EARTH STATION TECHNOLOGY Revision 5, June 1999

Total Page:16

File Type:pdf, Size:1020Kb

EARTH STATION TECHNOLOGY Revision 5, June 1999 EARTH STATION TECHNOLOGY Revision 5, June 1999 FOREWORD This handbook has been prepared under INTELSAT's Assistance and Development Program (IADP). It is also used as a reference handbook for courses on Earth station communications technology organized under the INTELSAT Signatory Training Program (ISTP). The handbook is updated from time to time. Address any questions or suggestions to: Manager Application Support and Training (IADP/ISTP) Mail Stop 20B INTELSAT 3400 International Drive, NW Washington, DC 20008-3098 Telephone: +1 202 944 7070 Facsimile: +1 202 944 8214 Telex: (WUT) 89-2707 International Telex: (WUI) 64290 First printed: April 1983 Revision 1: January 1984 Revision 2: September 1985 Revision 3: November 1987 Revision 4: March 1995 Revision 5: June 1999 INTELSAT Earth Station Technology Table of Contents CONTENTS Chapter 1 - SATELLITE ORBITS..................................................... 1 1.1 Introduction ............................................................................................................ 1 1.2 Orbits ..................................................................................................................... 2 1.3 Stabilization............................................................................................................ 5 1.4 Position ..................................................................................................................5 1.5 Frequency Bands................................................................................................... 5 1.6 Time Delay............................................................................................................. 8 1.7 Geographical Advantage........................................................................................ 9 1.8 Path Loss ............................................................................................................... 9 1.9 Sun Interference................................................................................................... 11 1.10 Tropospheric Scintillation ..................................................................................... 12 Chapter 2 - INTELSAT SATELLITES............................................. 13 2.1 INTELSAT SYSTEM ............................................................................................ 13 2.2 SATELLITE DESIGN ........................................................................................... 16 2.3 INTELSAT SATELLITE SERIES.......................................................................... 25 2.4 Summary.............................................................................................................. 44 Chapter 3 - EARTH STATION ANTENNAS .................................. 45 3.1 Introduction .......................................................................................................... 45 3.2 Antenna Configurations........................................................................................ 45 3.3 Antenna Mounts................................................................................................... 50 3.4 Dish Antennas Geometry ..................................................................................... 52 3.5 Antenna Parameters ............................................................................................ 52 3.6 Antenna Standards .............................................................................................. 57 3.7 Entry of Earth Stations into the INTELSAT System.............................................. 60 3.8 INTELSAT Documentation................................................................................... 61 3.9 Earth Station Site Selection.................................................................................. 64 Chapter 4 - ANTENNA TRACKING............................................... 73 4.1 Introduction .......................................................................................................... 73 4.2 Satellite Stationkeeping........................................................................................ 73 4.3 Look Angles to Geostationary Satellites............................................................... 76 4.4 IESS 412.............................................................................................................. 79 4.5 Antenna Gain Rolloff ............................................................................................ 80 4.6 Tracking Systems................................................................................................. 82 4.7 Student Question Paper....................................................................................... 91 Chapter 5 - POWER AMPLIFIERS................................................ 93 5.1 Introduction .......................................................................................................... 93 5.2 Power Rating........................................................................................................ 93 5.3 Types of Power Amplifiers.................................................................................... 93 5.4 Power Combining (Multiplexing)......................................................................... 118 5.5 Common Terminology Used with Power Amplifiers ........................................... 123 5.6 Student Question Paper..................................................................................... 124 Last Updated: 04 June 1999 Page i of 244 Doc. No.: ESTECH-1999-HNDBK-103 Verify document currency before use. Pub. Rel. No.: 5 INTELSAT Earth Station Technology Table of Contents CONTENTS (cont.) Chapter 6 - LOW-NOISE AMPLIFIERS....................................... 