(Nematoda: Longidoridae) with Description of a New Species

Total Page:16

File Type:pdf, Size:1020Kb

(Nematoda: Longidoridae) with Description of a New Species Eur J Plant Pathol (2020) 158:59–81 https://doi.org/10.1007/s10658-020-02055-0 An integrative taxonomic study of the needle nematode complex Longidorus goodeyi Hooper, 1961 (Nematoda: Longidoridae) with description of a new species. Ruihang Cai & Tom Prior & Bex Lawson & Carolina Cantalapiedra-Navarrete & Juan E. Palomares-Rius & Pablo Castillo & Antonio Archidona-Yuste Received: 14 April 2020 /Revised: 8 June 2020 /Accepted: 19 June 2020 /Published online: 26 June 2020 # The Author(s) 2020 Abstract Needle nematodes are polyphagous root- and slightly offset by a depression with body contour, ectoparasites parasitizing a wide range of economically amphidial pouch with slightly asymmetrical lobes, important plants not only by directly feeding on root odontostyle 80.5–101.0 µm long, tail short and conoid cells, but also by transmitting nepoviruses. This study rounded. Longidorus panderaltum n. sp. is quite similar deciphers the diversity of the complex Longidorus to L. goodeyi and L. onubensis in major morphometrics goodeyi through integrative diagnosis method, based and morphology. However, differential morphology in on a combination of morphological, morphometrical, the tail shape of first-stage juvenile, phylogeny and multivariate analysis and molecular data. A new haplonet analyses indicate they are three distinct valid Longidorus species, Longidorus panderaltum n. sp. is species. This study defines those three species as mem- described and illustrated from a population associated bers of L. goodeyi complex group and reveals the taxo- with the rhizosphere of asphodel (Asphodelus ramosus nomical complexity of the genus Longidorus.This L.) in southern Spain. Morphologically, L. panderaltum L. goodeyi complex group demonstrated that the biodi- n. sp. is characterized by having a moderately long versity of Longidorus in this region is still not fully female body (5.2-7.0 mm), lip region bluntly rounded clarified. R. Cai : C. Cantalapiedra-Navarrete : J. E. Palomares-Rius : Keywords: 18S rDNA . 28S rDNA D2-D3 . Species P. Castillo description . ITS1 . Longidorids . Multivariate analysis . Institute for Sustainable Agriculture (IAS), Spanish National Morphometry . Phylogeny . Taxonomy Research Council (CSIC), Avenida Menéndez Pidal s/n, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14004 Córdoba, Spain Introduction R. Cai Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Needle nematodes of the genus Longidorus Micoletzky, Zhejiang 310058 Hangzhou, People’s Republic of China 1922 are a globally important group of ectoparasitic nematodes and considered a major group of plant-path- T. Prior : B. Lawson Fera Science Ltd, Sand Hutton, York YO41 1LZ, UK ogens. These nematodes use their needle stylet to feed on the apical root cells inducing galls in the tips and A. Archidona-Yuste (*) reducing the yield and quality of a range of horticultural Department of Ecological Modelling, Helmholtz Centre for or agricultural crops and some of them are recognised as Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany vectors of important nepovirus (Taylor and Brown e-mail: [email protected] 1997;DecraemerandRobbins2007;Palomares-Rius et al. 2017a). Parasitism by Longidorus spp. have a 60 Eur J Plant Pathol (2020) 158:59–81 detrimental effect on root growth by inducing Archidona-Yuste et al. 2016b, 2019a;Lazarovaetal. hypertrophied uninucleate cells, highly active metabol- 2019; Amrei et al. 2020). Specifically, molecular ically, followed by hyperplasia with synchronized cell methods using different fragments of nuclear ribosomal division (Palomares et al. 2017a). This genus constitutes DNA (including 28S rRNA, 18S rRNA and ITS), mito- a great complex group of around 180 valid