109730) NASA POCKET STATISTICS (NASA) 191 P • Unclas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brooklyn Excelsior Charter School Volume
Charter Schools Institute State University of New York BROOKLYN EXCELSIOR CHARTER SCHOOL FINAL CHARTERED AGREEMENT Sec. 2852(5) Submission to the Board of Trustees VOLUME _£_OF_3 REDACTED COP 74 North Pearl Street, 4th Floor, Albany, NY 12207 tel: (518) 433-8277 fax: (518) 427-6510 e-mail: [email protected] www.newyorkcharters.org 1032 O COPYRIGHT NATIONAL HERITAGE ACADEMIES 2001-2002 SCHOOL YEAR (REV. A 7/2001) 1033 Educational Technology Philosophy The National Assessment of Educational Progress (NAEP) has tracked student achievement for nearly three decades. In 1996, the results of the NAEP indicated a link between certain kinds of technology use, higher scores on the NAEP, and an improved school climate.1 It is important to note that not all types of technology use produced these results. In fact, the results indicated that the use of computers for "drill and practice" may result in decreased student scores. The technology use that proved most beneficial centered on using the computer for simulation, problem solving and analysis. The computer's most powerful uses are for making things visual," says James Kaput, a math professor at the University of Massachusetts-Dartmouth. "It can make visual abstract processes that that are otherwise ineffable." As an organization, NHA focuses on delivering a "back to basics" approach to education based on research to generate student performance results. NHA's philosophy is grounded in the premise that the primary educational focus in elementary school should be mastering the core academic subjects of English, reading, mathematics, history, and science. Use of technology within the framework of the core academic curriculum must be age appropriate and must enhance the learning process. -
Satellite Situation Report
NASA Office of Public Affairs Satellite Situation Report VOLUME 17 NUMBER 6 DECEMBER 31, 1977 (NASA-TM-793t5) SATELLITE SITUATION~ BEPORT, N8-17131 VOLUME 17, NO. 6 (NASA) 114 F HC A06/mF A01 CSCL 05B Unclas G3/15 05059 Goddard Space Flight Center Greenbelt, Maryland NOTICE .THIS DOCUMENT HAS'BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS' ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE. OFFICE OF PUBLIC AFFAIRS GCDDARD SPACE FLIGHT CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION VOLUME 17 NO. 6 DECEMBER 31, 1977 SATELLITE SITUATION REPORT THIS REPORT IS PUBLIShED AND DISTRIBUTED BY THE OFFICE OF PUBLIC AFFAIRS, GSFC. GODPH DRgP2 FE I T ERETAO5MUJS E SMITHSONIAN ASTRCPHYSICAL OBSERVATORY. SPACEFLIGHT TRACKING AND DATA NETWORK. NOTE: The Satellite Situation Report dated October 31, 1977, contained an entry in the "Objects Decayed Within the Reporting Period" that 1977 042P, object number 10349, decayed on September 21, 1977. That entry was in error. The object is still in orbit. SPACE OBJECTS BOX SCORE OBJECTS IN ORBIT DECAYED OBJECTS AUSTRALIA I I CANACA 8 0 ESA 4 0 ESRO 1 9 FRANCE 54 26 FRANCE/FRG 2 0 FRG 9 3 INCIA 1 0 INDONESIA 2 0 INTERNATIONAL TELECOM- MUNICATIONS SATELLITE ORGANIZATION (ITSO) 22 0 ITALY 1 4 JAPAN 27 0 NATC 4 0 NETHERLANDS 0 4 PRC 6 14 SPAIN 1 0 UK 11 4 US 2928 1523 USSR 1439 4456 TOTAL 4E21 6044 INTER- CBJECTS IN ORIT NATIONAL CATALOG PERIOD INCLI- APOGEE PERIGEE TQANSMITTTNG DESIGNATION NAME NUMBER SOURCE LAUNCH MINUTES NATION KM. -
Smiths 0 N U N Ins Ti Tu Tion Astrophysical Observatory
SMITHS0 NUN INS TITU TION ASTROPHYSICAL OBSERVATORY OPTICAL SATELLITE- TRACKING PROGRAM Grant Number NGR 09-015-002 Semiannual Progress Report No. 20 1 January 1969 to 30 June 1969 Project Director: Fred L. Whipple Prepared for National Aeronautics and Space Administration Washington, D. C. 20546 Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 021 38 SMITHSONIAN INS TITU TION ASTROPHYSICAL OBSERVATORY OPTICAL SATELLITE- TRACKING PROGRAM Grant Number NGR 09-015-002 Semiannual Progress Report No. 20 1 January 1969 to 30 June 1969 Project Director: Fred L. Whipple Prepared for National Ae r onauti cs and Space Administration Washington, D. C. 20546 Smithsonian Institution A s t r o phy s i cal Ob s e rvatory Cambridge, Massachusetts 021 38 908-2 TABLE OF CONTENTS Page INTRODUCTION .................................. 1 RESEARCHPROGRAMS ............................. .2 GEODETIC INVESTIGATIONS ...................... 3 ATMOSPHERIC INVESTIGATIONS ................... 6 DATAACQUISITION ............................... 8 SATELLITE- TRACKING AND DATA-ACQUISITION DEPARTMENT ................................ 9 COMMUNICATIONS ............................. 21 DATAPROCESSING ................................ 23 DATA PROCESSING ............................. 24 PHOTOREDUCTION DIVISION ...................... 27 PROGRAMMING DIVISION. ........................ 29 EDITORIAL AND PUBLICATIONS. ...................... 31 ii INTRODUCTION In support of the scientific and operational requirements under the Satellite- Tracking Program grant, the -
