Clinical Thyroidology November 2002 Volume 14 Issue 3

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Thyroidology November 2002 Volume 14 Issue 3 CLINICAL THYROIDOLOGY VOLUME XIV ● ISSUE 3 NOVEMBER 2002 HYPERTHYROIDISM NODULAR GOITER The Dietary Supplement Tiratricol (3,3,5′-Triiodothy- Thyroxine Therapy Does Not Reduce the Size of Benign roacetic Acid) Can Cause Symptoms of Solitary Thyroid Nodules: Systematic Analysis of Hyperthyroidism ..................................................................41 Multiple Studies ....................................................................51 The Serum Free Triiodothyronine to Free Thyroxine THYROID CANCER Ratio and the Peripheral Blood Eosinophil to Monocyte Ratio Help to Distinguish between Graves’ Disease and Completion Thyroidectomy Can Be Done Safely after Thyroiditis as a Cause of Thyrotoxicosis ........................42 Thyroid Lobectomy in Patients with Thyroid Carcinoma..............................................................................52 GRAVES’ DISEASE Changes in Surgical Practice and Use of Postoperative Concordance of Graves’ Disease Is Greater in Monozy- Radioiodine Therapy Have Had Limited Effect on Out- gotic than Dizygotic Twins ................................................43 come in Patients with Papillary Thyroid Carcinoma ......53 Shedding of Part of the Thyrotropin Receptor May Be Fertility Is Not Impaired after Radioiodine Therapy in Important in the Pathogenesis of Hyperthyroidism in Men with Thyroid Carcinoma............................................54 Graves’ Disease ....................................................................44 High Serum Antithyroglobulin Concentrations after Neonatal Hyperthyroidism Occurs Only in Infants Initial Therapy Are Associated with Recurrence in Whose Mothers Have Very High Serum Thyrotropin Patients with Thyroid Carcinoma ......................................55 Receptor-Stimulating Antibody Concentrations ............45 THYROID FUNCTION IN PREGNANCY GRAVES’ OPHTHALMOPATHY Some Women with Hyperemesis Gravidarum Have Patients with Graves’ Ophthalmopathy May Have Long- Transient Hyperthyroidism ................................................56 Term Impairment in Vision and Quality of Life............46 CONGENITAL HYPOTHYROIDISM HYPOTHYROIDISM Discordance of Thyroid Dysgenesis in Monozygotic Germline Loss-of-Function Mutations of the Twins ......................................................................................57 Thyrotropin-Receptor Gene Are a Cause of Subclinical Hypothyroidism ....................................................................47 NONTHYROIDAL ILLNESS Progression from Subclinical to Overt Hypothyroidism Thyroid Abnormalities in Recipients of Bone Marrow Is Most Likely in Women with Higher Serum TSH Transplants Are Usually Associated with Chronic Graft- Concentrations and High Serum Antithyroid Antibody versus-Host Disease ............................................................58 Titers ......................................................................................48 3,5-Diiodothyropropionic Acid Has Favorable Short- Serum Concentrations of Multiple Enzymes May Be Term Effects on Cardiac Hemodynamics in Patients with High in Patients with Hypothyroidism ............................49 Congestive Heart Failure ....................................................59 Thyroxine Inhibits Thyrotropin Secretion in Patients IODINE METABOLISM with Central Hypothyroidism ............................................50 Recurrence of Mild Iodine Deficiency in Tasmania ......60 A publication of the American Thyroid Association CLINICAL THYROIDOLOGY VOLUME XIV ● ISSUE 3 NOVEMBER 2002 Editor-in-Chief ATA News Robert D. Utiger, M.D. Thyroid Division Department of Medicine Future Meetings Brigham & Women’s Hospital 77 Avenue Louis Pasteur Boston, MA 02115 75th Annual Meeting (617) 525-5171 Telephone September 16 to 21, 2003 (617) 731-4718 Fax [email protected] The Breakers Palm Beach, FL President 76th Annual Meeting Carole A. Spencer, Ph.D. September 29 to October 3, 2004 Secretary Westin Bayshore Resort and Marina Paul W. Ladenson, M.D. Vancouver, British Columbia, Canada President Elect Peter A. Singer, M.D. 13th International Thyroid Congress Treasurer David S. Cooper, M.D. October 30 to November 4, 2005 Buenos Aires, Argentina