Macaque Gene Symbols Were Mapped to Human Gene Symbols on June 2011

Total Page:16

File Type:pdf, Size:1020Kb

Macaque Gene Symbols Were Mapped to Human Gene Symbols on June 2011 This document is a guide for cross referencing human gene symbols to macaque gene symbols. Note: macaque gene symbols were mapped to human gene symbols on June 2011. Macaque transcript accession number was used to obtain macaque transcript sequence. Then, the macaque transcript sequence was blasted against human refseq. Highest scoring blast match with a minimum bit score cutoff of 200 was selected. Resulting human gene symbol was then mapped to the corresponding macaque gene symbol. An Excel file of this document is available for downloading at http://download.alleninstitute.org:80/nhp/ Macaque Macaque Human Human Gene Symbol Entrez Id Gene Symbol Entrez ID A1BG 712737 A1BG 1 A1CF 703806 A1CF 29974 A1CF 703806 A1CF 29974 LOC708209 708209 A2BP1 54715 LOC713147 713147 A2BP1 54715 LOC706006 706006 A2LD1 87769 LOC706006 706006 A2LD1 87769 A2M 716834 A2M 2 LOC722289 722289 A2M 2 A2ML1 716616 A2ML1 144568 A4GALT 710998 A4GALT 53947 A4GALT 710998 A4GALT 53947 A4GALT 710998 A4GALT 53947 A4GNT 716512 A4GNT 51146 LOC699771 699771 AAAS 8086 LOC719095 719095 AAAS 8086 AACS 707015 AACS 65985 LOC100427856 100427856 AACSL 729522 AADAC 709031 AADAC 13 AADACL2 709222 AADACL2 344752 AADACL2 709222 AADACL2 344752 LOC711944 711944 AADACL2 344752 LOC722778 722778 AADACL3 126767 AADACL4 715600 AADACL4 343066 AADAT 695264 AADAT 51166 LOC711436 711436 AAGAB 79719 LOC701067 701067 AAK1 22848 LOC100429994 100429994 AAK1 22848 LOC100430095 100430095 AAK1 22848 LOC100430344 100430344 AAK1 22848 AAMP 700763 AAMP 14 AANAT 706924 AANAT 15 AARS 709492 AARS 16 AARS2 702626 AARS2 57505 LOC712203 712203 AARSD1 80755 LOC712203 712203 AARSD1 80755 AASDH 695946 AASDH 132949 LOC720042 720042 AASDH 132949 AASDHPPT 100328983 AASDHPPT 60496 LOC100426846 100426846 AASDHPPT 60496 AASS 694594 AASS 10157 AATF 717586 AATF 26574 AATK 718525 AATK 9625 LOC714017 714017 ABAT 18 LOC716146 716146 ABCA1 19 LOC719076 719076 ABCA1 19 LOC693607 693607 ABCA10 10349 ABCA12 694427 ABCA12 26154 LOC695208 695208 ABCA13 154664 ABCA2 721631 ABCA2 20 ABCA3 696496 ABCA3 21 ABCA3 696919 ABCA3 21 ABCA4 714054 ABCA4 24 ABCA5 693795 ABCA5 23461 ABCA6 693529 ABCA6 23460 ABCA7 704976 ABCA7 10347 ABCA8 693289 ABCA8 10351 ABCA8 693289 ABCA8 10351 ABCA8 693289 ABCA8 10351 ABCA9 693411 ABCA9 10350 ABCB1 574235 ABCB1 5243 ABCB10 574117 ABCB10 23456 ABCB11 709261 ABCB11 8647 LOC719991 719991 ABCB11 8647 ABCB4 706683 ABCB4 5244 LOC712883 712883 ABCB5 340273 ABCB6 704599 ABCB6 10058 ABCB6 704599 ABCB6 10058 ABCB7 704034 ABCB7 22 ABCB8 714341 ABCB8 11194 ABCB8 714341 ABCB8 11194 ABCB8 714341 ABCB8 11194 ABCB8 714341 ABCB8 11194 ABCB8 714341 ABCB8 11194 ABCB9 707709 ABCB9 23457 ABCB9 707709 ABCB9 23457 ABCB9 707709 ABCB9 23457 ABCB9 707709 ABCB9 23457 ABCB9 707709 ABCB9 23457 ABCB9 707709 ABCB9 23457 LOC717857 717857 ABCC1 4363 ABCC10 700156 ABCC10 89845 ABCC11 716552 ABCC11 85320 ABCC12 716513 ABCC12 94160 ABCC13 574326 ABCC13 150000 ABCC2 574169 ABCC2 1244 ABCC3 706339 ABCC3 8714 ABCC4 695407 ABCC4 