Hyperphosphorylation Repurposes the CRL4B E3 Ligase to Coordinate Mitotic Entry and Exit

Total Page:16

File Type:pdf, Size:1020Kb

Hyperphosphorylation Repurposes the CRL4B E3 Ligase to Coordinate Mitotic Entry and Exit Research Collection Doctoral Thesis Identification and Characterization of Novel Cullin 4-based E3 Ligases in Somatic Cell Division Author(s): da Graça Gilberto, Samuel Filipe Publication Date: 2017 Permanent Link: https://doi.org/10.3929/ethz-b-000219014 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 24583 Identification and characterization of novel Cullin 4-based E3 ligases in somatic cell division A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) Presented by SAMUEL FILIPE DA GRAÇA GILBERTO MSc in Biochemistry, University of Lisbon Born on 21.02.1988 Citizen of Portugal Accepted on the recommendation of Prof. Dr. Matthias Peter Prof. Dr. Anton Wutz 2017 Table of contents 1. General introduction ..................................................................................................................1 1.1. The ubiquitylation machinery ....................................................................................................... 1 1.2. Principles of cell cycle regulation: a focus on CRLs and the APC/C .............................................. 3 1.3. Cullin-4 RING E3 ligases: cell-cycle regulation and beyond ........................................................ 14 1.4. Functional distinctions between CUL4A and CUL4B ................................................................... 22 1.5. Open questions and objectives ................................................................................................... 29 1.6. References .................................................................................................................................. 31 2. Article: CRL4RBBP7 is required for efficient CENP-A deposition at centromeres ............................. 46 2.1. Supplementary figures ................................................................................................................ 61 3. Manuscript in preparation: Hyperphosphorylation repurposes the CRL4B E3 ligase to coordinate mitotic entry and exit ....................................................................................................................... 66 3.1. Supplementary Figures ............................................................................................................. 100 4. Investigation of the role of CRL4WDTC1 in cell cycle progression ................................................. 117 4.1. Introduction .............................................................................................................................. 117 4.2. Results ....................................................................................................................................... 118 4.3. Discussion .................................................................................................................................. 135 4.4. Materials and Methods ............................................................................................................. 137 4.5. References ................................................................................................................................ 138 5. Extended discussion and future perspectives ........................................................................... 141 5.1. Mitotic function of CUL4B: a molecular explanation for XLID? ................................................ 142 5.2. CUL4B loss-of-function in mouse embryonic lethality, syndromic XLID and mitosis: how do they come together? .................................................................................................................................. 143 5.3. References ................................................................................................................................ 146 6. Appendices............................................................................................................................. 149 7. Publications ............................................................................................................................ 168 7.1. CRL4RBBP7 is required for efficient CENP-A deposition at centromeres ..................................... 168 7.2. Dynamic ubiquitin signaling in cell cycle regulation ................................................................. 168 8. Acknowledgements ................................................................................................................ 182 9. Curriculum vitae ..................................................................................................................... 184 i Cover: crystal structure of CUL4B (front cover) and CUL4A (back), PDB ID: 2HYE and 4A0L. ii Abstract Cell proliferation requires tightly coordinated alternating phases of DNA synthesis and separation, collectively termed the cell division cycle. The cell cycle makes use of timely regulation of protein activity to coordinate its processes and transitions. A pivotal post-translational modification central in this regulation is ubiquitylation. Specificity in ubiquitylation reactions depends on an E3 ligase, such as the Cullin-4 RING E3 ligase (CRL4) family, which use cullin-4A (CUL4A) or CUL4B as a scaffolding subunit. These cullins are regarded as acting redundantly in the regulation of multiple cellular processes, in particular DNA-related functions such as chromatin remodeling and DNA repair. CRL4 can assemble a multiplicity of