Publications Committee Chair Martin I. Surks, M.D. Director of Public Affairs Edie Stern Executive Director Barbara R. Smith, C.A.E. American Thyroid Association 6066 Leesburg Pike, Suite 650 Falls Church, VA 22041 Telephone: 703-998-8890 Fax: 703-998-8893 Email: [email protected] Designed By Saratoga Graphics 7 Kaatskill Way Ballston Spa, NY 12020 Clinical Thyroidology is now available Telephone: (518) 583-0243 Kandra L. Files, Art Director on the ATA web site (www.thyroid.org). Email: [email protected] Clinical Thyroidology Copyright © 2002 American Thyroid Association, Inc. Printed in the USA. All rights reserved. HYPERTHYROIDISM The dietary supplement tiratricol (3,5,3′-triiodothyroacetic acid) can cause symptoms of hyperthyroidism Bauer BA, Elkin PL, Erickson D, Klee GG, Brennan MD. Symptomatic hyperthyroidism in a patient taking the dietary supplement tiratricol. Mayo Clin Proc 2002;77:587-90. SUMMARY centration was 0.015 mU/L (normal, 0.3 to 5.0), her serum free T4 concentration was low (0.6 ng/dL [7.7 pmol/L]), Background Tiratricol (3,5,3′-triiodothyroacetic acid, or and her serum triiodothyronine (T3) concentration was high triac) is a metabolite of thyroxine (T4) that has some intrin- (293 ng/dL [4.5 nmol/L]). Tiratricol was not tested, but sic thyromimetic activity. It is marketed in health food stores 3,5,3′-triiodothyropropionic acid had 33 percent cross-reac- and on the Internet as a substance that accelerates metab- tivity in the serum T3 assay. (Six months earlier her serum olism and burns fat. This paper describes a patient in whom TSH concentration had been 2.9 mU/L and her serum total tiratricol caused symptoms of hyperthyroidism. T4 concentration 6.2 µg/dL ([80 nmol/L]). Case Report The patient was an 87-year-old woman who The patient was advised to stop taking all the dietary sup- was referred to the Mayo Clinic in May 2001. Four months plements. Her symptoms disappeared, and four weeks later earlier she was told by a chiropractor that she had a mild her serum TSH concentration was 5.9 mU/L and her serum anemia, and she had been advised to take multiple dietary free T4 and T3 concentrations were normal. She then supplements (Osteo-Genics, Hemagenics, Serenagen, Bio resumed taking all the supplements except tiratricol. Her Pure Protein, Acida-Zyme, Therazyme, Ginkgo biloba, multi- symptoms did not recur, and six weeks later the tests of thy- vitamins, and tiratricol). The dose of tiratricol was three roid function were normal. 1000-µg tablets daily. Two months later, she noted the onset of persistent nervousness, insomnia, tremor, fatigue, and Conclusion Tiratricol is a thyroid hormone analogue that weight loss. Physical examination, including examination of can be purchased as a dietary supplement and can cause the thyroid, was normal. Her serum thyrotropin (TSH) con- symptoms of hyperthyroidism. COMMENTARY cause hyperthyroidism, if taken in suffi- it remains available at at least one Web cient quantities (1), but they can hardly site (www.muscleshop.net/TriCuts.htm). There is a long list of natural prod- be called dietary or nutritional supple- There, ninety 1000-µg tablets of tiratricol ucts euphemistically called dietary or ments, and there is no evidence that they can be purchased for $79.99. The sug- nutritional supplements that affect thy- stimulate fat catabolism, as they are gested dose is 3000 µg daily. This is roid hormone production or action, and advertised to do. enough to provide a 62.5-kg person with that therefore can cause hypothyroidism Tiratricol binds well to thyroid hor- the 48 µg/kg/day needed to cause at or hyperthyroidism. One group of prod- mone receptors in vitro, but has about 5 least mild hyperthyroidism. There is no ucts are those that contain large amounts to 10 percent of the calorigenic activity reason to think that tiratricol has unique of iodine, such as kelp, that can increase of T3 in vivo. In studies in patients with properties as a “fat burner”; it is just or decrease thyroid hormone production thyroid carcinoma and severe hypothy- another way of selling thyroid hormone in patients with different thyroid disor- roidism, the mean doses of T4 and tira- and at the same time evading regulation ders. A second consists of products rich tricol needed to reduce serum TSH con- by the Food and Drug Administration. in tyrosine. These