species chondrial DNA (cytochrome c oxidase subunit I, coxI (Archidona-Yuste et al. 2019a; Cai et al. 2020a, b; and nicotinamide dehydrogenase subunit 4. nad4)gene Amrei et al. 2020) and species delimitation is critical sequences have been used to provide precise identifica- from a phytopathological, ecological and biogeograph- tion of species and elucidate the phylogenetic relation- ical point of view. ships within the genus Longidorus (Ye et al. 2004;Neil- Several Longidorus spp. are distributed worldwide son et al. 2004; Palomares-Rius et al. 2008;Gutiérrez- whilst other species have a limited distribution (Brown Gutiérrez et al. 2012; Kumari and Subbotin 2012; and Taylor 1987; Robbins and Brown 1991; Sturhan et al. Subbotin et al. 2014; Archidona-Yuste et al. 2016a, b). 1997;Doucetetal.1998;Coomansetal.2001). Among In recent years, several studies have demonstrated them, Longidorus goodeyi Hooper, 1961 was described that the species diversity within the family Longidoridae from turf grasses at Rothamsted, UK, and has been re- remains as a major gap in the biodiversity of soil nem- ported sporadically in several European countries includ- atodes, particularly in the Iberian Peninsula which is ing Belgium, Bulgaria, France, Germany, Malta, Poland, considered a plausible speciation centre for this family Portugal, Slovak Republic, Spain, The Netherlands (Coomans 1996; Archidona-Yuste et al. 2016a, b;Cai (Lamberti et al. 1982; Arias et al. 1985; Tophan and et al. 2020a, b). This suggests that the continued sys- Alphey 1985; De Waele and Coomans 1990; Lisková tematic sampling in unexplored environments in this and Brown 1998; Gutiérrez-Gutiérrez et al. 2016), and area could lead to an increase in the overall species Tadzhikistan (Kankina and Melitskaya 1983). In Spain, richness of this group of nematodes. Following this Longidorus goodeyi has only been reported in central sampling strategy during the spring of 2019 in southern regions (Arias et al. 1985) associated with cereals and Spain, we observed a high density of a needle nematode common horehound (Marrubium vulgare L.). Surprising- morphologically resembling Longidorus goodeyi sug- ly, this species was not detected in southern Spain during gesting a wider geographical distribution for this nema- systematic and exhaustive nematode surveys on several tode species or the occurrence of a new species complex crops and natural environments carried out throughout the within the genus Longidorus.Thisfactpromptedusto last four decades (Arias 1977; Arias et al. 1985; Gutiérrez- undertake a detailed comparative morphological and Gutiérrez et al. 2011, 2013; Archidona-Yuste et al. 2016b; molecular study with previous reported data including 2019a, b; Cai et al. 2020a, b). topotype specimens of this species. In addition, a de- The morphological convergence among Longidorus tailed integrative approach was conducted in order to spp. and the existence of cryptic species complexes make clarify the taxonomical status of the new nematode the accurate identification of species considerably more population detected where the preliminary results indi- difficult (De Luca et al. 2004;Gutiérrez-Gutiérrezetal. cated that this population belongs to an unknown 2013; Archidona-Yuste et al. 2016b, 2019a; Cai et al. Longidorus species and therefore, the existence of a 2020a, b). In the family Longidoridae, morphological new species complex within this genus. Therefore, the and morphometric studies in addition to molecular se- objectives of this study were: (1) to discover the diver- quencing have been used simultaneously to group spec- sity of L. goodeyi complex through integrative taxono- imens into species, including multivariate analysis using my combining morphological analysis and a species morphometric characters in which a high number of delineation approach based on multivariate morphomet- measured