different complexes that function as independent E3 ligases, by recruiting an array of substrate adaptor subunits. Evidence suggests that CRL4 regulates the cell cycle, but through mechanisms that remain mostly unexplored. It is additionally possible that CUL4A and CUL4B do not always assemble identical complexes. CUL4B loss-of-function mutations in humans result in the development of syndromic X-linked intellectual disability, and in mice the deletion of the Cul4b gene is embryonically lethal. Remarkably, CUL4A has not yet been associated with human disorders and its deletion is not lethal in mice. Therefore, the identity of CRL4 complexes which function in development, and in the cell cycle in particular, remains largely obscure. We investigated regulatory functions of CRL4 complexes on the cell cycle of HeLa cells, a cancer cell line widely used in cell cycle studies. By making use of siRNA-mediated mRNA depletion and gene deletion by CRISPR/Cas9 to modulate the activity of the respective E3 ligases, we discovered that indeed previously undescribed CRL4 complexes regulate important proliferative functions. In particular, we identified that the substrate adaptor Retinoblastoma-binding protein 7 (RBBP7) works together with CRL4 in the determination of the centromere. Specifically, CRL4RBBP7 participates in the process of loading the Histone H3 variant Centromere protein-A (CENP-A) at centromeric nucleosomes. As a consequence, cells have problems in aligning and separating their chromosomes during mitosis. While functions of CRL4 with RBBP7 are expected to depend on both CUL4A and CUL4B, we noticed that CUL4B operates in mitosis in a manner distinct from CUL4A. Indeed, knockout of CUL4B alone delays mitotic entry by approximately 2h, even in the presence of CUL4A, indicating that CRL4B is necessary for early mitotic stages. Because these cullins share extensive sequence identity that only significantly differs in an extended N-terminal sequence in CUL4B, we examined the possibility that this sequence is responsible for the functional distinction. Indeed, we found that the N-terminus of CUL4B is phosphorylated during mitosis and that this modification alters the subcellular localization of this cullin, which is no longer recruited to the chromatin. Our data supports a model where CUL4B is redirected from chromatin to ubiquitylate a yet unidentified iii Abstract substrate. Importantly, this mitotic function cannot be maintained outside of the context of mitosis and results in lethal phenotype in cells. A third independent involvement of CRL4 complexes in the regulation of the cell cycle comes from the identification of another substrate adaptor, WDTC1, which interacts with a mitotic regulator during in the late cell cycle stages, although the functional consequences of WDTC1 loss-of-function remain to be identified. Together, these studies establish newly-identified roles for CRL4 complexes in regulating cell proliferation. By placing special focus in the description of mechanisms of cell division, we clarified how CRL4-type E3 ligases participate in this extended functional network. Finally, our studies determine for the first time the mechanisms of a functional distinction between CUL4B and CUL4A, based on an alternative cullin regulatory mode. We aim at describing which novel substrates CRL4 can ubiquitylate at different cell cycle stages. Besides, we believe that our observations set the stage to uncover why CUL4A cannot compensate for CUL4B loss in human XLID patients. iv Abstract Sommario La proliferazione cellulare si basa sulla precisa coordinazione dell’alternarsi di fasi di sintesi del DNA e di divisione, collettivamente chiamate il ciclo di divisione cellulare. Il ciclo cellulare utilizza la tempestiva regolazione dell’attività delle proteine per coordinare i suoi processi e le sue transizioni. Una delle modificazioni post-traduzionali più importanti per questa
Recommended publications
  • Escape from X Chromosome Inactivation Is an Intrinsic Property of the Jarid1c Locus
    Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus Nan Lia,b and Laura Carrela,1 aDepartment of Biochemistry and Molecular Biology and bIntercollege Graduate Program in Genetics, Pennsylvania State College of Medicine, Hershey, PA 17033 Edited by Stanley M. Gartler, University of Washington, Seattle, WA, and approved September 23, 2008 (received for review August 8, 2008) Although most genes on one X chromosome in mammalian fe- Sequences on the X are hypothesized to propagate XCI (12) and males are silenced by X inactivation, some ‘‘escape’’ X inactivation to be depleted at escape genes (8, 9). LINE-1 repeats fit such and are expressed from both active and inactive Xs. How these predictions, particularly on the human X (8–10). Distinct dis- escape genes are transcribed from a largely inactivated chromo- tributions of other repeats classify some mouse X genes (5). some is not fully understood, but underlying genomic sequences X-linked transgenes also test the role of genomic sequences in are likely involved. We developed a transgene approach to ask escape gene expression. Most transgenes are X-inactivated, whether an escape locus is autonomous or is instead influenced by although a number escape XCI (e.g., refs. 13 and 14). Such X chromosome location. Two BACs carrying the mouse Jarid1c gene transgene studies indicate that, in addition to CTCF (6), locus and adjacent X-inactivated transcripts were randomly integrated control regions and matrix attachment sites are also not suffi- into mouse XX embryonic stem cells. Four lines with single-copy, cient to escape XCI (15, 16).