125 6.1 Introduction ........................................................................................................ 125 6.2 Noise.................................................................................................................. 125 6.3 FET Amplifiers.................................................................................................... 128 Chapter 7 -FREQUENCY CONVERTERS................................... 131 7.1 Introduction ........................................................................................................ 131 7.2 Frequency Conversion Principle ........................................................................ 131 7.3 Frequency Converters........................................................................................ 133 7.4 Student Question Paper..................................................................................... 142 Chapter 8 - EARTH STATION TEST EQUIPMENT and MEASUREMENT UNITS ...................................................... 145 8.1 Introduction ........................................................................................................ 145 8.2 Power Meter....................................................................................................... 145 8.3 Frequency Counter ............................................................................................ 147 8.4 Microwave Link Analyzer.................................................................................... 148 8.5 BER Test Set ..................................................................................................... 154 8.6 Spectrum Analyzer............................................................................................. 156 8.7 Measurement Units............................................................................................ 160 8.8 Student Question Paper..................................................................................... 163 Chapter 9 - EARTH STATION DESIGN ...................................... 165 9.1 Introduction ........................................................................................................ 165 9.2 Performance Objectives..................................................................................... 165 9.3 Link Budget ........................................................................................................ 165 9.4 Examples ........................................................................................................... 183 9.5 Student Question Paper..................................................................................... 190 Chapter 10 - ENGINEERING SERVICE CIRCUIT (ESC) and POWER PLANT................................................................... 191 10.0 Introduction ...................................................................................................... 191 10.1 Student Question Paper................................................................................... 213 APPENDIX A -WAVEGUIDES AND FEEDS................................ 215 Last Updated: 04 June 1999 Page ii of 244 Doc. No.: ESTECH-1999-HNDBK-103 Verify document currency before use. Pub. Rel. No.: 5 INTELSAT Earth Station Technology Chapter 1 –Satellite Orbits CHAPTER 1 SATELLITE ORBITS 1.1 Introduction The concept of a global telecommunications system using satellites was put forward first in an article for the British Magazine "Wireless World" in May 1945 by the science fiction author, Arthur C. Clarke. A brief extract from this article addressing the issue of orbital location for geostationary communications satellites is quoted below. "All these problems can be solved by the use of a chain of space-stations with an
Recommended publications
  • Appendix I Radio Regulations Provisions
    Appendix I Radio Regulations Provisions E. D'Andria I. Introduction We summarize the Radio Regulations provisions and pertinent CCIR recommen­ dations and reports which give a more complete description of frequency sharing. To permit development of the fixed-satellite service (FSS), one of the last services introduced into the Radio Regulations, several technical and administra­ tive rules have been established to guarantee the compatibility of this new service with existing ones having the same frequency allocations. The very first rules were evolved by the Extraordinary Administrative Radio Conference for space radio communications, held in Geneva in 1963, and included in the Radio Regulations. The growing demand for space radio-communication services led the World Administrative Radio Conference for Space Telecommunications, WARC­ ST 1971, to revise and broaden previous frequency allocations and to produce improved technical criteria for frequency-sharing and coordination procedures. The WARC-1979 revision produced the provisions now in force; WARC- 1979 also resolved to hold a conference on the use of the GEO and planning of the space services utilizing it. The first session, held in 1985 (WARC-ORB '85), identified the frequency bands allocated to space services, plus principles and methods for planning to guarantee to all countries equal access to the GEO. The second session, held in 1988 (WARC-ORB '88), defined an allotment plan which specifies for each country the satellite nominal orbital position within a predetermined arc, the satellite beam characteristics, including geographical coordinates of the bore sight , and the satellite and earth stations EIRP densities. Each allotment is to have an aggregate C / I of at least 26 dB, although, when considering existing systems, in some cases this value is not reached.