individuals were analysed in order to find ric methods and nuclear haplonets tools; (2) to describe morphometric differences amongst them (Archidona- a new species of the genus Longidorus which belongs to Yuste et al. 2016a; Cai et al. 2020b). Also, the utility of the L. goodeyi complex group; (3) to characterise mo- DNA barcoding and molecular species delimitation ap- lecularly the sampled Longidorus sp. population using proaches in species discovery and the detection of cryptic the D2-D3 expansion segments of the 28S rRNA gene, lineages into the genus Longidorus have been demon- ITS1 and partial 18S rRNA gene; and (4) to study the strated by numerous studies (Ye et al. 2004;Gutiérrez- phylogenetic relationships of the identified Longidorus Gutiérrez et al. 2013;Palomares-Riusetal.2017c; species with available sequenced species. Eur J Plant Pathol (2020) 158:59–81 61 Material and methods Nematode population sampling, extraction and morphological identification I Specimens from the population of the unidentified Longidorus species were collected during the spring season of 2019 in a natural pasture of asphodel (Asphodelus ramosus L.) with a stony soil at 1,800 m 271716 MT270783-MT270786 elevation in La Pandera Mountain, Valdepeñas de Jaén, Jaén province, in Andalusia, southern Spain (Table 1). 18S cox Soil samples were collected using a shovel, randomly selecting four to five cores, and considering the upper 5– partial 50 cm depth of soil. Nematodes were extracted from a 500-cm3 sub-sample of soil by centrifugal flotation and 271732 MT271719-MT271720 - a modification of Cobb´s decanting and sieving methods (Coolen 1979; Flegg 1967). Specimens for study using light microscopy (LM) and morphometric studies were killed and fixed in an 271721-MT271726 MT271715-MT MT271727-MT271728 MT271717-MT271718 - aqueous solution of 4% formaldehyde +
Recommended publications
  • Morphological and Molecular Characterisation of Paralongidorus Rex Andrássy, 1986 (Nematoda: Longidoridae) from Poland and Ukraine
    Eur J Plant Pathol (2015) 141:385–395 DOI 10.1007/s10658-014-0550-2 Morphological and molecular characterisation of Paralongidorus rex Andrássy, 1986 (Nematoda: Longidoridae) from Poland and Ukraine Franciszek Wojciech Kornobis & Solomija Susulovska & Andrij Susulovsky & Sergei A. Subbotin Accepted: 7 October 2014 /Published online: 17 October 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Paralongidorus rex was found for the first profiles with five enzymes are given. Additionally, in- time in Poland and Ukraine. This paper describes fe- formation on new host plants and map of distribution for males and juveniles from four populations of this spe- P. re x are provided. The new record of this nematode cies on the basis of morphology and morphometrics and species, previously identified as Paralongidorus sp. provides molecular characterization using 18S, ITS1 (GenBank: AY601582) from Slovakia, is defined based and D2-D3 expansion segments of 28S rRNA gene on comparison of sequences of the D2-D3 expansion sequences. Morphometrically, females from these segments of 28S rRNA gene. Finally, remarks on the populations differed slighty in V ratio (means in four potential importance of this species in grapevine pro- populations: 41.9; 42.7; 46.1; 46.8) and odontostylet duction are given. length (166.6; 170.6; 191.5; 193.2). Phylogenetic anal- ysis showed that P. re x had a sister relationship with Keywords Paralongidorus rex . Morphometrics . P. iranicus. PCR-D2-D3 of 28S-RFLP diagnostic D2-D3 of 28S rRNA gene . ITS1 rRNA gene . 18S rRNA gene . RFLP F. W. Kornobis (*) Department of Zoology, Institute of Plant Protection- National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Nematodes of the family Longidoridae are obligatory Poland plant parasites and are considered as economically e-mail: [email protected] important pests.