    [Show full text]
  • DDB1 Targets Chk1 to the Cul4 E3 Ligase Complex in Normal Cycling Cells and in Cells Experiencing Replication Stress
    Published OnlineFirst March 10, 2009; DOI: 10.1158/0008-5472.CAN-08-3382 Research Article DDB1 Targets Chk1 to the Cul4 E3 Ligase Complex in Normal Cycling Cells and in Cells Experiencing Replication Stress Van Leung-Pineda,1 Jiwon Huh,1 and Helen Piwnica-Worms1,2,3 Departments of 1Cell Biology and Physiology and 2Internal Medicine and 3Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri Abstract protein FANCE (8, 10–12). Chk1 carries out its functions both in the The Chk1 protein kinase preserves genome integrity in normal nucleus and at the centrosome (13). Drugs that block Chk1 kinase proliferating cells and in cells experiencing replicative and activity or enhance its proteolysis by interfering with binding to genotoxic stress. Chk1 is currently being targeted in antican- heat shock protein 90 (HSP90) are currently being tested as cer regimens. Here, we identify damaged DNA-binding protein anticancer agents (14–17). 1 (DDB1) as a novel Chk1-interacting protein. DDB1 is part of Chk1 is regulated by reversible phosphorylation and by an E3 ligase complex that includes the cullin proteins Cul4A ubiquitin-mediated proteolysis. Under periods of replicative stress, and Cul4B. We report that Cul4A/DDB1 negatively regulates the ATRIP/ATR module binds to single-stranded DNA and, Chk1 stability in vivo. Chk1 associates with Cul4A/DDB1 together with Rad17 and the 9-1-1 complex, activates Chk1 in a Claspin-dependent manner (18–22). ATR directly phosphorylates during an unperturbed cell division cycle and both Chk1 317 345 phosphorylation and replication stress enhanced these inter- Chk1 on two COOH-terminal residues: Ser (S317) and Ser actions.
    [Show full text]
  • The Role and Mechanism of CRL4 E3 Ubiquitin Ligase in Cancer and Its Potential Therapy Implications
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 40 The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications Youzhou Sang1,3,4, Fan Yan1,3,4 and Xiubao Ren2,3,4 1 Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China 2 Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China 3 National Clinical Research Center of Cancer, Tianjin, China 4 Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China Correspondence to: Xiubao Ren, email: [email protected] Keywords: CRL4, CUL4, ubiquitination, cancer Received: April 08, 2015 Accepted: September 23, 2015 Published: October 09, 2015 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT CRLs (Cullin-RING E3 ubiquitin ligases) are the largest E3 ligase family in eukaryotes, which ubiquitinate a wide range of substrates involved in cell cycle regulation, signal transduction, transcriptional regulation, DNA damage response, genomic integrity, tumor suppression and embryonic development. CRL4 E3 ubiquitin ligase, as one member of CRLs family, consists of a RING finger domain protein, cullin4 (CUL4) scaffold protein and DDB1–CUL4 associated substrate receptors. The CUL4 subfamily includes two members, CUL4A and CUL4B, which share extensively sequence identity and functional redundancy. Aberrant expression of CUL4 has been found in a majority of tumors. Given the significance of CUL4 in cancer, understanding its detailed aspects of pathogenesis of human malignancy would have significant value for the treatment of cancer.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genomic Approaches to Reproductive Disorders
