Evidence for Sea-Level Falls in the Permian-Triassic Transition in the Ziyun Area, South China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tiny Fossil Sheds Light on Miniaturization of Birds
Retraction Tiny fossil sheds light on miniaturization of birds Roger B. J. Benson Nature 579, 199–200 (2020) In view of the fact that the authors of ‘Hummingbird-sized dinosaur from the Cretaceous period of Myanmar‘ (L. Xing et al. Nature 579, 245–249; 2020) are retracting their report, I wish to retract this News & Views article, which dealt with this study and was based on the accuracy and reproducibility of their data. Nature | 22 July 2020 ©2020 Spri nger Nature Li mited. All rights reserved. drives the assembly of DNA-PK and stimulates regulation of protein synthesis. And, although 3. Dragon, F. et al. Nature 417, 967–970 (2002). its catalytic activity in vitro, although does so further studies are required, we might have 4. Adelmant, G. et al. Mol. Cell. Proteom. 11, 411–421 (2012). much less efficiently than can DNA. taken a step closer to deciphering the 5. Britton, S., Coates, J. & Jackson, S. P. J. Cell Biol. 202, Taken together, these observations suggest mysterious ribosomopathies. 579–595 (2013). a model in which KU recruits DNA-PKcs to the 6. Barandun, J. et al. Nature Struct. Mol. Biol. 24, 944–953 (2017). small-subunit processome. In the case of Alan J. Warren is at the Cambridge Institute 7. Ma, Y. et al. Cell 108, 781–794 (2002). kinase-defective DNA-PK, the mutant enzyme’s for Medical Research, Hills Road, Cambridge 8. Yin, X. et al. Cell Res. 27, 1341–1350 (2017). inability to regulate its own activity gives the CB2 OXY, UK. 9. Sharif, H. et al. -
Species Extinctions
http://www.iucn.org/about/union/commissions/wcpa/?7695/Multiple-ocean-stresses- threaten-globally-significant-marine-extinction Multiple ocean stresses threaten “globally significant” marine extinction 20 June 2011 | News story An international panel of experts warns in a report released today that marine species are at risk of entering a phase of extinction unprecedented in human history. The preliminary report arises from a ‘State of the Oceans’ workshop co-hosted by IUCN in April, the first ever to consider the cumulative impact of all pressures on the oceans. Considering the latest research across all areas of marine science, the workshop examined the combined effects of pollution, acidification, ocean warming, over-fishing and hypoxia (deoxygenation). The scientific panel concluded that the combination of stresses on the ocean is creating the conditions associated with every previous major extinction of species in Earth’s history. And the speed and rate of degeneration in the ocean is far greater than anyone has predicted. The panel concluded that many of the negative impacts previously identified are greater than the worst predictions. As a result, although difficult to assess, the first steps to globally significant extinction may have begun with a rise in the extinction threat to marine species such as reef- forming corals. “The world’s leading experts on oceans are surprised by the rate and magnitude of changes we are seeing,” says Dan Laffoley, Marine Chair of IUCN’s World Commission on Protected Areas, Senior Advisor on Marine Science and Conservation for IUCN and co-author of the report. “The challenges for the future of the ocean are vast, but unlike previous generations, we know what now needs to happen. -
Spraberry of the Midland Basin
Stratigraphic Framework of the Wolfcamp – Spraberry of the Midland Basin Roswell Geologic Society October 8, 2019 Lowell Waite Department of Geosciences Permian Basin Research Lab University of Texas at Dallas Permian Basin Research Lab at UT Dallas Dr. Robert J. Stern and Mr. Lowell Waite, Co-Directors -- established January, 2019 -- Goals: • Advance understanding of all geologic aspects of the Permian Basin through open applied research, linking academia and industry • Educate and better prepare students for professional careers in the oil and gas industry • Graduate courses offered: • Geology of the Permian Basin • Petroleum Geoscience • Paleo Earth Systems: Global Themes