    [Show full text]
  • The Legal Ordering of Satellite Telecommunication: Problems and Alternatives
    Indiana Law Journal Volume 44 Issue 3 Article 1 Spring 1969 The Legal Ordering of Satellite Telecommunication: Problems and Alternatives Delbert D. Smith University of Wisconsin Follow this and additional works at: https://www.repository.law.indiana.edu/ilj Part of the Air and Space Law Commons, and the Communications Law Commons Recommended Citation Smith, Delbert D. (1969) "The Legal Ordering of Satellite Telecommunication: Problems and Alternatives," Indiana Law Journal: Vol. 44 : Iss. 3 , Article 1. Available at: https://www.repository.law.indiana.edu/ilj/vol44/iss3/1 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Indiana Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. INDIANA LAW JOURNAL Volume 44 Spring 1969 Number 3 THE LEGAL ORDERING OF SATELLITE TELECOMMUNICATION: PROBLEMS AND ALTERNATIVES DELBERT D. SMITHt The use of satellites in outer space to provide a means of transmission for international telecommunication could be viewed as simply a tech- nological advancement neither necessitating basic structural changes in the international control institutions nor requiring alteration of the control theories designed to regulate unauthorized transmissions. How- ever, the magnitude of the changes involved, coupled with increased governmental concern, has resulted in a number of politico-legal problems. It is the purpose of this article to examine on several levels of analysis the implications of utilizing satellites as a means of telecom- munication transmission. Introductory material on the development of communications satellite technology stresses the need for international organization and co-operation to oversee the launching and maintenance of a global communications system and indicates the pressures for the implementation of control measures over transmissions originating in outer space.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • One of Satellite's Most Enduring Stories
    / SEPTEMBER 2014 Intelsat at One of Satellite's Most Enduring Stories Like any good story, there are heroes, one notable villain, moments of sheer joy as well as moments of heartbreak and loss. But this is not a new CBS drama I am talking about, this is the 50-year story of one of the satellite industry’s most iconic companies: Intelsat. This year, the operator celebrates its 50-year anniversary and we look some of the key moments in the company’s colorful history. by MARK HOLMES PERSPECTIVE VIASATELLITE.COM / SEPTEMBER 2014 n August 20, 1964, the International Telecom- countries as part of the system meant things could be munications Satellite Consortium (Intelsat) difficult to organize. “I remember when I first went to O was established on the basis of agreements Intelsat, we would have to arrange a lot of calls a day signed by governments and operating enti- in advance to some countries. It took me eight days to ties. By April 1965, eight months later, Intelsat already arrange a call to Chile, for example,” said Kinzie. had its first spacecraft, the Early Bird satellite (Intelsat The company opened up new worlds to people I), in synchronous orbit. This was the world’s first com- through its satellites. It transmitted images of the moon mercial communications satellite. landings in 1969, and then images from the World Cup Fast-forward 50 years, and Intelsat is a huge force in Argentina in 1978 to more than one billion people within the satellite industry. It operates a global fleet of around the globe.
    [Show full text]
  • Navy Space and Astronautics Orientation. INSTITUTION Bureau of Naval Personnel, Washington, D
    DOCUMENT RESUME ED 070 566 SE 013 889 AUTHOR Herron, R. G. TITLE Navy Space and Astronautics Orientation. INSTITUTION Bureau of Naval Personnel, Washington, D. C.; Naval Personnel Program Support Activity, Washington, D. C. REPORT NO NAVPERS- 10488 PUB DATE 67 NOTE 235p. '2 EDRS PRICE MF-$0.65 HC-$9.87 DESCRIPTORS Aerospace Education; AerospaceTechnology; *Instructional Materials; Military Science; *Military Training; Navigatioti; *Post Secondary Education; *Space Sciences; *Supplementary Textbooks; Textbooks ABSTRACT Fundamental concepts of the spatial environment, technologies, and applications are presented in this manual prepared for senior officers and key civilian employees. Following basic information on the atmosphere, solar system, and intergalactic space, a detailed review is included of astrodynamics, rocket propulsion, bioastronautics, auxiliary spacecraft survival systems, and atmospheric entry.Subsequentlythere is an analysis of naval space facilities, and satellite applications, especially those of naval interests, are discussed with a background of launch techniques, spatial data gathering, communications programs ,of)servation techniques, measurements by geodetic and navigation systems. Included is a description of space defense and future developments of both national and international space programs. Moreover, commercial systems are mentioned, such as the 85-pound Early Bird (Intelsat I) Intelsat II series, global Intelsat III series, and Soviet-made elMolnlyan satellites. The total of 29 men and one woman orbiting the earth In-1961-67 are tabulated in terms of their names, flight series, launching dates, orbit designations, or biting periods,. stand-up periods, and extra vehicular activity records. Besides numerous illustrations, a list ofsignificantspace launches and a glossary of special terms are included in the manual appendices along with two tables of frequencybanddesignation.