    [Show full text]
  • Description and Molecular Characterisation of Paralongidorus Litoralis Sp.N.Andp
    Nematology, 2008, Vol. 10(1), 87-101 Description and molecular characterisation of Paralongidorus litoralis sp.n.andP. paramaximus Heyns, 1965 (Nematoda: Longidoridae) from Spain Juan E. PALOMARES-RIUS 1,SergeiA.SUBBOTIN 2,3,BlancaB.LANDA 1, ∗ Nicola VOVLAS 4 and Pablo CASTILLO 1, 1 Institute of Sustainable Agriculture, Spanish National Research Council (CSIC), Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain 2 Plant Pest Diagnostics Center, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832-1448, USA 3 Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, Moscow, 117071, Russia 4 Istituto per la Protezione delle Piante, Sezione di Bari, Consiglio Nazionale delle Ricerche, (CNR), Via G. Amendola 165/A, 70126 Bari, Italy Received: 17 July 2007; revised: 23 August 2007 Accepted for publication: 23 August 2007 Summary – Paralongidorus litoralis sp. n., a new bisexual species of the genus, is described and illustrated by light microscopy, scanning electron microscopy and molecular studies from specimens collected in a coastal sand dune soil around roots of lentisc (Pistacia lentiscus L.) from Zahara de los Atunes (Cadiz), southern Spain. Paralongidorus litoralis sp. n. is characterised by the large body size (7.5-10.0 mm), a rounded lip region, clearly offset from the body by a collar-like constriction, and bearing a very large stirrup-shaped, amphidial fovea, with conspicuous slit-like aperture, a very long and flexible odontostyle ca 190 µm long, guiding ring located at 35 µm from anterior end, and males with spicules ca 70 µm long.
    [Show full text]
  • Nematode-Article.Pdf
    Nicol, Stirling, Rose, May and Van Heeswijck Nematodes in viticulture 109 Impact of nematodes on grapevine growth and productivity: current knowledge and future directions, with special reference to Australian viticulture J.M. NICOL1,2, G.R. STIRLING3, B.J. ROSE4,P.MAY1 and R. VAN HEESWIJCK1,5 1 Department of Horticulture,Viticulture and Oenology, University of Adelaide, Glen Osmond, SA 5064, Australia 2 Present address: CIMMYT International, 06600 Mexico, D.F. Mexico 3 Biological Crop Protection, Moggill, Qld 4070,Australia 4 Performance Viticulture, St Andrews, Vic. 3761,Australia 5 Corresponding author: Dr Robyn van Heeswijck , facsimile +61 8 83037116, e-mail [email protected] Abstract Grapevines, like most other crops and especially horticultural crops, suffer from attacks by plant- pathogenic nematodes. The types of nematodes found in vineyards and their distribution in Australia and other regions of the world are described, together with an assessment of their impact on vineyard productivity. Relationships between nematode population density and potential damage to grapevines is tabulated, based on published data. Information on reducing nematode impact by means of rootstocks is summarised and also tabulated. Control by other means is discussed, including soil fumigants and nematicides, biological control agents and plants with nematicidal properties. Special attention is paid to improving nematode resistance in rootstocks or even own-rooted Vitis vinifera cultivars by conventional breeding and by genetic engineering. Areas for future research are identified, and we provide conceptual tools plus information for long term control of nematodes in vineyards. Keywords: nematodes, grapevine, Australian viticulture, rootstocks, resistance, plant breeding 1 Introduction reproduction, which can be both heterosexual and Grape production in Australia, in contrast to most other parthenogenetic.
    [Show full text]
  • Soil Nematodes in Terrestrial Ecosystems ~ G
    JOURNAL OF NEMATOLOGY VOLUME ll JULY 1979 NUMBER 3 Soil Nematodes in Terrestrial Ecosystems ~ G. W. YEATES 2 Abstract: There has been much work on plant-feeding nematodes, and less on other soil nema- todes, their distribution, abundance, intrinsic properties, and interactions with biotic and abiotic factors. Seasonal variation in nematode fauna as a whole is correlated with factors such as moisture, temperature, and plant growth; at each site nematode distribution generally reflects root distribution. There is a positive correlation between average nematode abundance and primary production as controlled by moisture, temperature, nutrients, etc. Soil nematodes, whether bacterial feeders, fungivores, plant feeders, omnivores, or predators, all influence the populations of the organisms they feed on. Ahhough soil trematodes probably contribute less than 1% to soil respiration they may play an important role in ntttrient cycling in the soil through their influence on bacterial growth and plant nutrient availability. Key Wo~ds: ecology, energetics, microcosms, nutrient cycling, primary production. Nematodes, as one component of the soil nematode populations are more likely to be ecosystem, interact with biotic and abiotic ill equilibrium, albeit dynamic, with their factors, producing economic crop losses enviromnent, than in cultivated fields where but also having many other effects, largely conditions are subject to more drastic unknown. The role of the nematode com- changes. In interpretation, however, knowl- munity in ecosystems is essential knowledge edge of plant nematode biology and for managing plant nematode populations interactions derived from agriculture are (42), clarifying the role of nematodes in nsed. dispersing algae, fungi, bacteria, phages, and Nematodes feed on a wide range of viruses (103, 104), decreasing energy inputs foods, and this paper uses the following to farming, disposing of organic wastes (57), trophic groups: bacterial feeders, fungivores, and dealing with nematode tolerance to plant feeders, onmivores, predators.