Appendix I Radio Regulations Provisions
Appendix I Radio Regulations Provisions E. D'Andria I. Introduction We summarize the Radio Regulations provisions and pertinent CCIR recommen dations and reports which give a more complete description of frequency sharing. To permit development of the fixed-satellite service (FSS), one of the last services introduced into the Radio Regulations, several technical and administra tive rules have been established to guarantee the compatibility of this new service with existing ones having the same frequency allocations. The very first rules were evolved by the Extraordinary Administrative Radio Conference for space radio communications, held in Geneva in 1963, and included in the Radio Regulations. The growing demand for space radio-communication services led the World Administrative Radio Conference for Space Telecommunications, WARC ST 1971, to revise and broaden previous frequency allocations and to produce improved technical criteria for frequency-sharing and coordination procedures. The WARC-1979 revision produced the provisions now in force; WARC- 1979 also resolved to hold a conference on the use of the GEO and planning of the space services utilizing it. The first session, held in 1985 (WARC-ORB '85), identified the frequency bands allocated to space services, plus principles and methods for planning to guarantee to all countries equal access to the GEO. The second session, held in 1988 (WARC-ORB '88), defined an allotment plan which specifies for each country the satellite nominal orbital position within a predetermined arc, the satellite beam characteristics, including geographical coordinates of the bore sight , and the satellite and earth stations EIRP densities. Each allotment is to have an aggregate C / I of at least 26 dB, although, when considering existing systems, in some cases this value is not reached. -
The Legal Ordering of Satellite Telecommunication: Problems and Alternatives
Indiana Law Journal Volume 44 Issue 3 Article 1 Spring 1969 The Legal Ordering of Satellite Telecommunication: Problems and Alternatives Delbert D. Smith University of Wisconsin Follow this and additional works at: https://www.repository.law.indiana.edu/ilj Part of the Air and Space Law Commons, and the Communications Law Commons Recommended Citation Smith, Delbert D. (1969) "The Legal Ordering of Satellite Telecommunication: Problems and Alternatives," Indiana Law Journal: Vol. 44 : Iss. 3 , Article 1. Available at: https://www.repository.law.indiana.edu/ilj/vol44/iss3/1 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Indiana Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. INDIANA LAW JOURNAL Volume 44 Spring 1969 Number 3 THE LEGAL ORDERING OF SATELLITE TELECOMMUNICATION: PROBLEMS AND ALTERNATIVES DELBERT D. SMITHt The use of satellites in outer space to provide a means of transmission for international telecommunication could be viewed as simply a tech- nological advancement neither necessitating basic structural changes in the international control institutions nor requiring alteration of the control theories designed to regulate unauthorized transmissions. How- ever, the magnitude of the changes involved, coupled with increased governmental concern, has resulted in a number of politico-legal problems. It is the purpose of this article to examine on several levels of analysis the implications of utilizing satellites as a means of telecom- munication transmission. Introductory material on the development of communications satellite technology stresses the need for international organization and co-operation to oversee the launching and maintenance of a global communications system and indicates the pressures for the implementation of control measures over transmissions originating in outer space. -