    [Show full text]
  • Reliability Considerations for Communication Satellites
    Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. RELIABILITY CONSIDERATIONS FOR COMMUNICATION SATELLITES BY FRANK POLIZZI A THESIS PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MANAGEMENT ENGINEERING AT NEWARK COLLEGE OF ENGINEERING This thesis is to be used only with due regard to the rights of the author(s). Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.
    [Show full text]
  • Overview of Satellite Communications
    Overview of Satellite Communications Dick McClure Agenda Background History Introduction to Satcom Technology Ground System Antennas Satellite technology Geosynchronous orbit Antenna coverage patterns 2 COMMUNICATION SATELLITES Uses Example satellite systems 3 Why Satellite Communications? Satellite coverage spans great distances A satellite can directly connect points separated by 1000’s of miles A satellite can broadcast to 1000’s of homes/businesses/military installations simultaneously A satellite can be reached from ground facilities that move Satellites can connect to locations with no infrastructure Satellites adapt easily to changing requirements Some Common SATCOM Systems The INTELSAT system provides globe-spanning TV coverage The Thuraya satellite-based phone system covers all of Saudi Arabia and Egypt DoD Military Communications Satellite System Links field sites with Pentagon and US command centers DirecTV, Echostar Direct-to-home TV XM Radio, Sirius Satellite radio-to-car/home Hughes VSAT (Very Small Aperture Terminal) systems Links GM car dealers, Walmart, Costco, J C Penney, etc. to their accounting centers Common Satellite Orbits LEO (Low Earth Orbit) Close to Earth Photo satellites – 250 miles Iridium – 490 miles Polar Orbit Provides coverage to polar regions (used by Russian satellites) GEO (Geosynchronous Earth Orbit) Angular velocity of the satellite = angular velocity of earth satellite appears to be fixed in space Most widely used since ground antennas need not move Circular orbit Altitude: 22,236 miles Can’t “see” the poles 6 HISTORICAL BACKGROUND People Early satellites Evolution 7 Historical Background: People Arthur C. Clarke Highly successful science fiction author First to define geosynchronous communications satellite concept Published paper in Wireless World , October 1945 Suggested terrestrial point-to-point relays would be made obsolete by satellites Unsure about how satellites would be powered John R.
    [Show full text]
  • The Progress of Satellite Technology and Its Role in the Development of the Asia‑Pacific Region : the Case of Indonesia
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. The progress of satellite technology and its role in the development of the Asia‑Pacific region : the case of Indonesia Parapak, Jonathan L 1990 Parapak, J. L. (1990). The progress of satellite technology and its role in the development of the Asia‑Pacific region ‑ the case of Indonesia. In AMIC‑DEPPEN Seminar on the Socio‑economic Impact of Broadcast Satellites in the Asia‑Pacific Region : Jakarta, Jul 25‑27, 1990. Singapore: Asian Mass Communication Research & Information Centre. https://hdl.handle.net/10356/90588 Downloaded on 06 Oct 2021 15:04:48 SGT ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library The Progress Of Satellite Technology And Its Role In The Development Of The Asia-Pacific Region - The Case Of Indonesia By Jonathan L Parapak L Paper No.15 THE PROGRESS OF SATELLITE TECHNOLOGY AND ITS ROLE IN THE DEVELOPMENT OF THE ASIA PACIFIC REGION - THE CASE OF INDONESIA ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library by Jonathan L Parapak "Presented at the Seminar on Socio-Economic Impact of Broadcast Satellite in the Asia Pacific Region" Jakarta, July 25-27 1990 1. INTRODUCTION Today we are living in a small world. Distance is no longer relevant to our way of life. With a telephone we- can contact anyone at any time and at any place around the world. With a computer, a modem and a telephone we can access almost any kind of information stored in computers in major centers of this world.