https://labs.utdallas.edu/permianbasinresearch/ Stratigraphic framework of Wolfcamp – Spraberry: Objectives • Review the tectono-stratigraphic framework of the Wolfcamp and Spraberry deep-water units of the Midland Basin, west Texas • Briefly discuss the facies/characteristics of these rocks • Highlight the differences between the Wolfcamp shale (A – D) and Spraberry depositional systems Note: although not specifically addressed, the framework outlined here is applicable to the Delaware Basin Greater Permian Basin Region • Confluence of Marathon- Ouachita fold and thrust belt and Ancestral Rockies basement-involved uplifts (Penn. – early Permian) Study Area Precursor Tobosa Basin (Ord. to Miss.) Fold and thrust belt Basement uplift Shallow marine shelf Reef / shoal complex Deep marine basin Permian Basin Stratigraphy and Tectonic History Ma System Series Delaware Basin -
Ocean Drilling Program Scientific Results Volume
Wise, S. W., Jr., Schlich, R., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 120 44. ISOTOPE AND TRACE ELEMENT GEOCHEMISTRY OF EOCENE AND OLIGOCENE FORAMINIFERS FROM SITE 748, KERGUELEN PLATEAU1 James C. Zachos,2 William A. Berggren,3 Marie-Pierre Aubry,3,4 and Andreas Mackensen5 ABSTRACT Stable carbon and oxygen isotope analyses were conducted on well-preserved planktonic and benthic foraminifers from a continuous middle Eocene to Oligocene sequence at Ocean Drilling Program (ODP) Site 748 on the Kerguelen Plateau. Benthic foraminifer δ18θ values show a 1.0‰ increase through the middle and upper Eocene, followed by a rapid 1.2%c increase in the lowermost Oligocene (35.5 Ma). Surface-dwelling planktonic foraminifer δ18θ values increase in the lowermost Oligocene, but only by 0.6%e whereas intermediate-depth planktonic foraminifers show an increase of about l.O‰. Benthic foraminifer δ13C values increase by 0.9‰ in the lowermost Oligocene at precisely the same time as the large δ18θ increase, whereas planktonic foraminifer δ13C values show little or no change. Site 748 oxygen isotope and paleontological records suggest that southern Indian Ocean surface and intermediate waters underwent significant cooling from the early to late Eocene. The rapid 1.2%o oxygen isotope increase recorded by benthic foraminifers just above the Eocene/Oligocene boundary represents the ubiquitous early Oligocene δ18θ event. The shift here is unique, however, as it coincided with the sudden appearance of ice-rafted debris (IRD), providing the first direct link between Antarctic glacial activity and the earliest Oligocene δ18θ increase. -
Simple Stochastic Populations in Habi- Tats with Bounded, and Varying Carry- Ing Capacities
Simple Stochastic Populations in Habi- tats with Bounded, and Varying Carry- ing Capacities Master’s thesis in Complex Adaptive Systems EDWARD KORVEH Department of Mathematical Sciences CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2016 Master’s thesis 2016:NN Simple Stochastic Populations in Habitats with Bounded, and Varying Carrying Capacities EDWARD KORVEH Department of Mathematical Sciences Division of Mathematical Statistics Chalmers University of Technology Gothenburg, Sweden 2016 Simple Stochastic Populations in Habitats with Bounded, and Varying Carrying Capacities EDWARD KORVEH © EDWARD KORVEH, 2016. Supervisor: Peter Jagers, Department of Mathematical Sciences Examiner: Peter Jagers, Department of Mathematical Sciences Master’s Thesis 2016:NN Department of Mathematical Sciences Division of Mathematical Statistics Chalmers University of Technology SE-412 96 Gothenburg Gothenburg, Sweden 2016 iv Simple Stochastic Populations in Habitats with Bounded, and Varying Carrying Capacities EDWARD KORVEH Department of Mathematical Sciences Chalmers University of Technology Abstract A population consisting of one single type of individuals where reproduction is sea- sonal, and by means of asexual binary-splitting with a probability, which depends on the carrying capacity of the habitat, K and the present population is considered. Current models for such binary-splitting populations do not explicitly capture the concepts of early and late extinctions. A new parameter v, called the ‘scaling pa- rameter’ is introduced to scale down the splitting probabilities in the first season, and also in subsequent generations in order to properly observe and record early and late extinctions. The modified model is used to estimate the probabilities of early and late extinctions, and the expected time to extinction in two main cases. -