The Hubble Space Telescope: 21 Years and Counting
Mem. S.A.It. Vol. 83, 393 c SAIt 2012 Memorie della The Hubble Space Telescope: 21 years and counting N. Panagia1;2;3 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2 Istituto Nazionale di Astrofisica – Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania, Italy 3 Supernova Ltd, OYV #131, Northsound Road, Virgin Gorda, British Virgin Islands e-mail: [email protected] Abstract. I summarize the current status of the Hubble Space Telescope (HST) and illus- trate some of its exciting results. Key words. Telescopes: HST – Cosmology: observations – Dark Matter – Early Universe – Galaxies: Magellanic Clouds – Stellar Populations – Stars: V838 Mon – Planetary System – Comet: SL9 – Planets and Satellites: Pluto 1. Introduction After SM3B, HST’s science instruments in- cluded a spectrograph, the Space Telescope After twenty one years in orbit, the now “adult” Imaging Spectrograph (STIS) operating in the Hubble Space Telescope (HST) continues to UV and optical domains, and three cam- play a major role in astronomical research, and eras, the Wide Field - Planetary Camera 2 is undoubtedly one of the most important and (WFPC2), the Advanced Camera for Surveys most prolific space astronomy missions of all (ACS), the Near Infrared Camera - Multiobject time. Spectrograph (NICMOS), which was revived HST was deployed in low-Earth orbit in mission 3B with the installation of a (about 600 km) by the crew of the space mechanical cooling system, and the Fine shuttle Discovery (STS-31) on 25 April 1990. Guidance Sensors (FGS, primarily used for as- Although at the beginning the mission looked trometric observations). -
Photographs Written Historical and Descriptive
CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District. -
One of Satellite's Most Enduring Stories
/ SEPTEMBER 2014 Intelsat at One of Satellite's Most Enduring Stories Like any good story, there are heroes, one notable villain, moments of sheer joy as well as moments of heartbreak and loss. But this is not a new CBS drama I am talking about, this is the 50-year story of one of the satellite industry’s most iconic companies: Intelsat. This year, the operator celebrates its 50-year anniversary and we look some of the key moments in the company’s colorful history. by MARK HOLMES PERSPECTIVE VIASATELLITE.COM / SEPTEMBER 2014 n August 20, 1964, the International Telecom- countries as part of the system meant things could be munications Satellite Consortium (Intelsat) difficult to organize. “I remember when I first went to O was established on the basis of agreements Intelsat, we would have to arrange a lot of calls a day signed by governments and operating enti- in advance to some countries. It took me eight days to ties. By April 1965, eight months later, Intelsat already arrange a call to Chile, for example,” said Kinzie. had its first spacecraft, the Early Bird satellite (Intelsat The company opened up new worlds to people I), in synchronous orbit. This was the world’s first com- through its satellites. It transmitted images of the moon mercial communications satellite. landings in 1969, and then images from the World Cup Fast-forward 50 years, and Intelsat is a huge force in Argentina in 1978 to more than one billion people within the satellite industry. It operates a global fleet of around the globe. -
Navy Space and Astronautics Orientation. INSTITUTION Bureau of Naval Personnel, Washington, D
DOCUMENT RESUME ED 070 566 SE 013 889 AUTHOR Herron, R. G. TITLE Navy Space and Astronautics Orientation. INSTITUTION Bureau of Naval Personnel, Washington, D. C.; Naval Personnel Program Support Activity, Washington, D. C. REPORT NO NAVPERS- 10488 PUB DATE 67 NOTE 235p. '2 EDRS PRICE MF-$0.65 HC-$9.87 DESCRIPTORS Aerospace Education; AerospaceTechnology; *Instructional Materials; Military Science; *Military Training; Navigatioti; *Post Secondary Education; *Space Sciences; *Supplementary Textbooks; Textbooks ABSTRACT Fundamental concepts of the spatial environment, technologies, and applications are presented in this manual prepared for senior officers and key civilian employees. Following basic information on the atmosphere, solar system, and intergalactic space, a detailed review is included of astrodynamics, rocket propulsion, bioastronautics, auxiliary spacecraft survival systems, and atmospheric entry.Subsequentlythere