    [Show full text]
  • A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
    A B 1 Name of Satellite, Alternate Names Country of Operator/Owner 2 AcrimSat (Active Cavity Radiometer Irradiance Monitor) USA 3 Afristar USA 4 Agila 2 (Mabuhay 1) Philippines 5 Akebono (EXOS-D) Japan 6 ALOS (Advanced Land Observing Satellite; Daichi) Japan 7 Alsat-1 Algeria 8 Amazonas Brazil 9 AMC-1 (Americom 1, GE-1) USA 10 AMC-10 (Americom-10, GE 10) USA 11 AMC-11 (Americom-11, GE 11) USA 12 AMC-12 (Americom 12, Worldsat 2) USA 13 AMC-15 (Americom-15) USA 14 AMC-16 (Americom-16) USA 15 AMC-18 (Americom 18) USA 16 AMC-2 (Americom 2, GE-2) USA 17 AMC-23 (Worldsat 3) USA 18 AMC-3 (Americom 3, GE-3) USA 19 AMC-4 (Americom-4, GE-4) USA 20 AMC-5 (Americom-5, GE-5) USA 21 AMC-6 (Americom-6, GE-6) USA 22 AMC-7 (Americom-7, GE-7) USA 23 AMC-8 (Americom-8, GE-8, Aurora 3) USA 24 AMC-9 (Americom 9) USA 25 Amos 1 Israel 26 Amos 2 Israel 27 Amsat-Echo (Oscar 51, AO-51) USA 28 Amsat-Oscar 7 (AO-7) USA 29 Anik F1 Canada 30 Anik F1R Canada 31 Anik F2 Canada 32 Apstar 1 China (PR) 33 Apstar 1A (Apstar 3) China (PR) 34 Apstar 2R (Telstar 10) China (PR) 35 Apstar 6 China (PR) C D 1 Operator/Owner Users 2 NASA Goddard Space Flight Center, Jet Propulsion Laboratory Government 3 WorldSpace Corp. Commercial 4 Mabuhay Philippines Satellite Corp. Commercial 5 Institute of Space and Aeronautical Science, University of Tokyo Civilian Research 6 Earth Observation Research and Application Center/JAXA Japan 7 Centre National des Techniques Spatiales (CNTS) Government 8 Hispamar (subsidiary of Hispasat - Spain) Commercial 9 SES Americom (SES Global) Commercial
    [Show full text]
  • Introduction to Satellite Communication 3Rd Edition
    Introduction to Satellite Communication Third Edition For a listing of recent titles in the Artech House Space Application Series, turn to the back of this book. Introduction to Satellite Communication Third Edition Bruce R. Elbert Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. ISBN-13: 978-1-59693-210-4 Cover design by Yekaterina Ratner 2008 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. 10987654321 Contents Preface xi CHAPTER 1 Fundamentals of Satellite Systems 1 1.1 Basic Characteristics of Satellites 1 1.1.1 Advantages of Satellite Communication 7 1.1.2 Use of Microwave Frequencies 11 1.1.3 Digital Transmission, Compression, and Routing 12 1.1.4 Improved Space Platforms and Launching Systems 13 1.1.5 Integration with Terrestrial
    [Show full text]
  • An Elementary Approach Towards Satellite Communication
    AN ELEMENTARY APPROACH TOWARDS SATELLITE COMMUNICATION Prof. Dr. Hari Krishnan GOPAKUMAR Prof. Dr. Ashok JAMMI AN ELEMENTARY APPROACH TOWARDS SATELLITE COMMUNICATION Prof. Dr. Hari Krishnan GOPAKUMAR Prof. Dr. Ashok JAMMI AN ELEMENTARY APPROACH TOWARDS SATELLITE COMMUNICATION WRITERS Prof. Dr. Hari Krishnan GOPAKUMAR Prof. Dr. Ashok JAMMI Güven Plus Group Consultancy Inc. Co. Publications: 06/2021 APRIL-2021 Publisher Certificate No: 36934 E-ISBN: 978-605-7594-89-1 Güven Plus Group Consultancy Inc. Co. Publications All kinds of publication