10257 ABCC4 695407 ABCC4 10257 LOC697160 697160 ABCC4 10257 ABCC5 704326 ABCC5 10057 LOC723191 723191 ABCC5 10057 LOC100424801 100424801 ABCC5 10057 LOC100424896 100424896 ABCC5 10057 LOC716784 716784 ABCC6 368 LOC717875 717875 ABCC6 368 ABCC8 654490 ABCC8 6833 ABCC8 654490 ABCC8 6833 ABCC9 654489 ABCC9 10060 ABCD1 696794 ABCD1 215 ABCD2 697556 ABCD2 225 ABCD3 709188 ABCD3 5825 LOC100431084 100431084 ABCD3 5825 ABCD4 699380 ABCD4 5826 ABCE1 701945 ABCE1 6059 LOC704446 704446 ABCE1 6059 ABCF1 711864 ABCF1 23 LOC702444 702444 ABCF2 10061 ABCF2 714518 ABCF2 10061 ABCF3 703319 ABCF3 55324 LOC100423477 100423477 ABCG1 9619 ABCG2 574307 ABCG2 9429 LOC100429212 100429212 ABCG4 64137 ABCG5 713610 ABCG5 64240 ABCG8 713676 ABCG8 64241 ABHD1 698700 ABHD1 84696 ABHD10 707464 ABHD10 55347 LOC720147 720147 ABHD11 83451 LOC100430651 100430651 ABHD11 83451 LOC705915 705915 ABHD12 26090 ABHD12B 706758 ABHD12B 145447 ABHD12B 706758 ABHD12B 145447 ABHD12B 706758 ABHD12B 145447 ABHD13 695701 ABHD13 84945 ABHD14B 698910 ABHD14B 84836 ABHD15 711493 ABHD15 116236 LOC100429502 100429502 ABHD15 116236 ABHD2 699258 ABHD2 11057 LOC699378 699378 ABHD2 11057 LOC701145 701145 ABHD3 171586 ABHD4 711758 ABHD4 63874 LOC714151 714151 ABHD4 63874 LOC100427430 100427430 ABHD4 63874 ABHD5 716821 ABHD5 51099 ABHD6 702384 ABHD6 57406 ABHD6 702384 ABHD6 57406 ABHD8 718980 ABHD8 79575 ABI1 707698 ABI1 10006 ABI1 707698 ABI1 10006 ABI1 707698 ABI1 10006 ABI1 707698 ABI1 10006 ABI1 707698 ABI1 10006 ABI1 707698 ABI1 10006 ABI1 707698 ABI1 10006 ABI1 707698 ABI1 10006 ABI1 707698 ABI1 10006 ABI2 704956 ABI2 10152 ABI2 704956 ABI2 10152 ABI2 704956 ABI2 10152 ABI2 704956 ABI2 10152 ABI2 704956 ABI2 10152 ABI2 704956 ABI2 10152 ABI2 704956 ABI2 10152 ABI2 704956 ABI2 10152 ABI2 704956 ABI2 10152 ABI2 704956 ABI2 10152 LOC100426137 100426137 ABI2 10152 ABI3 698710 ABI3 51225 ABI3BP 701192 ABI3BP 25890 ABL1 722449 ABL1 25 LOC720643 720643 ABL1 25 ABL2 717037 ABL2 27 ABLIM1 698641 ABLIM1 3983 ABLIM2 722653 ABLIM2 84448 ABLIM2 722653 ABLIM2 84448 ABLIM2 722653 ABLIM2 84448 ABLIM2 722653 ABLIM2 84448 ABLIM2 722653 ABLIM2 84448 ABLIM2 722653 ABLIM2 84448 ABLIM3 709180 ABLIM3 22885 LOC722943 722943 ABLIM3 22885 LOC711045 711045 ABO 28 ABO 722252 ABO 28 ABP1 714112 ABP1 26 LOC720050 720050 ABR 29 LOC721176 721176 ABR 29 ABR 721180 ABR 29 ABR 721180 ABR 29 LOC100426050 100426050 ABR 29 ABRA 696780 ABRA 137735 ABT1 700856 ABT1 29777 ABTB1 710603 ABTB1 80325 ABTB2 717429 ABTB2 25841 LOC100427041 100427041 ABTB2 25841 ACAA1 696743 ACAA1 30 ACAA1 696743 ACAA1 30 ACAA2 709350 ACAA2 10449 ACACA 714218 ACACA 31 ACACA 714218 ACACA 31 ACACA 714218 ACACA 31 ACACA 714218 ACACA 31 ACACB 706909 ACACB 32 ACAD10 711080 ACAD10 80724 ACAD8 677723 ACAD8 27034 ACAD9 704527 ACAD9 28976 ACAD9 704527 ACAD9 28976 ACAD9 704527 ACAD9 28976 LOC711485 711485 ACADL 33 ACADM 705168 ACADM 34 ACADM 705168 ACADM 34 ACADM 705168 ACADM 34 ACADS 698196 ACADS 35 ACADS 698196 ACADS 35 ACADSB 707487 ACADSB 36 ACADVL 714326 ACADVL 37 ACAN 698498 ACAN 176 LOC702913 702913 ACAN 176 ACAP1 721824 ACAP1 9744 ACAP2 705403 ACAP2 23527 ACAP3 704910 ACAP3 116983 ACAT1 707653 ACAT1 38 ACAT2 708750 