    [Show full text]
  • Genetic Diversity of the Grapevine Vector Nematode Xiphinema Index and Application to Optimize the Resistance Strategy Van Chung Nguyen
    Genetic diversity of the grapevine vector nematode Xiphinema index and application to optimize the resistance strategy van Chung Nguyen To cite this version: van Chung Nguyen. Genetic diversity of the grapevine vector nematode Xiphinema index and appli- cation to optimize the resistance strategy. Symbiosis. Université Côte d’Azur, 2018. English. NNT : 2018AZUR4079. tel-01981947 HAL Id: tel-01981947 https://tel.archives-ouvertes.fr/tel-01981947 Submitted on 15 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT Diversité génétique du nématode vecteur Xiphinema index sur vigne et application pour optimiser la stratégie de résistance Van Chung NGUYEN Unité de recherche : UMR ISA INRA1355-UNS-CNRS7254 Présentée en vue de l’obtention Devant le jury, composé de : du grade de docteur en : M. Pierre FRENDO, Professeur, UNS President Biologie des Interactions et Ecologie, INRA CNRS ISA de l’Université Côte d’Azur M. Gérard DEMANGEAT, IRHC, HDR, Rapporteur UMR SVQV, Colmar Dirigée par : Daniel ESMENJAUD, M. Jean-Pierre PEROS, DR2, HDR, UMR Rapporteur IRHC, HDR, UMR ISA AGAP, Montpellier M. Benoît BERTRAND, Chercheur, HDR, Examinateur CIRAD, UMR IPME, Montpellier Soutenue le : 23 octobre 2018 Mme Elisabeth DIRLEWANGER, DR2, Examinateur HDR, UMR BFP, Bordeaux M.
    [Show full text]
  • Methods and Criteria for Assessing the Transmission of Plant Viruses by Longidorid Nematodes
    Tribune METHODS AND CRITERIA FOR ASSESSING THE TRANSMISSION OF PLANT VIRUSES BY LONGIDORID NEMATODE’S David L. TRUDGILL*, Derek J.F. BROWN* andDavid G. “NAMARA** * Scottish Crop Research Institute, Invergowrie, Dundee, Scotland and ** East Malling Research Station, Maidstone, Kent, England. Since Hewitt,Raski and Goheen (1958) first & Cadman, 1959). Similarlytransmission of rasp- showed that Xiphinema indexis a vector of grapevine berryringspot virus English strain (HRV-E ; fanleaf virus more than forty plant viruslnematode specific field vector Longidorus rnacrosorna; Harrison, vectorcombinations have been reported. Many of 1962 ; Debrot,1964) has been reported for seven these reports have not been confirmed, but among species of longidoridnematodes (Tab. 1). If al1 thosethat have beensubstantiated a pattern of these reports of transmission are true then it would specificity between the viruses and their longidorid seem that nematode species other than those with nematodevectors isapparent. Harrison, Mowat which these viruses are specificallyassociated with andTaylor (1961) observed thatthe degree. of in thefield can also act as vectors. In this conneciion, similaritybetween the different viruses seemed to Taylorand Robertson (1969)found unattached parallel the degree of systematic relationship between particles of AMV in the buccal capsuleof L. eloizqatus theirnematode vectors. This relatedness of speci- which suggested that some transmission may &,ult ficity maybe partly due to virus particles with from non-specific retention of virus.