rights of this scientific book belong to GÜVEN PLUS GROUP CONSULTANCY INC. CO. PUBLICATIONS. Without the written permission of the publisher, the whole or part of the book cannot be printed, broadcast, reproduced or distributed electronically, mechanically or by photocopying. The responsibility for all information and content in this Book, visuals, graphics, direct quotations and responsibility for ethics / institutional permission belongs to the respective authors. In case of any legal negativity, the institutions that support the preparation of the book, especially GÜVEN PLUS GROUP CONSULTANCY INC. CO. PUBLISHING, the institution (s) responsible for the editing and design of the book, and the book editors and other person (s) do not accept any “material and moral” liability and legal responsibility and cannot be taken under legal obligation. We reserve our rights in this respect as GÜVEN GROUP CONSULTANCY “PUBLISHING” INC. CO. in material and moral aspects. In any legal problem/situation TURKEY/ISTANBUL courts are authorized. This work, prepared and published by Güven Plus Group Consultancy Inc. Co., has ISO: 10002: 2014- 14001: 2004-9001: 2008-18001: 2007 certificates. This work is a branded work by the TPI “Turkish Patent Institute” with the registration number “Güven Plus Group Consultancy Inc.
    [Show full text]
  • 109730) NASA POCKET STATISTICS (NASA) 191 P • Unclas
    NASA-TM-109730 N94-71887 I ,SA-T*!-109730) NASA POCKET STATISTICS (NASA) 191 p • Unclas 00/82 0002369 Following is a list of individuals who control the distribution of the NASA Pocket Statistics at their respective NASA Installations. Requests for additional copies should be made through the controlling office shown below. NASA Headquarters Johnson Space Center Marshall Space Flight Center Dr. Roger D. Launius Ms. Rebecca Humbird Ms. Amanda Wilson, CN22 NASA History Office, Code ICH Printing Management Branch, Code JM8 Management Operations Office Ames Research Center JSC White Sands Test Facility Miehoud Assembly Facility Ms. Lynda L. Haines, MS 200-1A Mr. Richard Colonna, Manager Mr. John R. Demarest, Manager Staff Assistant to the Deputy Director CodeRA Dryden Flight Research Center Kennedy Space Center and KSC/WLOD NASA Management Office - JPL Mr. Dennis Ragsdale Mr. Hugh W. Harris Mr. Kurt L. LJndstrom, Manager Research Librarian, MS D2-149 Public Affairs Office Goddard Institute For Space Studies KSC VLS Resident Office John C. Stennls Space Center Dr. James E. Hansen (Vandenberg AFB) Mr. Roy S. Estess, Director Division Chief, Code 940 Mr. Ted L. Oglesby, Manager Code AAOO Goddard Space Right Center Langley Research Center Slldell Computer Complex Ms. Cindi Zaklan Ms. Margaret W. Hunt Mr. Bob Bradford, Manager Code 200 Mail Stop 154 Jet Propulsion Laboratory Lewis Research Center Wallops Flight Facility Mr. Robert Macmillin Ms. Linda Dukes-Campbell, Chief Mr. Joseph McGoogan, Director Mail Stop 186-120 Office of Community and Media Relations Management and Operations POCKET STATISTICS is published for the use of NASA managers and their staff.
    [Show full text]