Geology of London, UK
Geology of London, UK Katherine R. Royse1, Mike de Freitas2,3, William G. Burgess4, John Cosgrove5, Richard C. Ghail3, Phil Gibbard6, Chris King7, Ursula Lawrence8, Rory N. Mortimore9, Hugh Owen10, Jackie Skipper 11, 1. British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. [email protected] 2. Imperial College London SW72AZ, UK & First Steps Ltd, Unit 17 Hurlingham Studios, London SW6 3PA, UK. 3. Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK. 4. Department of Geological Sciences, University College London, WC1E 6BT, UK. 5. Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK. 6. Cambridge Quaternary, Department of Geography, University of Cambridge CB2 3EN, UK. 7. 16A Park Road, Bridport, Dorset 8. Crossrail Ltd. 25 Canada Square, Canary Wharf, London, E14 5LQ, UK. 9. University of Brighton & ChalkRock Ltd, 32 Prince Edwards Road, Lewes, BN7 1BE, UK. 10. Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. 11. Geotechnical Consulting Group (GCG), 52A Cromwell Road, London SW7 5BE, UK. Abstract The population of London is around 7 million. The infrastructure to support this makes London one of the most intensively investigated areas of upper crust. however construction work in London continues to reveal the presence of unexpected ground conditions. These have been discovered in isolation and often recorded with no further work to explain them. There is a scientific, industrial and commercial need to refine the geological framework for London and its surrounding area. This paper reviews the geological setting of London as it is understood at present, and outlines the issues that current research is attempting to resolve. -
The Sixth Great Extinction Donations Events "Soon a Millennium Will End
The Rewilding Institute, Dave Foreman, continental conservation Home | Contact | The EcoWild Program | Around the Campfire About Us Fellows The Pleistocene-Holocene Event: Mission Vision The Sixth Great Extinction Donations Events "Soon a millennium will end. With it will pass four billion years of News evolutionary exuberance. Yes, some species will survive, particularly the smaller, tenacious ones living in places far too dry and cold for us to farm or graze. Yet we Resources must face the fact that the Cenozoic, the Age of Mammals which has been in retreat since the catastrophic extinctions of the late Pleistocene is over, and that the Anthropozoic or Catastrophozoic has begun." --Michael Soulè (1996) [Extinction is the gravest conservation problem of our era. Indeed, it is the gravest problem humans face. The following discussion is adapted from Chapters 1, 2, and 4 of Dave Foreman’s Rewilding North America.] Click Here For Full PDF Report... or read report below... Many of our reports are in Adobe Acrobat PDF Format. If you don't already have one, the free Acrobat Reader can be downloaded by clicking this link. The Crisis The most important—and gloomy—scientific discovery of the twentieth century was the extinction crisis. During the 1970s, field biologists grew more and more worried by population drops in thousands of species and by the loss of ecosystems of all kinds around the world. Tropical rainforests were falling to saw and torch. Wetlands were being drained for agriculture. Coral reefs were dying from god knows what. Ocean fish stocks were crashing. Elephants, rhinos, gorillas, tigers, polar bears, and other “charismatic megafauna” were being slaughtered. -
Co-Option of the Cardiac Transcription Factor Nkx2.5 During Development of the Emu Wing