are marketed on the centrations to just below 0.1 mU/L were grounds that tyrosine is an essential sub- 2.2 µg/kg/day and 48 µg/kg/day (ratio, Robert D. Utiger, M.D. strate for thyroid hormone production, 1:22), respectively (2). As compared with and therefore an increase in tyrosine T4, tiratricol had similar effects on a thy- References intake will increase thyroid hormone pro- rotoxicosis symptom score, body weight, duction. This is a classic half-truth; tyro- resting metabolic rate, fat oxidation, and 1. Eliason BC, Doenier JA, Nuhlicek sine is of course needed for thyroid hor- urinary nitrogen excretion, but it had rel- DN. Desiccated thyroid in a nutritional mone production, but there is no evi- atively greater effects on the liver and supplement. J Fam Pract 1994;38:287-8. dence that feeding tyrosine increases thy- skeleton (2). The patients given tiratricol roid hormone production in anybody. A had undetectable serum free T4 concen- 2. Sherman SI, Ringel MD, Smith MJ, et third consists of
Recommended publications
  • Thyroid Hormone Misuse and Abuse
    Endocrine (2019) 66:79–86 https://doi.org/10.1007/s12020-019-02045-1 REVIEW Thyroid hormone misuse and abuse Victor J. Bernet 1,2 Received: 11 June 2019 / Accepted: 2 August 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Thyroid hormone (TH) plays an essential role in human physiology and maintenance of appropriate levels is important for good health. Unfortunately, there are instances in which TH is misused or abused. Such misuse may be intentional such as when individuals take thyroid hormone for unapproved indications like stimulation of weight loss or improved energy. There are instances where healthcare providers prescribe thyroid hormone for controversial or out of date uses and sometimes in supraphysiologic doses. Othertimes, unintentional exposure may occur through supplements or food that unknowingly contain TH. No matter the reason, exposure to exogenous forms of TH places the public at risk for potential adverse side effects. Keywords Thyrotoxicosis ● Thyroid hormone abuse ● Thyroid hormone misuse ● Factitious thyrotoxicosis ● Supplements ● 1234567890();,: 1234567890();,: Analogs Overdose Thyroid hormone misuse and abuse secondary to exogenous TH ingestion that may be unin- tentional or purposeful such as in some cases of Munch- Almost any substance that impacts body physiology and ausen syndrome. Instances of TH misuse can be associated function is at risk for misuse or frank abuse, usually in the with the development of significant side effects. There are misgiven belief that the particular agent whether it be a other instances of chronic, low-grade over treatment with herb, supplement, medication, or hormone has healing TH, which occur for various misreasoning such as weight properties beyond that of which it actually possesses.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,026,285 B2 Bezwada (45) Date of Patent: Sep
    US008O26285B2 (12) United States Patent (10) Patent No.: US 8,026,285 B2 BeZWada (45) Date of Patent: Sep. 27, 2011 (54) CONTROL RELEASE OF BIOLOGICALLY 6,955,827 B2 10/2005 Barabolak ACTIVE COMPOUNDS FROM 2002/0028229 A1 3/2002 Lezdey 2002fO169275 A1 11/2002 Matsuda MULT-ARMED OLGOMERS 2003/O158598 A1 8, 2003 Ashton et al. 2003/0216307 A1 11/2003 Kohn (75) Inventor: Rao S. Bezwada, Hillsborough, NJ (US) 2003/0232091 A1 12/2003 Shefer 2004/0096476 A1 5, 2004 Uhrich (73) Assignee: Bezwada Biomedical, LLC, 2004/01 17007 A1 6/2004 Whitbourne 2004/O185250 A1 9, 2004 John Hillsborough, NJ (US) 2005/0048121 A1 3, 2005 East 2005/OO74493 A1 4/2005 Mehta (*) Notice: Subject to any disclaimer, the term of this 2005/OO953OO A1 5/2005 Wynn patent is extended or adjusted under 35 2005, 0112171 A1 5/2005 Tang U.S.C. 154(b) by 423 days. 2005/O152958 A1 7/2005 Cordes 2005/0238689 A1 10/2005 Carpenter 2006, OO13851 A1 1/2006 Giroux (21) Appl. No.: 12/203,761 2006/0091034 A1 5, 2006 Scalzo 2006/0172983 A1 8, 2006 Bezwada (22) Filed: Sep. 3, 2008 2006,0188547 A1 8, 2006 Bezwada 2007,025 1831 A1 11/2007 Kaczur (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2009/0076174 A1 Mar. 19, 2009 EP OO99.177 1, 1984 EP 146.0089 9, 2004 Related U.S. Application Data WO WO9638528 12/1996 WO WO 2004/008101 1, 2004 (60) Provisional application No. 60/969,787, filed on Sep. WO WO 2006/052790 5, 2006 4, 2007.