    [Show full text]
  • Longidoridae and Trichodoridae (Nematoda: Dorylaimida and Triplonchida). Lincoln, N.Z.: Landcare Research
    2 Xu & Zhao (2019) Longidoridae and Trichodoridae (Nematoda: Dorylaimida and Triplonchida) EDITORIAL BOARD Dr M. J. Fletcher, NSW Agricultural Scientific Collections Unit, Forest Road, Orange, NSW 2800, Australia Prof. G. Giribet, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, U.S.A. Dr R. J. B. Hoare, Manaaki Whenua - Landcare Research, Private Bag 92170, Auckland, New Zealand Mr R. L. Palma, Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand Dr C. J. Vink, Canterbury Museum, Rolleston Ave, Christchurch, New Zealand CHIEF EDITOR Prof Z.-Q. Zhang, Manaaki Whenua - Landcare Research, Private Bag 92170, Auckland, New Zealand Associate Editors Dr T. R. Buckley, Dr R. J. B. Hoare, Dr R. A. B. Leschen, Dr D. F. Ward, Dr Z. Q. Zhao, Manaaki Whenua - Landcare Research, Private Bag 92170, Auckland, New Zealand Honorary Editor Dr T. K. Crosby, Manaaki Whenua - Landcare Research, Private Bag 92170, Auckland, New Zealand Fauna of New Zealand 79 3 Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 79 Longidoridae and Trichodoridae (Nematoda: Dorylaimida and Triplonchida) by Yu-Mei Xu Agronomy College, Shanxi Agricultural University, Taigu 030801, China Email: [email protected] Zeng-Qi Zhao Manaaki Whenua - Landcare Research, 231 Morrin Road, Auckland, New Zealand Email: [email protected] Auckland, New Zealand 2019 4 Xu & Zhao (2019) Longidoridae and Trichodoridae (Nematoda: Dorylaimida and Triplonchida) Copyright © Manaaki Whenua - Landcare Research New Zealand Ltd 2019 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, elec- tronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher.
    [Show full text]
  • Analysis of the Role of Polygalacturonase Inhibiting Proteins in the Interaction Between Plants and Nematodes
    Institut für Nutzpflanzenwissenschaften und Ressourcenschutz Analysis of the role of polygalacturonase inhibiting proteins in the interaction between plants and nematodes Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Syed Jehangir Shah aus Peshawar, Pakistan Bonn, 2018 Referent: Prof. Dr. Florian M.W. Grundler Externer Korreferent: Prof. Dr. Markus Schwarzländer Tag der mündlichen Prüfung: 11.12.2017 Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Universität Bonn Dedication I dedicated my dissertation to my parents and teachers for their efforts and support through out my academic career Table of Contents Contents Page number Abstract i Zusammenfassung iii List of figures vi List of tables viii Acronyms and abbreviations ix 1. Introduction 1 1.1. Types of Nematodes 3 1.2. Plant parasitic nematode 4 1.2.1 Root-knot nematodes (Meloidogyne spp.) 8 1.2.2. Cyst nematodes (Heterodera and Globodera spp.) 10 1.3. Plant defence responses 14 1.3.1. PTI and ETI responses in plants 16 1.3.2. DAMPs responses in plants 19 1.3.3. Role of PG, PGIP and OG in plant-pathogen interactions 22 1.3.4. Role of PG, PGIP and OG in plant-nematode interactions 25 2. Material and Methods 27 2.1. Plant material 27 2.2. Preparation of medium 27 2.2.1. Preparation of Knop medium 27 2.2.2. Preparation of MS medium 28 2.2.3. Preparation of LB medium 29 2.2. 4. Preparation of YEB media 29 2.3. Sterilization of Seeds 30 2.4.