ACAT2 39 LOC100427660 100427660 ACAT2 39 ACBD3 699311 ACBD3 64746 LOC715963 715963 ACBD4 79777 LOC708235 708235 ACBD5 91452 LOC716418 716418 ACBD6 84320 LOC703039 703039 ACBD7 414149 LOC100423352 100423352 ACBD7 414149 LOC718204 718204 ACCN1 40 LOC718204 718204 ACCN1 40 ACCN1 718395 ACCN1 40 ACCN2 713320 ACCN2 41 ACCN2 713320 ACCN2 41 LOC100425720 100425720 ACCN2 41 ACCN3 714396 ACCN3 9311 ACCN3 714396 ACCN3 9311 ACCN3 714396 ACCN3 9311 LOC703972 703972 ACCN4 55515 ACCN5 699617 ACCN5 51802 ACCS 715798 ACCS 84680 ACCSL 715835 ACCSL 390110 ACD 699230 ACD 65057 LOC100428661 100428661 ACE 1636 ACE2 712790 ACE2 59272 ACER1 699093 ACER1 125981 LOC712170 712170 ACER2 340485 ACER3 697832 ACER3 55331 ACHE 713370 ACHE 43 ACIN1 713310 ACIN1 22985 ACIN1 713310 ACIN1 22985 ACIN1 713310 ACIN1 22985 ACLY 708501 ACLY 47 ACMSD 708917 ACMSD 130013 ACMSD 708917 ACMSD 130013 ACN9 697593 ACN9 57001 ACO1 705075 ACO1 48 ACO2 707441 ACO2 50 ACO2 707441 ACO2 50 ACO2 707441 ACO2 50 ACO2 707441 ACO2 50 LOC719161 719161 ACO2 50 LOC720576 720576 ACO2 50 ACOT11 715263 ACOT11 26027 ACOT12 711665 ACOT12 134526 ACOT13 100335133 ACOT13 55856 ACOT2 697011 ACOT2 10965 ACOT2 697011 ACOT2 10965 ACOT4 697131 ACOT4 122970 LOC100424273 100424273 ACOT4 122970 ACOT6 697174 ACOT6 641372 ACOT7 703288 ACOT7 11332 LOC705407 705407 ACOT7 11332 ACOT8 717238 ACOT8 10005 LOC100428709 100428709 ACOT8 10005 ACOT9 697759 ACOT9 23597 ACOX1 705197 ACOX1 51 ACOX1 705197 ACOX1 51 ACOX1 705197 ACOX1 51 ACOX2 701565 ACOX2 8309 ACOX3 715639 ACOX3 8310 ACOX3 722634 ACOX3 8310 LOC721397 721397 ACP1 52 ACP2 713744 ACP2 53 ACP2 713744 ACP2 53 ACP2 713744 ACP2 53 ACP2 713744 ACP2 53 ACP2 713744 ACP2 53 ACP5 715071 ACP5 54 ACP5 715071 ACP5 54 ACP6 710431 ACP6 51205 ACPL2 715229 ACPL2 92370 ACPP 717786 ACPP 55 ACPT 719401 ACPT 93650 ACR 716579 ACR 49 ACRBP 713219 ACRBP 84519 ACRBP 713219 ACRBP 84519 ACRC 698393 ACRC 93953 LOC713422 713422 ACRV1 56 LOC713422 713422 ACRV1 56 LOC709676 709676 ACSBG1 23205 LOC100424468 100424468 ACSBG1 23205 ACSBG2 698717 ACSBG2 81616 ACSF2 702474 ACSF2 80221 LOC712316 712316 ACSF3 197322 LOC100425530 100425530 ACSF3 197322 ACSL1 694871 ACSL1 2180 LOC100426267 100426267 ACSL1 2180 ACSL3 706050 ACSL3 2181 ACSL3 706050 ACSL3 2181 ACSL4 704908 ACSL4 2182 ACSL4 704908 ACSL4 2182 ACSL4 704908 ACSL4 2182 ACSL4 704908 ACSL4 2182 LOC100428915 100428915 ACSL4 2182 LOC696404 696404 ACSL5 51703 LOC706847 706847 ACSL6 23305 LOC722899 722899 ACSL6 23305 ACSM1 696498 ACSM1 116285 ACSM2B 696244 ACSM2B 348158 ACSM3 696622 ACSM3 6296 ACSM3 696622 ACSM3 6296 ACSM4 722167 ACSM4 341392 ACSM5 696124 ACSM5 54988 ACSS1 705060 ACSS1 84532 ACSS1 705060 ACSS1 84532 ACSS2 706703 ACSS2 55902 ACSS2 706703 ACSS2 55902 ACSS2 706703 ACSS2 55902 LOC697823 697823 ACSS3 79611 LOC100426127 100426127 ACTA1 58 ACTA1 100426612 ACTA1 58 ACTA1 100426612 ACTA1 58 ACTA1 100426612 ACTA1 58 ACTA1 100426612 ACTA1 58 ACTA2 100427024 ACTA2 59 ACTA2 100427024 ACTA2 59 ACTA2 100427024 ACTA2 59 LOC100427250 100427250 ACTA2 59 ACTB 574285 ACTB 60 LOC705671 705671 ACTB 60 LOC711964 711964 ACTB 60 LOC721054 721054 ACTB 60 LOC100428865 100428865 ACTB 60 LOC100428865 100428865 ACTB 60 LOC100428865 100428865 ACTB 60 LOC100428865 100428865 ACTB 60 LOC100430113 100430113 ACTB 60 LOC100430207 100430207 ACTB 60 ACTBL2 708642 ACTBL2 345651 ACTBL2 708642 ACTBL2 345651 ACTBL2 708642 ACTBL2 345651 ACTC1 697367 ACTC1 70 ACTC1 697367 ACTC1 70 ACTC1 697367 ACTC1 70 ACTG1 713687 ACTG1 71 ACTG1 713687 ACTG1 71 LOC710533