    [Show full text]
  • Vr Meds Ex01 3B 0825S Coding Manual Supplement Page 1
    vr_meds_ex01_3b_0825s Coding Manual Supplement MEDNAME OTHER_CODE ATC_CODE SYSTEM THER_GP PHRM_GP CHEM_GP SODIUM FLUORIDE A12CD01 A01AA01 A A01 A01A A01AA SODIUM MONOFLUOROPHOSPHATE A12CD02 A01AA02 A A01 A01A A01AA HYDROGEN PEROXIDE D08AX01 A01AB02 A A01 A01A A01AB HYDROGEN PEROXIDE S02AA06 A01AB02 A A01 A01A A01AB CHLORHEXIDINE B05CA02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D08AC02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D09AA12 A01AB03 A A01 A01A A01AB CHLORHEXIDINE R02AA05 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S01AX09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S02AA09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S03AA04 A01AB03 A A01 A01A A01AB AMPHOTERICIN B A07AA07 A01AB04 A A01 A01A A01AB AMPHOTERICIN B G01AA03 A01AB04 A A01 A01A A01AB AMPHOTERICIN B J02AA01 A01AB04 A A01 A01A A01AB POLYNOXYLIN D01AE05 A01AB05 A A01 A01A A01AB OXYQUINOLINE D08AH03 A01AB07 A A01 A01A A01AB OXYQUINOLINE G01AC30 A01AB07 A A01 A01A A01AB OXYQUINOLINE R02AA14 A01AB07 A A01 A01A A01AB NEOMYCIN A07AA01 A01AB08 A A01 A01A A01AB NEOMYCIN B05CA09 A01AB08 A A01 A01A A01AB NEOMYCIN D06AX04 A01AB08 A A01 A01A A01AB NEOMYCIN J01GB05 A01AB08 A A01 A01A A01AB NEOMYCIN R02AB01 A01AB08 A A01 A01A A01AB NEOMYCIN S01AA03 A01AB08 A A01 A01A A01AB NEOMYCIN S02AA07 A01AB08 A A01 A01A A01AB NEOMYCIN S03AA01 A01AB08 A A01 A01A A01AB MICONAZOLE A07AC01 A01AB09 A A01 A01A A01AB MICONAZOLE D01AC02 A01AB09 A A01 A01A A01AB MICONAZOLE G01AF04 A01AB09 A A01 A01A A01AB MICONAZOLE J02AB01 A01AB09 A A01 A01A A01AB MICONAZOLE S02AA13 A01AB09 A A01 A01A A01AB NATAMYCIN A07AA03 A01AB10 A A01
    [Show full text]
  • Triiodothyroacetic Acid in Health and Disease
    234 2 S GROENEWEG and others Triac in health and disease 234:2 R99–R121 Review Triiodothyroacetic acid in health and disease Correspondence Stefan Groeneweg, Robin P Peeters, Theo J Visser and W Edward Visser should be addressed Department of Internal Medicine and Academic Center for Thyroid Diseases, Erasmus University to W E Visser Medical Center, Rotterdam, The Netherlands Email [email protected] Abstract Thyroid hormone (TH) is crucial for development and metabolism of many tissues. The Key Words physiological relevance and therapeutic potential of TH analogs have gained attention in f thyroid hormone the field for many years. In particular, the relevance and use of 3,3′,5-triiodothyroacetic f resistance to thyroid hormone (RTH) acid (Triac, TA3) has been explored over the last decades. Although TA3 closely resembles f thyroid hormone analog the bioactive hormone T3, differences in transmembrane transport and receptor isoform- f thyroacetic acid specific transcriptional activation potency exist. For these reasons, the application of TA3 derivatives as a treatment for resistance to TH (RTH) syndromes, especially MCT8 deficiency, is topic of f Triac ongoing research. This review is a summary of all currently available literature about the f TA3 formation, metabolism, action and therapeutic applications of TA3. Endocrinology Journal of Endocrinology of (2017) 234, R99–R121 Journal Introduction Thyroid hormone (TH) is crucial for the development and The deiodinases (D1–3) importantly regulate the bio- metabolism of many tissues. Thyroid stimulating hormone availability of T3 in targets cells, while TH is also (TSH) controls the production and secretion of TH by the metabolized by glucuronidation and sulfation, which thyroid gland, which predominantly produces the pro- enhance biliary excretion (Engler & Burger 1984, Burger hormone thyroxine (T4) and to a lesser extent the bioactive 1986, Visser 1996).