    [Show full text]
  • Morphological and Molecular Characterisation of Longidorus Pauli (Nematoda: Longidoridae), First Report from Greece
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2021-034 e2021-34 | Vol. 53 Morphological and molecular characterisation of Longidorus pauli (Nematoda: Longidoridae), first report from Greece Emmanuel A. Tzortzakakis1, Ilenia Clavero-Camacho2, Carolina Cantalapiedra-Navarrete2, Abstract 3 Parthenopi Ralli , Sampling for needle nematodes was carried out in a grapevine area in 2 Juan E. Palomares-Rius , Thessaloniki, North Greece and two nematode species of Longidorus 2 Pablo Castillo and (L. pauli and L. pisi) were collected. Nematodes were extracted from 4 Antonio Archidona-Yuste * 500 cm3 of soil by modified sieving and decanting method, processed 1Department of Viticulture, to glycerol and mounted on permanent slides, and subsequently Vegetable Crops, Floriculture identified morphologically and molecularly. Nematode DNA was and Plant Protection, Institute extracted from single individuals and PCR assays were conducted of Olive Tree, Subtropical Crops to amplify D2-D3 expansion segments of 28S rRNA, ITS1 rRNA, and and Viticulture, N.AG.RE.F., partial mitochondrial coxI regions. Morphology and morphometry data Hellenic Agricultural Organization obtained from these populations were consistent with L. pauli and L. – DIMITRA, 32A Kastorias street, pisi identifications. To our knowledge, this is the first report of L. pauli Mesa Katsabas, 71307, Heraklion, for Greece, and the second world report after the original description Crete, Greece. from Idleb, Syria, extending the geographical distribution of this species in the Mediterranean Basin. 2Institute for Sustainable Agriculture (IAS), CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Campus Keywords de Excelencia Internacional Cytochrome oxidase c subunit 1, D2-D3 of 28S rRNA, Description, Agroalimentario, ceiA3, Spain. ITS1 rRNA, Longidorus, L.
    [Show full text]
  • Nem-11-00057 Molecular and Morphological
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Paralongidorus spp. from Iran 1 Nem-11-00057 2 3 Molecular and morphological characterisation of Paralongidorus 4 iranicus n. sp. and P. bikanerensis (Lal & Mathur, 1987) Siddiqi, 5 Baujard & Mounport, 1993 (Nematoda: Longidoridae) from Iran 6 1 1,* 2 3 7 Majid PEDRAM , Ebrahim POURJAM , Somayeh NAMJOU , Mohammad Reza ATIGHI , 4 5 4 8 Carolina CANTALAPIEDRA-NAVARRETE , Gracia LIÉBANAS , Juan E. PALOMARES-RIUS 4 9 and Pablo CASTILLO 10 11 1 Plant Pathology Department, College of Agriculture, Tarbiat Modares University, 12 Tehran, Iran 13 2 Kerman Agrijahad Organization, Department of Plant Protection, Nematology Lab, 14 Kerman, Iran 15 3 Department of Plant Protection, Faculty of Sciences & Engineering, University 16 College of Agriculture & Natural Resources, Karaj, Iran 17 4 Institute for Sustainable Agriculture (IAS), Spanish National Research Council 18 (CSIC), Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain 19 5 Department of Animal Biology, Vegetal Biology and Ecology, University of 20 Jaén, Campus ‘Las Lagunillas’ s/n, Edificio B3, 23071 Jaén, Spain 21 22 23 Received: 2011; revised: September 2011 24 Accepted for publication: September 2011 25 26 27 28 29 30 ____________________________ 31 * Corresponding author, e-mail: [email protected] 32 1 Paralongidorus spp. from Iran 1 Summary - Paralongidorus iranicus n. sp., a new bisexual species of the genus, is 2 described and illustrated by light microscopy, scanning electron microscopy and 3 molecular studies from specimens collected in the rhizosphere of Scotch pine (Pinus 4 sylvestris) from the Kaspian (Khazar) seashore, Nour, northern Iran.