Recommended publications
  • Implications in Parkinson's Disease
    Journal of Clinical Medicine Review Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson’s Disease Silvia Paciotti 1,2 , Elisabetta Albi 3 , Lucilla Parnetti 1 and Tommaso Beccari 3,* 1 Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy; [email protected] (S.P.); [email protected] (L.P.) 2 Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy 3 Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 06123 Perugia, Italy; [email protected] * Correspondence: [email protected] Received: 29 January 2020; Accepted: 20 February 2020; Published: 21 February 2020 Abstract: Ceramides are a family of bioactive lipids belonging to the class of sphingolipids. Sphingolipidoses are a group of inherited genetic diseases characterized by the unmetabolized sphingolipids and the consequent reduction of ceramide pool in lysosomes. Sphingolipidoses include several disorders as Sandhoff disease, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann Pick disease, Farber disease, and GM2 gangliosidosis. In sphingolipidosis, lysosomal lipid storage occurs in both the central nervous system and visceral tissues, and central nervous system pathology is a common hallmark for all of them. Parkinson’s disease, the most common neurodegenerative movement disorder, is characterized by the accumulation and aggregation of misfolded α-synuclein that seem associated to some lysosomal disorders, in particular Gaucher disease. This review provides evidence into the role of ceramide metabolism in the pathophysiology of lysosomes, highlighting the more recent findings on its involvement in Parkinson’s disease. Keywords: ceramide metabolism; Parkinson’s disease; α-synuclein; GBA; GLA; HEX A-B; GALC; ASAH1; SMPD1; ARSA * Correspondence [email protected] 1.
    [Show full text]
  • An Interactive Web Application to Explore Regeneration-Associated Gene Expression and Chromatin Accessibility
    Supplementary Materials Regeneration Rosetta: An interactive web application to explore regeneration-associated gene expression and chromatin accessibility Andrea Rau, Sumona P. Dhara, Ava J. Udvadia, Paul L. Auer 1. Table S1. List of cholesterol metabolic genes from MGI database 2. Table S2. List of differentially expressed transcripts during optic nerve regeneration in zebrafish using the MGI cholesterol metabolic gene queries in the Regeneration Rosetta app 3. Table S3. List of transcription factor encoding genes from brain cell bodies following spinal cord injury in lamprey over a course of 12 weeKs 4. Table S4. List of transcription factor encoding genes from spinal cell bodies following spinal cord injury in lamprey over a course of 12 weeks Ensembl ID MGI Gene ID Symbol Name ENSMUSG00000015243 MGI:99607 Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 