    Genomic Approaches to Reproductive Disorders Aleksandar Rajkovic Dept Obstetrics Gynecology and Reproductive Sciences University of Pittsburgh Magee Womens Research Institute Pittsburgh, PA Preconceptional Care Scope • Half of Pregnancies are Unintended • Medical Conditions • Mental Conditions • Immunization History • Nutritional Issues • Family History/Genetic Risk • Occupational/Environmental Exposures • Tobacco/Drug Abuse • Social Issues Preconceptional genetic screening Ethnic: Sickle cell disease Tay–Sachs disease Pan-ethnic: cystic fibrosis fragile X syndrome Spinal muscular atrophy Mendelian Inheritance • 5593 phenotypes for which molecular basis known • 3452 genes with phenotype causing mutation • Over 15,000 mutations to date known Preconceptional Pan Ethnic Testing • Screens for known mutations in more than 100 genes, easy on genetic counsellors • The screen is pan-ethnic • Useful also for couples undergoing IVF and potentially PGD • 1:5 will be carriers of a Mendelian disorder. • $600 (529 Euros) for the couple Genetic Counselling • Objective of the test • Test Methodology • Type of sample required (parents, siblings) • Possible outcomes (abnormal results, result of unknown clinical significance) ClinVar Stars and their interpretation Number of golden stars No submitter provided an interpretation with assertion criteria (no assertion criteria provided), none or no interpretation was provided (no assertion provided) At least one submitter provided an interpretation with assertion criteria (criteria provided, single submitter)
    [Show full text]
  • And CAND1-Dependent Remodelling of the Budding Yeast SCF Complex
    ARTICLE Received 31 Jan 2013 | Accepted 20 Feb 2013 | Published 27 Mar 2013 DOI: 10.1038/ncomms2628 OPEN CSN- and CAND1-dependent remodelling of the budding yeast SCF complex Aleksandra Zemla1, Yann Thomas1, Sylwia Kedziora1, Axel Knebel1, Nicola T Wood1, Gwenae¨l Rabut2 & Thimo Kurz1 Cullin–RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8- dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1–Cdc53–F-box) Cullin–RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1- mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation– deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange. 1 Scottish Institute for Cell Signalling, Protein Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK. 2 CNRS, Universite´ Rennes 1, Institut de Ge´ne´tique et De´veloppement de Rennes, 2 avenue du Professeur Le´on Bernard, CS 34317, Rennes Cedex 35043, France.
    [Show full text]
  • Deletion of DDB1- and CUL4- Associated Factor-17 (Dcaf17) Gene
    www.nature.com/scientificreports OPEN Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects Received: 27 October 2017 Accepted: 31 May 2018 and male infertility in mice Published: xx xx xxxx Asmaa Ali1, Bhavesh V. Mistry1, Hala A. Ahmed1, Razan Abdulla1, Hassan A. Amer3, Abdelbary Prince3, Anas M. Alazami2, Fowzan S. Alkuraya 2 & Abdullah Assiri 1,4,5 DDB1– and CUL4–associated factor 17 (Dcaf17) is a member of DCAF family genes that encode substrate receptor proteins for Cullin-RING E3 ubiquitin ligases, which play critical roles in many cellular processes. To unravel the function of DCAF17, we performed expression profling of Dcaf17 in diferent tissues of wild type mouse by qRT-PCR and generated Dcaf17 knockout mice by gene targeting. Expression profling of Dcaf17 showed highest expression in testis. Analyses of Dcaf17 transcripts during post-natal development of testis at diferent ages displayed gradual increase in Dcaf17 mRNA levels with the age. Although Dcaf17 disruption did not have any efect on female fertility, Dcaf17 deletion led to male infertility due to abnormal sperm development. The Dcaf17−/− mice produced low number of sperm with abnormal shape and signifcantly low motility. Histological examination of the Dcaf17−/− testis revealed impaired spermatogenesis with presence of vacuoles and sloughed cells in the seminiferous tubules. Disruption of Dcaf17 caused asymmetric acrosome capping, impaired nuclear compaction and abnormal round spermatid to elongated spermatid transition. For the frst time, these data indicate that DCAF17 is essential for spermiogenesis. Infertility is a global health problem that afects 15% of couples worldwide1,2. Almost half of these infertility cases are attributed to male infertility, where about 75% of all the male factor infertility attributed to defective sper- matogenesis3–5.