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • In Vitro Inhibition of Breast Cancer Spheroid-Induced Lymphendothelial
    FULL PAPER British Journal of Cancer (2013) 108, 570–578 | doi: 10.1038/bjc.2012.580 Keywords: lymphendothelial intravasation; tumour spheroid; acetohexamide; nifedipin; isoxsuprine; proadifen In vitro inhibition of breast cancer spheroid-induced lymphendothelial defects resembling intravasation into the lymphatic vasculature by acetohexamide, isoxsuprine, nifedipin and proadifen N Kretschy1,8, M Teichmann1,8, S Kopf1, A G Atanasov2, P Saiko3, C Vonach1, K Viola1, B Giessrigl1, N Huttary1, I Raab1, S Krieger1,WJa¨ ger4, T Szekeres3, S M Nijman5, W Mikulits6, V M Dirsch2, H Dolznig7, M Grusch6 and G Krupitza*,1 1Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; 2Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; 3Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; 4Department for Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; 5Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria; 6Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria and 7Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090 Vienna, Austria Background: As metastasis is the prime cause of death from malignancies, there is vibrant interest to discover options for the management of the different mechanistic steps of tumour spreading. Some approved pharmaceuticals exhibit activities against diseases they have not been developed for. In order to discover such activities that might attenuate lymph node metastasis, we investigated 225 drugs, which are approved by the US Food and Drug Administration.
    [Show full text]
  • List of Ingredients Prohibited in Cosmetic Products This Rule Has Been Translated Into English According to the Original Chinese Version
    List of Ingredients Prohibited in Cosmetic Products This rule has been translated into English according to the original Chinese version. If there is any inconsistency or ambiguity between these two versions, the Chinese version shall prevail. No. Chemical name CAS No. Mercury and its compounds (with the exception of the substance listed in the “List of Preservatives in Cosmetic Products”) 1 7439-97-6 Due to the raw material or other technically unavoidable reasons, the trace amounts of Mercury shall not exceed 1 ppm. 103-16-2/ 2 4-Benzyloxyphenol and 4-ethoxyphenol 622-62-8 3 Bithionol 97-18-7 4 Pilocarpine and its salts 92-13-7 5 Halogeno-salicylanilide - 10043-35-3/ 6 Boric acid 11113-50-1 7 Sodium perborate 7632-04-4 Sodium borate 8 1330-43-4 except for sodium borate used to emulsify beeswax or bleached beeswax, which content should not exceed 0.76% 9 Chlorofluorocarbons - 10 3'-Ethyl-5',6',7',8'-tetrahydro-5',5',8',8'-tetramethyl-2'- acetonaphthone or 7-acetyl-6-ethyl-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphtalen (AETT; Versalide) 88-29-9 11 Cells, tissues or products of human origin - Hydroxy-8-quinoline and its sulphate 148-24-3/ 12 For use as stabilizer of hydrogen peroxide in hair dyes and perming products, the content should not exceed 0.03% (calc. as base) 134-31-6 13 Dichloromethane 75-09-2 14 4-tert-Butyl-3-methoxy-2,6-dinitrotoluene (Musk ambrette) 83-66-9 15 6-Methylcoumarin (Non-medical toothpaste and mouthwash are otherwise specified by law) 92-48-8 16 Vinyl chloride monomer 75-01-4 17 2,2'-Dihydroxy-3,3',5,5',6,6'-hexachlorodiphenylmethane (Hexachlorophene (INN)) 70-30-4 18 Tretinoin (INN) (retinoic acid and its salts) 302-79-4 19 4-Amino-2-nitrophenol 119-34-6 20 Antimony and its compounds 7440-36-0 Arsenic and its compounds 21 7440-38-2 Due to the raw material or other technically unavoidable reasons, the trace amounts of Arsenic shall not exceed 3 ppm.
