Abrek Bay Area, South Primorye, Russia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cephalopods) from the Carboniferous of the Donets Basin (Eastern Ukraine
Дослідницькі та огляДоВІ статті Research AND Review Papers https://doi.org/10.30836/igs.1025-6814.2021.2.227012 UDC 564.53:551.735.2(477.61) V.S. DERNOV Institute of Geological Sciences of the NAS of Ukraine, Kyiv, Ukraine е-mail: [email protected] * Corresponding author THREE NEW SPECIES OF NAUTILIDS (CEPHALOPODS) FROM THE CARBONIFEROUS OF THE DONETS BASIN (EASTERN UKRAINE) Three new species of nautilids (Gzheloceras aisenvergi sp. nov., Knightoceras extorris sp. nov. and Planetoceras yefimenkoi sp. nov.) have been described from the Carboniferous of the Donets Basin (Ukraine). Gzheloceras aisenvergi sp. nov. is mor- phologically close to the “Gzheloceras” orthocostatum (Kruglov, 1939) and Gzheloceras memorandum Shimansky, 1967. Knightoceras oxylobatum Miller et Downs, 1948 and K. patulum (Unklesbay, 1962) are the most morphologically related species to the K. extorris sp. nov. The form of the conch and the surface ornamentation of Planetoceras yefimenkoi sp. nov. are most similar to the type of genus (Planetoceras retardum Hyatt, 1893). The new data are expanding the taxonomic composition of the genera Gzheloceras, Knightoceras, and Planetoceras and also clarify their geographical distribution. Keywords: Cephalopoda; Nautilida; Carboniferous; Donets Basin; Ukraine. Introduction sippian and the Pennsylvanian of the Donets Basin (Eastern Ukraine) in result of studying the collec- Sediments of the Carboniferous system are in- tion of cephalopod remains. These species are de- volved in the geological structure of a significant scribed below. part of the territory of Ukraine. Unfortunately, the level of study of Carboniferous in different parts of Ukraine is not the same. Remains of nautiloids are History of research found in the Carboniferous deposits of the Don- Dnieper Downwarp (Dernov, 2018; Librovitch, Mississippian cephalopods of the Donets Basin are 1939) and the Lviv Paleozoic Downwarp (Shulga, very poorly studied. -
Central San Juan Basin
Acta - ---- - - ---Palaeontologic- -- ---' ~ Polonica Vol. 28, No. 1-2 pp. 195-204 Warszawa, 1983 Second Symposium on Mesozoic Terrestiol. Ecosystems, Jadwisin 1981 SPENCER G. LUCAS and NIALL J. MATEER VERTEBRATE PALEOECOLOGY OF THE LATE CAMPANIAN (CRETACEOUS):FRUITLAND FORMATION, SAN JUAN BASIN, ~EW MEXICO (USA) LUCAS, s. G. and MATEER, N. J .: Vertebrate paleoecology of the late Campanian (Cretaceous) Fruitland Formation, San Juan Basin, New Mexico (USA). Acta Palaeontologica Polonica, 28, 1-2, 195-204, 1983. Sediments of the Fruitland Formation in northwestern New Mexico represent a delta plain that prograded northeastward over the retrating strandline of the. North American epeiric seaway during the late Campanian. Fruitland fossil · vertebrates are fishes, amphibians, lizards, a snake, turtles, crocodilians, dinosaurs (mostly h adrosaurs and ceratopsians) and mammals. Autochthonous fossils in the Fruitland ' Form ation represent organisms of the trophically-complex Para saurolophus community. Differences in diversity, physical stress and life-history strategies within the ParasaurolopllUS community . fit well the stablllty-time hypothesis. Thus, dinosaurs experienced relatively low physical stress whereas fishes, amphibians, small reptiles and mammals experienced greater physical stress. Because of this, dinosaurs were less likely to recover from an environment al catastrophe than were smaller contemporaneous vertebrates. The terminal Cretaceous extinctions selectively eliminated animals that lived in less physlcally -stressed situations, indicating that the extinctions resulted from an environmental catastrophe. Key w 0 r d s: Fruitland Formation, New Mexico, delta plain, stablllty-time hypothesis, Cretaceous extinctions. Spencer G. Lucas, Department ot Geology and Geophysics and Peabody Museum ot Natural History, Yale University, P.O. Box 6666, New Haven, Connecticut 06511 USA ; NlaU J . -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
Mesozoic Stratigraphy at Durango, Colorado
160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs. -
Oil and Gas Plays Ute Moutnain Ute Reservation, Colorado and New Mexico