    [Show full text]
  • Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual Disability
    ARTICLE Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual Disability Annabel C. Whibley,1 Vincent Plagnol,1,2 Patrick S. Tarpey,3 Fatima Abidi,4 Tod Fullston,5,6 Maja K. Choma,1 Catherine A. Boucher,1 Lorraine Shepherd,1 Lionel Willatt,7 Georgina Parkin,7 Raffaella Smith,3 P. Andrew Futreal,3 Marie Shaw,8 Jackie Boyle,9 Andrea Licata,4 Cindy Skinner,4 Roger E. Stevenson,4 Gillian Turner,9 Michael Field,9 Anna Hackett,9 Charles E. Schwartz,4 Jozef Gecz,5,6,8 Michael R. Stratton,3 and F. Lucy Raymond1,* Copy number variants and indels in 251 families with evidence of X-linked intellectual disability (XLID) were investigated by array comparative genomic hybridization on a high-density oligonucleotide X chromosome array platform. We identified pathogenic copy number variants in 10% of families, with mutations ranging from 2 kb to 11 Mb in size. The challenge of assessing causality was facilitated by prior knowledge of XLID-associated genes and the ability to test for cosegregation of variants with disease through extended pedigrees. Fine-scale analysis of rare variants in XLID families leads us to propose four additional genes, PTCHD1, WDR13, FAAH2, and GSPT2,as candidates for XLID causation and the identification of further deletions and duplications affecting X chromosome genes but without apparent disease consequences. Breakpoints of pathogenic variants were characterized to provide insight into the underlying mutational mechanisms and indicated a predominance of mitotic rather than meiotic events. By effectively bridging the gap between karyotype-level investigations and X chromosome exon resequencing, this study informs discussion of alternative mutational mechanisms, such as non- coding variants and non-X-linked disease, which might explain the shortfall of mutation yield in the well-characterized International Genetics of Learning Disability (IGOLD) cohort, where currently disease remains unexplained in two-thirds of families.
    [Show full text]
  • CUL4B Promotes Proliferation and Inhibits Apoptosis of Human Osteosarcoma Cells
    ONCOLOGY REPORTS 32: 2047-2053, 2014 CUL4B promotes proliferation and inhibits apoptosis of human osteosarcoma cells ZHI CHEN1*, BAO-LIANG SHEN2*, QING-GE FU3*, FEI WANG1, YI-XING TANG1, CANG-LONG HOU1 and LI CHEN1 1Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai 200433; 2Department of Orthopedics, Shanghai Jiading Central Hospital, Shanghai 201800; 3Department of Emergency and Trauma, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China Received March 4, 2014; Accepted June 10, 2014 DOI: 10.3892/or.2014.3465 Abstract. Cullin 4B (CUL4B) is a component of the Introduction Cullin4B-Ring E3 ligase complex (CRL4B) that functions in proteolysis and is implicated in tumorigenesis. Here, we report Osteosarcoma is a primary bone malignancy with high rates that CUL4B is associated with tumorigenesis by promoting of metastasis, mortality and disability, and usually occurs in proliferation and inhibiting apoptosis of human osteosarcoma children and adolescents (1). The most common treatments cells. We performed RNA interference (RNAi) with a lentiviral for osteosarcoma are surgery, chemotherapy and biotherapy. vector system to silence the CUL4B gene using osteosarcoma However, the prognosis of osteosarcoma is still poor because SAOS-2 cells. The negative control included the normal of the high degree of malignancy, rapid disease progression target cells infected with the negative control virus whereas and early metastasis (2). the knockdown cells included the normal target cells trans- Gene amplification can be defined as increased copy fected with the RNAi target virus. We assessed the inhibition numbers of certain regions of the genome. Gene amplifica- resulting from the decreased expression of the CUL4B gene on tion often results in the upregulation of gene expression by the proliferation rate of SAOS-2 cells, and also evaluated the increasing the number of templates available for transcription.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Cul4a Promotes Zebrafish Primitive Erythropoiesis Via Upregulating Scl