    [Show full text]
  • Thesis Explores Endocrine Determinants of the Haemostatic Hormone
    UvA-DARE (Digital Academic Repository) Endocrine determinants of haemostasis and thrombosis risk: Focus on thyroid hormone Elbers, L.P.B. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): Elbers, L. P. B. (2016). Endocrine determinants of haemostasis and thrombosis risk: Focus on thyroid hormone. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:10 Oct 2021 Endocrine Determinants of Haemostasis and Thrombosis Risk – Risk Thrombosis and of Haemostasis Determinants Endocrine UITNODIGING Voor het bijwonen van de openbare verdediging van het proefschrift This thesis explores endocrine determinants of the haemostatic Endocrine Determinants of system and thrombosis risk with main focus on thyroid hormone. Haemostasis and It describes, in three parts, the effects of thyroid hormone on the Thrombosis Risk haemostatic system, the effects of thyroid hormone (mimetics) Focus on Thyroid Hormone on lipids and the effects of other hormones on the haemostatic system and thrombosis risk.
    [Show full text]
  • ATA/AACE Guidelines
    ATA/AACE Guidelines CLINICAL PRACTICE GUIDELINES FOR HYPOTHYROIDISM IN ADULTS: COSPONSORED BY THE AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND THE AMERICAN THYROID ASSOCIATION Jeffrey R. Garber, MD, FACP, FACE1,2*; Rhoda H. Cobin, MD, FACP, MACE3; Hossein Gharib, MD, MACP, MACE4; James V. Hennessey, MD, FACP2; Irwin Klein, MD, FACP5; Jeffrey I. Mechanick, MD, FACP, FACE, FACN6; Rachel Pessah-Pollack, MD6,7; Peter A. Singer, MD, FACE8; Kenneth A. Woeber, MD, FRCPE9 for the American Association of Clinical Endocrinologists and American Thyroid Association Taskforce on Hypothyroidism in Adults American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice are systematically developed statements to assist health-care professionals in medical decision making for specific clinical conditions. Most of the content herein is based on literature reviews. In areas of uncertainty, professional judgment was applied. These guidelines are a working document that reflects the state of the field at the time of publication. Because rapid changes in this area are expected, periodic revisions are inevitable. We encourage medical professionals to use this information in conjunction with their best clinical judgment. The presented recommendations may not be appropriate in all situations. Any decision by practitioners to apply these guidelines must be made in light of local resources and individual patient circumstances. 988 989 CLINICAL PRACTICE GUIDELINES FOR HYPOTHYROIDISM IN ADULTS: COSPONSORED BY THE AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND THE AMERICAN THYROID ASSOCIATION Jeffrey R. Garber, MD, FACP, FACE1,2*; Rhoda H. Cobin, MD, FACP, MACE3; Hossein Gharib, MD, MACP, MACE4; James V. Hennessey, MD, FACP2; Irwin Klein, MD, FACP5; Jeffrey I. Mechanick, MD, FACP, FACE, FACN6; Rachel Pessah-Pollack, MD6,7; Peter A.