ARTICLE DOI: 10.1038/s41467-017-00112-7 OPEN Co-option of the cardiac transcription factor Nkx2.5 during development of the emu wing Peter G. Farlie 1,2, Nadia M. Davidson1, Naomi L. Baker1,2, Mai Raabus1, Kelly N. Roeszler1, Claire Hirst3, Andrew Major 3, Mylene M. Mariette4, David M. Lambert 5, Alicia Oshlack 1 & Craig A. Smith1,3 The ratites are a distinctive clade of flightless birds, typified by the emu and ostrich that have acquired a range of unique anatomical characteristics since diverging from basal Aves at least 100 million years ago. The emu possesses a vestigial wing with a single digit and greatly reduced forelimb musculature. However, the embryological basis of wing reduction and other anatomical changes associated with loss of flight are unclear. Here we report a previously unknown co-option of the cardiac transcription factor Nkx2.5 to the forelimb in the emu embryo, but not in ostrich, or chicken and zebra finch, which have fully developed wings. Nkx2.5 is expressed in emu limb bud mesenchyme and maturing wing muscle, and mis- expression of Nkx2.5 throughout the limb bud in chick results in wing reductions. We propose that Nkx2.5 functions to inhibit early limb bud expansion and later muscle growth during development of the vestigial emu wing. 1 Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia. 2 Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia. 3 Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia. 4 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia. -
Assessing the Record and Causes of Late Triassic Extinctions
Earth-Science Reviews 65 (2004) 103–139 www.elsevier.com/locate/earscirev Assessing the record and causes of Late Triassic extinctions L.H. Tannera,*, S.G. Lucasb, M.G. Chapmanc a Departments of Geography and Geoscience, Bloomsburg University, Bloomsburg, PA 17815, USA b New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104, USA c Astrogeology Team, U.S. Geological Survey, 2255 N. Gemini Rd., Flagstaff, AZ 86001, USA Abstract Accelerated biotic turnover during the Late Triassic has led to the perception of an end-Triassic mass extinction event, now regarded as one of the ‘‘big five’’ extinctions. Close examination of the fossil record reveals that many groups thought to be affected severely by this event, such as ammonoids, bivalves and conodonts, instead were in decline throughout the Late Triassic, and that other groups were relatively unaffected or subject to only regional effects. Explanations for the biotic turnover have included both gradualistic and catastrophic mechanisms. Regression during the Rhaetian, with consequent habitat loss, is compatible with the disappearance of some marine faunal groups, but may be regional, not global in scale, and cannot explain apparent synchronous decline in the terrestrial realm. Gradual, widespread aridification of the Pangaean supercontinent could explain a decline in terrestrial diversity during the Late Triassic. Although evidence for an impact precisely at the boundary is lacking, the presence of impact structures with Late Triassic ages suggests the possibility of bolide impact-induced environmental degradation prior to the end-Triassic. Widespread eruptions of flood basalts of the Central Atlantic Magmatic Province (CAMP) were synchronous with or slightly postdate the system boundary; emissions of CO2 and SO2 during these eruptions were substantial, but the contradictory evidence for the environmental effects of outgassing of these lavas remains to be resolved. -
USGS Professional Paper 1662, Chapter 4
Studies by the U.S. Geological Survey in Alaska, 2000 U.S. Geological Survey Professional Paper 1662 Late Triassic (Norian) Mollusks From the Taylor Mountains Quadrangle, Southwestern Alaska By Christopher A. McRoberts1 and Robert B. Blodgett2 Abstract Such paleobiogeographic data as those presented herein are extremely useful in constraining the past geographic positions We describe a diverse molluscan fauna of silicified fossils of these mobile terranes over time, and so are of utmost utility from two localities in the Taylor Mountains D–3 quadrangle of in unraveling the tectonic history of this part of Alaska. southwestern Alaska. The molluscan fauna consists of at least 8 species of bivalves, including 1 new species, Cassianella cordillerana McRoberts n.sp., and at least 11 species of gas- Geologic Setting tropods, including 2 new species, Neritaria nuetzeli Blodgett n.sp. and