    Yang et al. Cell Death and Disease (2019) 10:388 https://doi.org/10.1038/s41419-019-1629-7 Cell Death & Disease ARTICLE Open Access Cul4a promotes zebrafish primitive erythropoiesis via upregulating scl and gata1 expression Fan Yang1, Huili Hu1, Yuanyuan Liu2,MingShao2, Changshun Shao 3 and Yaoqin Gong1 Abstract CUL4A and CUL4B are closely related members in Cullin family and can each assemble a Cullin-RING E3 ligase complex (Cullin-RING Ligase 4A or 4B, CRL4A, or CRL4B) and participate in a variety of biological processes. Previously we showed that zebrafish cul4a, but not cul4b, is essential for cardiac and pectoral fin development. Here, we have identified cul4a as a crucial regulator of primitive erythropoiesis in zebrafish embryonic development. Depletion of cul4a resulted in a striking reduction of erythroid cells due to the inhibition of erythroid differentiation. Transcript levels for early hematopoietic regulatory genes including scl, lmo2, and gata1 are significantly reduced in cul4a-deficient embryos. Mechanistically, we demonstrated that scl and gata1, the central regulators of primitive hematopoiesis for erythroid determination, are transcriptionally upregulated by cul4a. These findings demonstrate an important role for cul4a in primitive erythropoiesis and may bear implications in regeneration medicine of anemia and related diseases. Introduction 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; which subsequently forms intermediate cell mass (ICM) Zebrafish (Danio rerio) has become a powerful model at the midline5,6. A sophisticated network of many tran- for investigating hematopoiesis because its transparency scription factors has been described to regulate primitive greatly facilitates the visualization of hematopoietic sys- and definitive hematopoiesis7. Among them, the stem cell tem.
    [Show full text]
  • Woodhouse-Sakati Syndrome: Clinical and Molecular Study on a Qatari Family with C2orf37 Gene Mutation
    Woodhouse-Sakati Syndrome: Clinical and Molecular Study on a Qatari Family with C2orf37 Gene Mutation Sara Al-Khawaga, Basma Haris, Reem Hasnah, Saras Saraswathi, Amira Saeed, Sanaa Sharari, Idris Mohammad, Khalid Hussain 1Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar. E-mail: [email protected] Disclosure-None of the authors have any potential conflict of interest. INTRODUCTION Woodhouse-Sakati syndrome (WSS) is rare autosomal recessive condition characterized by progressive extrapyramidal signs, mental retardation, hypogonadism, alopecia, and diabetes mellitus. The age at disease onset, manifestation and severity of specific symptoms differs significantly among individuals with this syndrome and even among affected members of the same family. The gene C2orf37, which is responsible for WSS, located on chromosome 2q22.3-q35. OBJECTIVE(S) To describe the clinical and genetic characteristics of Woodhouse- Sakati Syndrome diagnosed in three siblings fom the state of Qatar. CASE REPORT The phenotype of the three siblings included hypogonadism, alopecia, diabetes mellitus, and different degrees of mental retardation ranging from mild to severe. Whole Exome Sequencing (WES) analysis was performed in the patients and their parents. Figure 2. Sanger sequencing of the three affected siblings with WSS. METHODS The patient’s genomic DNA was used. Next-generation sequencing using an Illumina system was used to capture the exonic region and CONCLUSION flanking splice junctions of the genome. Xome Analyzer was used to • Mutations in DCAF17 account for the features analyze the sequence variants all potentially pathogenic variants of Woodhouse-Sakati syndrome. were confirmed using Capillary sequencing. Sequence and copy • The exact mechanisms behind hormonal abnormalities and number alterations were reported according to the Human Genome the other signs and symptoms remain unclear.
    [Show full text]