Ute Mountain Ute Indian Reservation Cortez R18W Karle Key Xu R17W T General Setting Mine Xu Xcu 36 Can y on N Xcu McElmo WIND RIVER 32 INDIAN MABEL The Ute Mountain Ute Reservation is located in the northwest RESERVATION MOUNTAIN FT HALL IND RES Little Moude Mine Xcu T N ern portion of New Mexico and the southwestern corner of Colorado UTE PEAK 35 N R16W (Fig. UM-1). The reservation consists of 553,008 acres in Montezu BLACK 666 T W Y O M I N G MOUNTAIN 35 R20W SLEEPING UTE MOUNTAIN N ma and La Plata Counties, Colorado, and San Juan County, New R19W Coche T Mexico. All of these lands belong to the tribe but are held in trust by NORTHWESTERN 34 SHOSHONI HERMANO the U.S. Government. Individually owned lands, or allotments, are IND RES Desert Canyon PEAK N MESA VERDE R14W NATIONAL GREAT SALT LAKE W Marble SENTINEL located at Allen Canyon and White Mesa, San Juan County, Utah, Wash Towaoc PARK PEAK T and cover 8,499 acres. Tribal lands held in trust within this area cov Towaoc River M E S A 33 1/2 N er 3,597 acres. An additional forty acres are defined as U.S. Govern THE MOUND R15W SKULL VALLEY ment lands in San Juan County, Utah, and are utilized for school pur TEXAS PACIFIC 6-INCH OIL PIPELINE IND RES UNITAH AND OURAY INDIAN RESERVATION Navajo poses. W Ramona GOSHUTE 789 The Allen Canyon allotments are located twelve miles west of IND RES T UTAH 33 Blanding, Utah, and adjacent to the Manti-La Sal National Forest. -
Non-Equilibrium Evolution of Volatility in Origination and Extinction Explains Fat-Tailed Fluctuations in Phanerozoic Biodiversi
Non-equilibrium evolution of volatility in origination and extinction explains fat-tailed fluctuations in Phanerozoic biodiversity One sentence summary: Phanerozoic marine invertebrate richness fluctuates out of equilibrium due to pulsed adaptive evolution. Andrew J. Rominger1, *, Miguel A. Fuentes1, 2, 3, and Pablo A. Marquet1, 4, 5, 6, 7, 8 1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, US 2Instituto de Investigaciones Filos´oficas,SADAF, CONICET, Bulnes 642, 1428 Buenos Aires, Argentina 3Facultad de Ingenier´ıay Tecnolog´ıa,Universidad San Sebasti´an,Lota 2465, Santiago 7510157, Chile 4Departamento de Ecolog´ıa,Facultad de Ciencias Biol´ogicas,Pontificia Universidad de Chile, Alameda 340, Santiago, Chile 5Instituto de Ecolog´ıay Biodiversidad (IEB), Casilla 653, Santiago, Chile 6Laboratorio Internacional de Cambio Global (LINCGlobal), and Centro de Cambio Global UC, Pontificia Universidad Catolica de Chile, Santiago, Chile. 7Instituto de Sistemas Complejos de Vlapara´ıso(ISCV), Artiller´ıa470, Cerro Artiller´ıa, Valpara´ıso,Chile 8Centro de Ciencias de la Complejidad (C3), Universidad Nacional Aut´onomade M´exico. *To whom correspondence should be addressed, e-mail: [email protected] arXiv:1707.09268v3 [q-bio.PE] 10 May 2019 1 Fluctuations in biodiversity, both large and small, are pervasive through the fossil record, yet we do not understand the processes generating them. Here we extend theory from non-equilibrium statistical physics to describe the previously unaccounted for fat-tailed form of fluctuations in marine inver- tebrate richness through the Phanerozoic. Using this theory, known as super- statistics, we show that the simple fact of heterogeneous rates of origination and extinction between clades and conserved rates within clades is sufficient to account for this fat-tailed form. -
Sequence Stratigraphy and Geochemistry of The
Report of Investigations 2007-1 SEQUENCE STRATIGRAPHY AND GEOCHEMISTRY OF THE UPPER LOWER THROUGH UPPER TRIASSIC OF NORTHERN ALASKA: IMPLICATIONS FOR PALEOREDOX HISTORY, SOURCE ROCK ACCUMULATION, AND PALEOCEANOGRAPHY by Landon N. Kelly, Michael T. Whalen, Christopher A. McRoberts, Emily Hopkin, and Carla Susanne Tomsich ASK AL A G N S E Y O E L O V G R U IC S A L L A A N SIC D GEOPHY Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 2007 Report of Investigations 2007-1 SEQUENCE STRATIGRAPHY AND GEOCHEMISTRY OF THE UPPER LOWER THROUGH UPPER TRIASSIC OF NORTHERN ALASKA: IMPLICATIONS FOR PALEOREDOX HISTORY, SOURCE ROCK ACCUMULATION, AND PALEOCEANOGRAPHY by Landon N. Kelly, Michael T. Whalen, Christopher A. McRoberts, Emily Hopkin, and Carla Susanne Tomsich 2007 This DGGS Report of Investigations is a final report of scientific research. It has received technical review and may be cited as an agency publication. STATE OF ALASKA Sarah Palin, Governor DEPARTMENT OF NATURAL RESOURCES Tom Irwin, Commissioner DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Robert F. Swenson, State Geologist and Acting Director Division of Geological & Geophysical Surveys publications can be inspected at the following locations. Address mail orders to the Fairbanks office. Alaska Division of Geological University of Alaska Anchorage Library & Geophysical Surveys 3211 Providence Drive 3354 College Road Anchorage, Alaska 99508 Fairbanks, Alaska 99709-3707 Elmer E. Rasmuson Library Alaska Resource Library University of Alaska Fairbanks 3150 C Street, Suite 100 Fairbanks, Alaska 99775-1005 Anchorage, Alaska 99503 Alaska State Library State Office Building, 8th Floor 333 Willoughby Avenue Juneau, Alaska 99811-0571 This publication released by the Division of Geological & Geophysical Surveys was produced and printed in Fairbanks, Alaska at a cost of $5.00 per copy. -
USGS Professional Paper 1662, Chapter 4
Studies by the U.S. Geological Survey in Alaska, 2000 U.S. Geological Survey Professional Paper 1662 Late Triassic (Norian) Mollusks From the Taylor Mountains Quadrangle, Southwestern Alaska By Christopher A. McRoberts1 and Robert B. Blodgett2 Abstract Such paleobiogeographic data as those presented herein are extremely useful in constraining the past geographic positions We describe a diverse molluscan fauna of silicified fossils of these mobile terranes over time, and so are of utmost utility from two localities in the Taylor Mountains D–3 quadrangle of in unraveling the tectonic history of this part of Alaska. southwestern Alaska. The molluscan fauna consists of at least 8 species of bivalves, including 1 new species, Cassianella cordillerana McRoberts n.sp., and at least 11 species of gas- Geologic Setting tropods, including 2 new species, Neritaria nuetzeli Blodgett n.sp. and Andangularia wilsoni Blodgett n.sp. Bivalve and gastropod affinities suggest an early Norian age, with taxo- The Farewell terrane of southwestern and west-central nomic similarities to several southern Alaskan tectonostrati- Alaska (fig. 1) was established by Decker and others (1994) graphic terranes (for example, Alexander and Chulitna), as as a tectonostratigraphic entity incorporating three previously well as to the South American Cordillera of Peru. The mol- named, genetically related terranes (Nixon Fork, Dillinger, lusks are associated with numerous brachiopods that also sup- and Mystic) that are relegated the status of subterranes of the port a Norian -
Hydrologic Assessment of Oil and Gas Resource Development of the Mancos Shale in the San Juan Basin, New Mexico
HYDROLOGIC ASSESSMENT OF OIL AND GAS RESOURCE DEVELOPMENT OF THE MANCOS SHALE IN THE SAN JUAN BASIN, NEW MEXICO Open-file Report 566 By Shari Kelley, Thomas Engler, Martha Cather, Cathryn Pokorny, Cheng-Heng Yang, Ethan Mamer, Gretchen Hoffman, Joe Wilch, Peggy Johnson, and Kate Zeigler New Mexico Bureau Geology & Mineral Resources New Mexico Institute of Mining & Technology Socorro, New Mexico 87801 November 2014 HYDROLOGIC ASSESSMENT OF OIL AND GAS RESOURCE DEVELOPMENT OF THE MANCOS SHALE IN THE SAN JUAN BASIN, NEW MEXICO Prepared for the Farmington Field Office of the Bureau of Land Management Shari A. Kelley, New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801, [email protected] Thomas W. Engler, Petroleum and Chemical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 Martha Cather, Petroleum Recovery Research Center, New Mexico Institute of Mining and Technology Cathryn Pokorny, Cheng-Heng Yang, Ethan Mamer, Gretchen Hoffman, Joe Wilch, and Peggy Johnson, New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801 Kate Zeigler, Zeigler Geologic Consulting, Albuquerque, NM 87123 1 Table of Contents ABSTRACT ...................................................................................................................................................... 4 INTRODUCTION ............................................................................................................................................ -
Lower Permian Through Lower Trassic Paleontology, Stratigraphy, and Chemostratigraphy of the Bilk Creek Mountains of Humboldt County, Nevada