    [Show full text]
  • Pharmaceuticals (Monocomponent Products) ………………………..………… 31 Pharmaceuticals (Combination and Group Products) ………………….……
    DESA The Department of Economic and Social Affairs of the United Nations Secretariat is a vital interface between global and policies in the economic, social and environmental spheres and national action. The Department works in three main interlinked areas: (i) it compiles, generates and analyses a wide range of economic, social and environmental data and information on which States Members of the United Nations draw to review common problems and to take stock of policy options; (ii) it facilitates the negotiations of Member States in many intergovernmental bodies on joint courses of action to address ongoing or emerging global challenges; and (iii) it advises interested Governments on the ways and means of translating policy frameworks developed in United Nations conferences and summits into programmes at the country level and, through technical assistance, helps build national capacities. Note Symbols of United Nations documents are composed of the capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document. Applications for the right to reproduce this work or parts thereof are welcomed and should be sent to the Secretary, United Nations Publications Board, United Nations Headquarters, New York, NY 10017, United States of America. Governments and governmental institutions may reproduce this work or parts thereof without permission, but are requested to inform the United Nations of such reproduction. UNITED NATIONS PUBLICATION Copyright @ United Nations, 2005 All rights reserved TABLE OF CONTENTS Introduction …………………………………………………………..……..……..….. 4 Alphabetical Listing of products ……..………………………………..….….…..….... 8 Classified Listing of products ………………………………………………………… 20 List of codes for countries, territories and areas ………………………...…….……… 30 PART I. REGULATORY INFORMATION Pharmaceuticals (monocomponent products) ………………………..………… 31 Pharmaceuticals (combination and group products) ………………….……........
    [Show full text]
  • Reseptregisteret 2014–2018 the Norwegian Prescription Database 2014–2018
    LEGEMIDDELSTATISTIKK 2019:2 Reseptregisteret 2014–2018 The Norwegian Prescription Database 2014–2018 Reseptregisteret 2014–2018 The Norwegian Prescription Database 2014–2018 Christian Lie Berg Kristine Olsen Solveig Sakshaug Utgitt av Folkehelseinstituttet / Published by Norwegian Institute of Public Health Område for Helsedata og digitalisering Avdeling for Legemiddelstatistikk Juni 2019 Tittel/Title: Legemiddelstatistikk 2019:2 Reseptregisteret 2014–2018 / The Norwegian Prescription Database 2014–2018 Forfattere/Authors: Christian Berg, redaktør/editor Kristine Olsen Solveig Sakshaug Acknowledgement: Julie D. W. Johansen (English text) Bestilling/Order: Rapporten kan lastes ned som pdf på Folkehelseinstituttets nettsider: www.fhi.no / The report can be downloaded from www.fhi.no Grafisk design omslag: Fete Typer Ombrekking: Houston911 Kontaktinformasjon / Contact information: Folkehelseinstituttet / Norwegian Institute of Public Health Postboks 222 Skøyen N-0213 Oslo Tel: +47 21 07 70 00 ISSN: 1890-9647 ISBN: 978-82-8406-014-9 Sitering/Citation: Berg, C (red), Reseptregisteret 2014–2018 [The Norwegian Prescription Database 2014–2018] Legemiddelstatistikk 2019:2, Oslo, Norge: Folkehelseinstituttet, 2019. Tidligere utgaver / Previous editions: 2008: Reseptregisteret 2004–2007 / The Norwegian Prescription Database 2004–2007 2009: Legemiddelstatistikk 2009:2: Reseptregisteret 2004–2008 / The Norwegian Prescription Database 2004–2008 2010: Legemiddelstatistikk 2010:2: Reseptregisteret 2005–2009. Tema: Vanedannende legemidler / The Norwegian
    [Show full text]
  • Novel Modulation of Adenylyl Cyclase Type 2 Jason Michael Conley Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Fall 2013 Novel Modulation of Adenylyl Cyclase Type 2 Jason Michael Conley Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Medicinal-Pharmaceutical Chemistry Commons Recommended Citation Conley, Jason Michael, "Novel Modulation of Adenylyl Cyclase Type 2" (2013). Open Access Dissertations. 211. https://docs.lib.purdue.edu/open_access_dissertations/211 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School ETD Form 9 (Revised 12/07) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Jason Michael Conley Entitled NOVEL MODULATION OF ADENYLYL CYCLASE TYPE 2 Doctor of Philosophy For the degree of Is approved by the final examining committee: Val Watts Chair Gregory Hockerman Ryan Drenan Donald Ready To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Approved by Major Professor(s): ____________________________________Val Watts ____________________________________ Approved by: Jean-Christophe Rochet 08/16/2013 Head of the Graduate Program Date i NOVEL MODULATION OF ADENYLYL CYCLASE TYPE 2 A Dissertation Submitted to the Faculty of Purdue University by Jason Michael Conley In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2013 Purdue University West Lafayette, Indiana ii For my parents iii ACKNOWLEDGEMENTS I am very grateful for the mentorship of Dr.
    [Show full text]