is an analysis of naval space facilities, and satellite applications, especially those of naval interests, are discussed with a background of launch techniques, spatial data gathering, communications programs ,of)servation techniques, measurements by geodetic and navigation systems. Included is a description of space defense and future developments of both national and international space programs. Moreover, commercial systems are mentioned, such as the 85-pound Early Bird (Intelsat I) Intelsat II series, global Intelsat III series, and Soviet-made elMolnlyan satellites. The total of 29 men and one woman orbiting the earth In-1961-67 are tabulated in terms of their names, flight series, launching dates, orbit designations, or biting periods,. stand-up periods, and extra vehicular activity records. Besides numerous illustrations, a list ofsignificantspace launches and a glossary of special terms are included in the manual appendices along with two tables of frequencybanddesignation. -
Reliability Considerations for Communication Satellites
Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. RELIABILITY CONSIDERATIONS FOR COMMUNICATION SATELLITES BY FRANK POLIZZI A THESIS PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MANAGEMENT ENGINEERING AT NEWARK COLLEGE OF ENGINEERING This thesis is to be used only with due regard to the rights of the author(s). Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work. -
Overview of Satellite Communications
Overview of Satellite Communications Dick McClure Agenda Background History Introduction to Satcom Technology Ground System Antennas Satellite technology Geosynchronous orbit Antenna coverage patterns 2 COMMUNICATION SATELLITES Uses Example satellite systems 3 Why Satellite Communications? Satellite coverage spans great distances A satellite can directly connect points separated by 1000’s of miles A satellite can broadcast to 1000’s of homes/businesses/military installations simultaneously A satellite can be reached from ground facilities that move Satellites can connect to locations with no infrastructure Satellites adapt easily to changing requirements Some Common SATCOM Systems The INTELSAT system provides globe-spanning TV coverage The Thuraya satellite-based phone system covers all of Saudi Arabia and Egypt DoD Military Communications Satellite System Links field sites with Pentagon and US command centers DirecTV, Echostar Direct-to-home TV XM Radio, Sirius Satellite radio-to-car/home Hughes VSAT (Very Small Aperture Terminal) systems Links GM car dealers, Walmart, Costco, J C Penney, etc. to their accounting centers Common Satellite Orbits LEO (Low Earth Orbit) Close to Earth Photo satellites – 250 miles Iridium – 490 miles Polar Orbit Provides coverage to polar regions (used by Russian satellites) GEO (Geosynchronous Earth Orbit) Angular velocity of the satellite = angular velocity of earth satellite appears to be fixed in space Most widely used since ground antennas need not move Circular orbit Altitude: 22,236 miles Can’t “see” the poles 6 HISTORICAL BACKGROUND People Early satellites Evolution 7 Historical Background: People Arthur C. Clarke Highly successful science fiction author First to define geosynchronous communications satellite concept Published paper in Wireless World , October 1945 Suggested terrestrial point-to-point relays would be made obsolete by satellites Unsure about how satellites would be powered John R. -
New Type of Black Hole Detected in Massive Collision That Sent Gravitational Waves with a 'Bang'
New type of black hole detected in massive collision that sent gravitational waves with a 'bang' By Ashley Strickland, CNN Updated 1200 GMT (2000 HKT) September 2, 2020 <img alt="Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image." class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190516104725-ngc-4485-nasa-super-169.jpg"> Photos: Wonders of the universe Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image. Hide Caption 98 of 195 <img alt="Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. " class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190502151952-0502-wonders-of-the-universe-super-169.jpg"> Photos: Wonders of the universe Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. Hide Caption 99 of 195 <img alt="A ground-based telescope&amp;#39;s view of the Large Magellanic Cloud, a neighboring galaxy of our Milky Way.