ENSMUSG00000026944 MGI:99606 Abca2 ATP-binding cassette, sub-family A (ABC1), member 2 ENSMUSG00000024030 MGI:107704 Abcg1 ATP binding cassette subfamily G member 1 ENSMUSG00000026003 MGI:87866 Acadl acyl-Coenzyme A dehydrogenase, long-chain ENSMUSG00000018574 MGI:895149 Acadvl acyl-Coenzyme A dehydrogenase, very long chain ENSMUSG00000038641 MGI:2384785 Akr1d1 aldo-keto reductase family 1, member D1 ENSMUSG00000028553 MGI:1353627 Angptl3 angiopoietin-like 3 ENSMUSG00000031996 MGI:88047 Aplp2 amyloid beta (A4) precursor-like protein 2 ENSMUSG00000032083 MGI:88049 Apoa1 apolipoprotein A-I ENSMUSG00000005681 MGI:88050 Apoa2 apolipoprotein A-II ENSMUSG00000032080 MGI:88051 Apoa4
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Palmitoyl-Protein Thioesterase 1 Deficiency in Drosophila Melanogaster Causes Accumulation
    Genetics: Published Articles Ahead of Print, published on February 1, 2006 as 10.1534/genetics.105.053306 Palmitoyl-protein thioesterase 1 deficiency in Drosophila melanogaster causes accumulation of abnormal storage material and reduced lifespan Anthony J. Hickey*,†,1, Heather L. Chotkowski*, Navjot Singh*, Jeffrey G. Ault*, Christopher A. Korey‡,2, Marcy E. MacDonald‡, and Robert L. Glaser*,†,3 * Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002 † Department of Biomedical Sciences, State University of New York, Albany, NY 12201-0509 ‡ Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114 1 current address: Albany Medical College, Albany, NY 12208 2 current address: Department of Biology, College of Charleston, Charleston, SC 294243 3 corresponding author: Wadsworth Center, NYS Dept. Health, P. O. Box 22002, Albany, NY 12201-2002 E-mail: [email protected] 1 running title: Phenotypes of Ppt1-deficient Drosophila key words: Batten disease infantile neuronal ceroid lipofuscinosis palmitoyl-protein thioesterase CLN1 Drosophila corresponding author: Robert L. Glaser Wadsworth Center, NYS Dept. Health P. O. Box 22002 Albany, NY 12201-2002 E-mail: [email protected] phone: 518-473-4201 fax: 518-474-3181 2 ABSTRACT Human neuronal ceroid lipofuscinoses (NCLs) are a group of genetic neurodegenerative diseases characterized by progressive death of neurons in the central nervous system (CNS) and accumulation of abnormal lysosomal storage material. Infantile NCL (INCL), the most severe form of NCL, is caused by mutations in the Ppt1 gene, which encodes the lysosomal enzyme palmitoyl-protein thioesterase 1 (Ppt1). We generated mutations in the Ppt1 ortholog of Drosophila melanogaster in order to characterize phenotypes caused by Ppt1-deficiency in flies.
    [Show full text]
  • Understanding the Molecular Pathobiology of Acid Ceramidase Deficiency