    [Show full text]
  • Revision Article Taxonomy of Longidorid Nematodes And
    Taxonomy of longidorid nematodes and dichotomous keys for the identification of Xiphinema andREVISION Xiphidorus species ARTICLE recorded in Brazil. 131 TAXONOMY OF LONGIDORID NEMATODES AND DICHOTOMOUS KEYS FOR THE IDENTIFICATION OF XIPHINEMA AND XIPHIDORUS SPECIES RECORDED IN BRAZIL C.M.G. Oliveira1 & R. Neilson2 1Instituto Biológico, Centro Experimental Central do Instituto Biológico, CP 70, CEP 13001-970, Campinas, SP, Brasil. E-mail: [email protected] ABSTRACT Ectoparasitic Longidoridae are globally an economically important family of nematodes that cause damage to an extensive range of crop plants by their feeding on plant root cells or transmitting viruses to a wide range of fruit and vegetable crops. Here, we provide an update review of Longidoridae taxonomy, including their basic morphology and the taxonomic characters used to distinguish the seven Longidoridae genera (Australodorus, Longidorus, Longidoroides, Paralongidorus, Paraxiphidorus, Xiphidorus and Xiphinema). In addition, dichotomous keys for the identification of Xiphidorus and Xiphinema species reported in Brazil are presented. KEY WORDS: Dichotomous key, Longidoridae, Xiphidorus, Xiphinema, taxonomy. RESUMO TAXONOMIA DE NEMATÓIDES LONGIDORÍDEOS E CHAVE DICOTÔMICA PARA IDEN- TIFICAÇÃO DE ESPÉCIES DE XIPHINEMA E XIPHIDORUS QUE OCORREM NO BRASIL. Nematóides ectoparasitos da família Longidoridae causam danos a grande número de plantas cultivadas no mundo inteiro, alimentando-se diretamente das células das raízes ou transmitindo viroses. A presente revisão aborda a classificação e taxonomia dessa família, incluindo a morfologia básica e as características taxonômicas utilizadas para distinguir os sete gêneros pertencentes a Longidoridae (Australodorus, Longidorus, Longidoroides, Paralongidorus, Paraxiphidorus, Xiphidorus and Xiphinema). Além disso, são apresentadas chaves dicotômicas para facilitar a identificação de espécies de Xiphidorus e Xiphinema que ocorrem no Brasil.
    [Show full text]
  • Species of Longidorus, Paralongidorus and Xiphinema in Europe and in the Mediterranean Region
    I Nematol. medit. (1983), 11: 49-72. I Istituto di Nematologia Agraria, C.N.R., Bari, Italy and Laboratory of Plant Nematology, Faculty of Biology, University of Sofia, Bulgaria LONGIDORIDAE FROM BULGARIA (NEMATODA, DORYLAIMIDA) WITH DESCRIPTION OF THREE NEW SPECIES OF LONGIDORUS AND TWO NEW SPECIES OF XIPHINEMA by F. LAMBERTI, BORYANA CHOLEVA and AUGUSTA AGOSTINELLI (1) Information on the presence of longidorid nematodes in Bulgaria are scanty and incomplete (Stoyanov, 1964; Choleva, 1975a, 1975b and 1976; Katalan-Gateva, 1980). Therefore, we thought it useful to report here the results of an extensive survey of species belonging to the family Longidoridae carried out in this country in the period 1972-1981, to contribute to the knowledge on the geographical distribution of species of Longidorus, Paralongidorus and Xiphinema in Europe and in the Mediterranean Region. MATERIALS AND METHODS Over 1000 soil samples were collected in different seasons from the rhizosphere of various cultivated and spontaneous plant species. Each sample consisted of 1 to 2 kg of soil, collected in fields, orchards and natural habitats from various districts of Bulgaria and kept in plastic bags. Nematodes were extracted by the Cobb wet sieve tech­ nique from aliquots of about 500 ml soil after mixing the whole sample. They were then fixed either in 5% hot formalin or TAF and processed to glycerin by the slow method. Permanent mounts, on nematology slides, were measured with the aid of a camera lucida. (1) The authors thank Mr. R. Lerario for assistance with the figures. - 49- RESULTS Four species of Longidorus, L. euonymus, L. distinctus sp.
    [Show full text]