,concealer,powder Waterproofglue,adhesive,rubbercement Blush,bronzer Latexemulsions,inksolutions,etchingmaterial Mascara,eyepencil,shadow Water-basedpaint,paintprimer,paintstripper Shampoo,bodycleanser Wax,polish,woodcleaner,waterprooffinish Hairconditioner,tonic,spray Plywood,masonite,particleboard,MDF Hairstylinggel,mousse Asphaltshingles,flooring,fillingagents Sunscreen,sunlesstanner Smokefromwood,coal,kerosene,charcoal Bodypowder,talcumpowder Naturalgascombustion,cigar&cigarettesmoke Mouthwash Aftershave,antiperspirant Howtoavoidit: Bubblebath,liquidsoap Toeliminateexposuretoformaldehyde,checkthe Femininehygienespray,rinse completeingredientlist ofeachproductyouuse. Nailpolish,cuticleremover Checkprescriptionmedicinesandcreamstoo. Fingernailhardener Lookforanyofthenamesabove.Forproducts -
Interactive Comment on “Food Quality Regulates the Metabolism and Reproduction of Temora Longicornis” by R
Biogeosciences Discuss., 10, C182–C185, 2013 Biogeosciences www.biogeosciences-discuss.net/10/C182/2013/ Discussions © Author(s) 2013. This work is distributed under the Creative Commons Attribute 3.0 License. Interactive comment on “Food quality regulates the metabolism and reproduction of Temora longicornis” by R. Nobili et al. Anonymous Referee #1 Received and published: 2 March 2013 Please revise according to the suggestions and comments below. P 3204: are C:P and C:N ratios merely “indicators” of food quality or are they actually determi- native of food quality? “with a food quality of 16N : 1P.” ????? strange phrase. You should say “with and N:P ratio fo 16”. I can’t see how “food quality” can have units of N:P ratio! “the Threshold Elemental Ratio (TER)” This is NOT how TER is defined according to existing stoichiometry theory. TER is the C:X ratio above which growth becomes X- limited. At this point in abstract better to just say that 16:1 defines the optimum diet for Temora. C182 “phytoplankton organic N : P ratios can change on decadal timescales” They can also change on time scales much shorter than decadal! P 3205 Again, C:P and C:N ratios are not necessarily merely “indicators” of quality. But in many cases they are the DETERMINANTS of quality. That is, high C:P ratio means that that P is diluted into too much C, making it impossible to ingest P at a sufficient rate to maximize growth. But of course, as Tang and Dam (and others point out) often other things (such as PUFAs and amino acids and sterols etc) are co-varying with C:nutrient ratio. -
Food Preservative Sorbic Acid Deregulates Hepatic Fatty Acid Metabolism
Volume 28 Issue 2 Article 2 2020 Food preservative sorbic acid deregulates hepatic fatty acid metabolism Follow this and additional works at: https://www.jfda-online.com/journal Part of the Food Science Commons, Medicinal Chemistry and Pharmaceutics Commons, Pharmacology Commons, and the Toxicology Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Chen, Chia-Hui; Ho, Sin-Ni; Hu, Po-An; Kou, Yu Ru; and Lee, Tzong-Shyuan (2020) "Food preservative sorbic acid deregulates hepatic fatty acid metabolism," Journal of Food and Drug Analysis: Vol. 28 : Iss. 2 , Article 2. Available at: https://doi.org/10.38212/2224-6614.1055 This Original Article is brought to you for free and open access by Journal of Food and Drug Analysis. It has been accepted for inclusion in Journal of Food and Drug Analysis by an authorized editor of Journal of Food and Drug Analysis. ORIGINAL ARTICLE Food preservative sorbic acid deregulates hepatic fatty acid metabolism Chia-Hui Chen a,1, Sin-Ni Ho b,1, Po-An Hu a,1,YuRuKoub, Tzong-Shyuan Lee a,* a Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan b Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan Abstract Sorbic acid (SA) is one of the most commonly used food preservatives worldwide. Despite SA having no hepato- toxicity at legal dosages, its effect on hepatic lipid metabolism is still unclear. We investigated the effect of SA on hepatic lipid metabolism and its mechanism of action in C57BL/6 mice. -
Concentrate Ingredient List
321 Goldsboro Street • Newton Grove, NC 28366 1-800-742-8334 • Fax 770-234-6333 www.1-800-Shaved-Ice.com Concentrate Ingredient List Notice - Concentrate ingredients may occasionally change due to suppliers and flavor profiles. Always check the ingredient label on the bottle to ensure accuracy. Concentrate Ingredients Flavor Bahama Mama Water, Citric Acid, Propylene Glycol, Artificial Flavor, FD & C Red #40,Yellow #5, Xanthan Gum, Sodium Benzoate (preservative),Natural Gums, Polydimethylsilozane. Banana Water, Propylene Glycol, FD & C Yellow #5, Citric Acid, Natural and Artificial Flavors, Natural Gums,Sodium Benzoate (preservative) Black Cherry Water, Citric Acid, Tartaric Acid, Granulated Sugar, FD & C Red #40 and