    Understanding the Molecular Pathobiology of Acid Ceramidase Deficiency By Fabian Yu A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by Fabian PS Yu 2018 Understanding the Molecular Pathobiology of Acid Ceramidase Deficiency Fabian Yu Doctor of Philosophy Institute of Medical Science University of Toronto 2018 Abstract Farber disease (FD) is a devastating Lysosomal Storage Disorder (LSD) caused by mutations in ASAH1, resulting in acid ceramidase (ACDase) deficiency. ACDase deficiency manifests along a broad spectrum but in its classical form patients die during early childhood. Due to the scarcity of cases FD has largely been understudied. To circumvent this, our lab previously generated a mouse model that recapitulates FD. In some case reports, patients have shown signs of visceral involvement, retinopathy and respiratory distress that may lead to death. Beyond superficial descriptions in case reports, there have been no in-depth studies performed to address these conditions. To improve the understanding of FD and gain insights for evaluating future therapies, we performed comprehensive studies on the ACDase deficient mouse. In the visual system, we reported presence of progressive uveitis. Further tests revealed cellular infiltration, lipid buildup and extensive retinal pathology. Mice developed retinal dysplasia, impaired retinal response and decreased visual acuity. Within the pulmonary system, lung function tests revealed a decrease in lung compliance. Mice developed chronic lung injury that was contributed by cellular recruitment, and vascular leakage. Additionally, we report impairment to lipid homeostasis in the lungs. ii To understand the liver involvement in FD, we characterized the pathology and performed transcriptome analysis to identify gene and pathway changes.
    [Show full text]
  • Expressed Sequence Tag Analysis of the Response of Apple
    Physiologia Plantarum 133: 298–317. 2008 Copyright ª Physiologia Plantarum 2008, ISSN 0031-9317 Expressed sequence tag analysis of the response of apple (Malus x domestica ‘Royal Gala’) to low temperature and water deficit Michael Wisniewskia,*, Carole Bassetta,*, John Norellia, Dumitru Macarisina, Timothy Artlipa, Ksenija Gasicb and Schuyler Korbanb aUnited States Department of Agriculture – Agricultural Research Service (USDA-ARS), Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA bDepartment of Natural Resources and Environmental Sciences, University of Illinois, 310 ERML, 1201 W. Gregory Drive, Urbana, IL 61801, USA Correspondence Leaf, bark, xylem and root tissues were used to make nine cDNA libraries from *Corresponding author, non-stressed (control) ‘Royal Gala’ apple trees, and from ‘Royal Gala’ trees e-mail: [email protected]; exposed to either low temperature (5°C for 24 h) or water deficit (45% of [email protected] saturated pot mass for 2 weeks). Over 22 600 clones from the nine libraries # Received 26 September 2007; revised 3 were subjected to 5 single-pass sequencing, clustered and annotated using January 2008 BLASTX. The number of clusters in the libraries ranged from 170 to 1430. Regarding annotation of the sequences, BLASTX analysis indicated that within doi: 10.1111/j.1399-3054.2008.01063.x the libraries 65–72% of the clones had a high similarity to known function genes, 6–15% had no functional assignment and 15–26% were completely novel. The expressed sequence tags were combined into three classes (control, low-temperature and water deficit) and the annotated genes in each class were placed into 1 of 10 different functional categories.