LOWER PERMIAN THROUGH LOWER TRASSIC PALEONTOLOGY, STRATIGRAPHY, AND CHEMOSTRATIGRAPHY OF THE BILK CREEK MOUNTAINS OF HUMBOLDT COUNTY, NEVADA Christopher Allen Klug A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor James E. Evans John R. Farver © 2007 Christopher Klug All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The primary goal of this study was to use paleontological, geochemical ( C), and sedimentological data to determine if a complete Permian-Triassic boundary section is present at the Bilk Creek Mountains of northwestern Nevada. The Bilk Creek Mountains of northwestern Nevada contain a marine record deposited in a back-arc terrane environment, starting in the Lower Permian Bilk Creek Limestone and extending to the Middle Triassic Quinn River Formation. Field work through these units reveals changes in the marine benthic fauna through this interval, including across the Permian-Triassic boundary. Data collected from the Bilk Creek Limestone reveals a diverse benthic marine fauna, with brachiopods being the most abundant. Within the Bilk Creek Limestone, two different faunal signatures are apparent. The transition and separation of these groups are marked by the appearance and the abundance of Boreal brachiopods such as Spiriferella, Neospirifer, Stenoscisma, Muirwoodia transversa, Neophricodothyris sp., and Derbyia, replacing mid-latitude to Tethyan-derived brachiopods such as Crurithyris, Dielasma, Squamularia sp., and Rhynchopora. When the brachiopod faunas of the Bilk Creek were compared statistically with other known Early Permian rocks deposited along northwestern and western Pangea, analysis showed that the Bilk Creek brachiopod fauna was similar to that of the Eastern Klamath and Quesnellia terranes. -
Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada
Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada By N. J. SILBERLING GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 A study of upper Paleozoic and lower Mesozoic marine sedimentary and volcanic rocks, with descriptions of Upper Triassic cephalopods and pelecypods UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract_ ________________________________________ 1 Paleontology Continued Introduction _______________________________________ 1 Systematic descriptions-------------------------- 38 Class Cephalopoda___--_----_---_-_-_-_-_--_ 38 Location and description of the area ______________ 2 Order Ammonoidea__-__-_______________ 38 Previous work__________________________________ 2 Genus Klamathites Smith, 1927_ __ 38 Fieldwork and acknowledgments________________ 4 Genus Mojsisovicsites Gemmellaro, 1904 _ 39 Stratigraphy _______________________________________ 4 Genus Tropites Mojsisovics, 1875_____ 42 Genus Tropiceltites Mojsisovics, 1893_ 51 Cambrian (?) dolomite and quartzite units__ ______ 4 Genus Guembelites Mojsisovics, 1896__ 52 Pablo formation (Permian?)____________________ 6 Genus Discophyllites Hyatt, -
Title Discovery of Claraia and Eumorphotis from Triassic Yakuno
Discovery of Claraia and Eumorphotis from Triassic Yakuno Title Group, Kyoto Pref., Japan Author(s) Nakazawa, Keiji Memoirs of the College of Science, University of Kyoto. Series Citation B (1953), 20(4): 261-269 Issue Date 1953-12-10 URL http://hdl.handle.net/2433/257980 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University MEnelks oF wma Co-EGE oF SomNeE VMvERs]Ty oF KyoTo, SEwtEg B. Vo}. XX, No. 4•, Article 4t, 1953. ' Discovery of ClaTaia and EzamorPlzot.is from Triassic Yakuno Group, Kyoto Pref., JapaR• By Keiji _NAKAZAWA Ceo]ogical and Mineralosical Institute, University of Kyoto (Received Aug. 3, 1953) Abstract The Yalcuno gro"p distribtited in the ]N(EaizLiru zone has been eonsidered Anisian in age. !Aately the author confi'rmecl that the age oÅí its lower part belongs to the Scytkian by (llseQvering tlie Eo-triasslc pelecypods and ammonoids. Species of Clarai.a and Euntorphoti$ Qf theformer are dieseril)ed. k'efaee The ]VIaizuru(ge#'fggs) clistrlct is cltaraeterized by a zoRal arrangement of the PermiaA Maizuru grotip, t}3e Lower and Middle Triassie Yakuno (lf(fivgeg•) and Kawanishi (•trifY"e) groups, t}ie ILTpper Triassic Nabae (suEva?lr) group and t}ie so-called JctP"X Sea Fig. 1. Index Map of Fossil I,eca}ity 262 Keiji NAKAZAWA Yal<uno basic intrusive rocks as repoxtecl })rlefiy lii the preeeeding pani er (llNIakazawa, 1952a), and is ca}lecl the "Maizuru zone" by S. -"'{atsashita <1950, p. 4Al; 1953, pp. 3,<k). (See rlrextfigure 1) . This zone is new confirrned to continue into Okayama(s-rfipt) Pref., about 130km FVSW from liiaizuru (Nalcazawa, 1952b, p.