Blue #1, Propylene Glycol, Natural and Artificial Flavors, and Sodium Benzoate (preservative). Blackberry Water, Citric Acid, Natural and Artificial Flavors, FD & C Red #40, FD & C Blue #1, Sodium Benzoate (preservative). Blue Bubble Gum Water, Propylene Glycol, Natural and Artificial Flavors, Natural Gums, FD & C Blue #1 and Sodium Benzoate (preservative). Blue Coconut Water, Sugar, Propylene Glycol, FD & C Blue #1, Natural Gums, Natural and Artificial Flavors, Phosphoric Acid, Potassium Sorbate, Sodium Benzoate (preservative) Blue Cotton Candy Water, Citric Aicd, Natural and Artificial Flavors, Propylene Glycol, FD&C Blue #1, Natural Gums, Titanium Dioxide, Sodium Benzoate and Phosphoric Acid. Blue Eagle Water, Proyplene Glycol, Natural and Artificial Flalvors, Granulated Sugar, Natural Gums, FD & C #1 and Sodium Benzoate (preservative). Blue Hawaiian Water, Propylene Glycol, Natural and Artificial Flavors, Citric Acid, Natural Gums, FD & C Blue #1, Sodium Benzoate (preservative) and Potassium Sorbate (preservative) Blue Raspberry Water,Citric Acid, Propylene Glycol, Natural and Artificial Flavors and FD & C Blue #1. -
Рhysicochemical and Textural Properties of Reduced Sugar Jellies from Physalis Peruviana L
─── Food Technology ─── Рhysicochemical and textural properties of reduced sugar jellies from Physalis peruviana L. fruit Raina Hadjikinova1, Stanko Stankov1,Venelina Popova1, Tanya Ivanova1, Albena Stoyanova1, Nadezhda Mazova1, Maria Marudova2, Stanka Damyanova3 1 – University of Food Technologies, Plovdiv, Bulgaria 2 – Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria 3 – University of Russe, Branch Razgrad, Bulgaria Abstract Keywords: Introduction. Physalis peruviana L. fruit contain various functional compounds with health promoting effects. The aim of Physalis this study was to investigate the possibility of obtaining reduced peruviana L. sugar jellies from physalis juice with different sugars and sugar Maltitol substitues. Fructose Materials and methods. Jellies containing physalis juice and Jelly sucrose (sample S), fructose (sample F) or maltitol and maltitol syrup Functional (sample M), respectively, were prepared and studied. Results and discussion. There were no significant differences between the samples in terms of dry matter content, titratable Article history: acidity and pH. The highest total sugar content was found in sample S (72.68%), and the lowest – in sample M (7.12%). Sample M had Received about 90% lower total sugar content than sample S and about 83% 04.02.2019 lower than sample F. Therefore, according to EU Regulation No Received in revised 1924/2006, the jelly with maltitol/maltitol syrup can be classified form 21.04.2019 with a nutrition claim “Food with no added sugars”. Due to its Accepted composition, the same nutrition claim can be ascribed to sample F. 30.09.2019 Sample F had the biggest sorption capacity, in which an absorption process was observed, and the moisture content of the jelly Corresponding increased from 28.23% to 32.65% after 120 h. -
SQF Food Safety Code for Manufacture of Food Packaging EDITION 8
SQF Food Safety Code for Manufacture of Food Packaging EDITION 8 2345 Crystal Drive, Suite 800 • Arlington, VA 22202 USA 202.220.0635 • www.sqfi.com ©2017 Food Marketing Institute. All rights reserved. The SQF Code, Edition 8 Introduction First published May 1995 © 2017 Food Marketing Institute (FMI). All rights reserved. First Printed May 1995 No portion of this document may be reproduced or used in any manner whatsoever without the express written permission of the Food Marketing Institute. For permission contact FMI at 2345 Crystal Drive, Suite 800, Arlington, VA, 22202, USA. Care should be taken to ensure that material used is from the current edition of the Code and that it is updated whenever the Code is amended or revised. The date of the Code should therefore be clearly identified. Suggestions for improvements to this Code are encouraged from all parties. Written comments are to be sent to SQFI at 2345 Crystal Drive, Suite 800, Arlington, VA, 22202, USA. SQF Code edition 8 © 2017 Food Marketing Institute. All rights reserved. 1 The SQF Code, Edition 8 Introduction First published May 1995 SQF Code, edition 8 The Safe Quality Food Institute’s (SQFI) SQF Code, edition 8 has been updated and redesigned in 2017 for use by all sectors of the food industry from primary production to storage and distribution and now includes a food safety code for retailers. It replaces the SQF Code, edition 7. The SQF Code is a site-specific, process and product certification standard with an emphasis on the systematic application of CODEX Alimentarius Commission HACCP principles and guidelines for control of food safety and food quality hazards.