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • Investigation of Candidate Genes and Mechanisms Underlying Obesity
    Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between
    [Show full text]
  • Genomic Approaches to Reproductive Disorders
    Genomic Approaches to Reproductive Disorders Aleksandar Rajkovic Dept Obstetrics Gynecology and Reproductive Sciences University of Pittsburgh Magee Womens Research Institute Pittsburgh, PA Preconceptional Care Scope • Half of Pregnancies are Unintended • Medical Conditions • Mental Conditions • Immunization History • Nutritional Issues • Family History/Genetic Risk • Occupational/Environmental Exposures • Tobacco/Drug Abuse • Social Issues Preconceptional genetic screening Ethnic: Sickle cell disease Tay–Sachs disease Pan-ethnic: cystic fibrosis fragile X syndrome Spinal muscular atrophy Mendelian Inheritance • 5593 phenotypes for which molecular basis known • 3452 genes with phenotype causing mutation • Over 15,000 mutations to date known Preconceptional Pan Ethnic Testing • Screens for known mutations in more than 100 genes, easy on genetic counsellors • The screen is pan-ethnic • Useful also for couples undergoing IVF and potentially PGD • 1:5 will be carriers of a Mendelian disorder. • $600 (529 Euros) for the couple Genetic Counselling • Objective of the test • Test Methodology • Type of sample required (parents, siblings) • Possible outcomes (abnormal results, result of unknown clinical significance) ClinVar Stars and their interpretation Number of golden stars No submitter provided an interpretation with assertion criteria (no assertion criteria provided), none or no interpretation was provided (no assertion provided) At least one submitter provided an interpretation with assertion criteria (criteria provided, single submitter)
    [Show full text]
  • Cell Reprogramming Technologies for Treatment And
    CELL REPROGRAMMING TECHNOLOGIES FOR TREATMENT AND UNDERSTANDING OF GENETIC DISORDERS OF MYELIN by ANGELA MARIE LAGER Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis advisor: Paul J Tesar, PhD Department of Genetics and Genome Sciences CASE WESTERN RESERVE UNIVERSITY May 2015 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Angela Marie Lager Candidate for the Doctor of Philosophy degree*. (signed) Ronald A Conlon, PhD (Committee Chair) Paul J Tesar, PhD (Advisor) Craig A Hodges, PhD Warren J Alilain, PhD (date) 31 March 2015 *We also certify that written approval has been obtained from any proprietary material contained therein. TABLE OF CONTENTS Table of Contents……………………………………………………………………….1 List of Figures……………………………………………………………………………4 Acknowledgements……………………………………………………………………..7 Abstract…………………………………………………………………………………..8 Chapter 1: Introduction and Background………………………………………..11 1.1 Overview of mammalian oligodendrocyte development in the spinal cord and myelination of the central nervous system…………………..11 1.1.1 Introduction……………………………………………………..11 1.1.2 The establishment of the neuroectoderm and ventral formation of the neural tube…………………………………..12 1.1.3 Ventral patterning of the neural tube and specification of the pMN domain in the spinal cord……………………………….15 1.1.4 Oligodendrocyte progenitor cell production through the process of gliogenesis ………………………………………..16 1.1.5 Oligodendrocyte progenitor cell to oligodendrocyte differentiation…………………………………………………...22
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]