Andangularia wilsoni Blodgett n.sp. Bivalve and gastropod affinities suggest an early Norian age, with taxo- The Farewell terrane of southwestern and west-central nomic similarities to several southern Alaskan tectonostrati- Alaska (fig. 1) was established by Decker and others (1994) graphic terranes (for example, Alexander and Chulitna), as as a tectonostratigraphic entity incorporating three previously well as to the South American Cordillera of Peru. The mol- named, genetically related terranes (Nixon Fork, Dillinger, lusks are associated with numerous brachiopods that also sup- and Mystic) that are relegated the status of subterranes of the port a Norian -
Global Catastrophic Risks 2017 INTRODUCTION
Global Catastrophic Risks 2017 INTRODUCTION GLOBAL CHALLENGES ANNUAL REPORT: GCF & THOUGHT LEADERS SHARING WHAT YOU NEED TO KNOW ON GLOBAL CATASTROPHIC RISKS 2017 The views expressed in this report are those of the authors. Their statements are not necessarily endorsed by the affiliated organisations or the Global Challenges Foundation. ANNUAL REPORT TEAM Carin Ism, project leader Elinor Hägg, creative director Julien Leyre, editor in chief Kristina Thyrsson, graphic designer Ben Rhee, lead researcher Erik Johansson, graphic designer Waldemar Ingdahl, researcher Jesper Wallerborg, illustrator Elizabeth Ng, copywriter Dan Hoopert, illustrator CONTRIBUTORS Nobuyasu Abe Maria Ivanova Janos Pasztor Japanese Ambassador and Commissioner, Associate Professor of Global Governance Senior Fellow and Executive Director, C2G2 Japan Atomic Energy Commission; former UN and Director, Center for Governance and Initiative on Geoengineering, Carnegie Council Under-Secretary General for Disarmament Sustainability, University of Massachusetts Affairs Boston; Global Challenges Foundation Anders Sandberg Ambassador Senior Research Fellow, Future of Humanity Anthony Aguirre Institute Co-founder, Future of Life Institute Angela Kane Senior Fellow, Vienna Centre for Disarmament Tim Spahr Mats Andersson and Non-Proliferation; visiting Professor, CEO of NEO Sciences, LLC, former Director Vice chairman, Global Challenges Foundation Sciences Po Paris; former High Representative of the Minor Planetary Center, Harvard- for Disarmament Affairs at the United Nations Smithsonian -
Lower Permian Through Lower Trassic Paleontology, Stratigraphy, and Chemostratigraphy of the Bilk Creek Mountains of Humboldt County, Nevada
LOWER PERMIAN THROUGH LOWER TRASSIC PALEONTOLOGY, STRATIGRAPHY, AND CHEMOSTRATIGRAPHY OF THE BILK CREEK MOUNTAINS OF HUMBOLDT COUNTY, NEVADA Christopher Allen Klug A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor James E. Evans John R. Farver © 2007 Christopher Klug All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The primary goal of this study was to use paleontological, geochemical ( C), and sedimentological data to determine if a complete Permian-Triassic boundary section is present at the Bilk Creek Mountains of northwestern Nevada. The Bilk Creek Mountains of northwestern Nevada contain a marine record deposited in a back-arc terrane environment, starting in the Lower Permian Bilk Creek Limestone and extending to the Middle Triassic Quinn River Formation. Field work through these units reveals changes in the marine benthic fauna through this interval, including across the Permian-Triassic boundary. Data collected from the Bilk Creek Limestone reveals a diverse benthic marine fauna, with brachiopods being the most abundant. Within the Bilk Creek Limestone, two different faunal signatures are apparent. The transition and separation of these groups are marked by the appearance and the abundance of Boreal brachiopods such as Spiriferella, Neospirifer, Stenoscisma, Muirwoodia transversa, Neophricodothyris sp., and Derbyia, replacing mid-latitude to Tethyan-derived brachiopods such as Crurithyris, Dielasma, Squamularia sp., and Rhynchopora. When the brachiopod faunas of the Bilk Creek were compared statistically with other known Early Permian rocks deposited along northwestern and western Pangea, analysis showed that the Bilk Creek brachiopod fauna was similar to that of the Eastern Klamath and Quesnellia terranes.