Compatible Time-Sharing System (1961-1973) Fiftieth Anniversary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mobile Digital Computer Program. Mobidic D
UNCLASSIFIED AD 4 7_070 DEFENSE DOCUMEI'TATION CENTER FOR SCIENTIFIC AND TECHNIA!. INFO'UMATION CAMERON STATION, ALEXANDRW , VIFGINI, UNCLASSIFIED NOTICE: When government or other drawings, speci- fications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Govern- ment may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or other- wise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. FINAL REPORT 1 FEBRUARY 1963 J a I MOBILE DIGITAL COMPUTER PROGRAM MOBIDIC D FINAL REPORT 1 July 1958 to 1 February 1963 I Signal Corps Technical Requirements I SCL 1959 SCL 4328 Contract No. DA 3 6 -039-sc-781 6 4 I DA Project No. 3-28-02-201 I Submitted by: _, _ _ _ E. W. Jer'7is, Manage'r MOBIDIC Projects February 1963 S SYLVANIA ELECTRONIC SYSTEMS-EAST SYLVANIA ELECTRONIC SYSTEMS A Division of Sylvania Electric Products Inc. 189 B Street-Needham Heights 94, Massachusetts ~• I 3 TABLE OF CONTENTS I Section Page LIST OF ILLUSTRATIONS v ILIST OF TABLES vii I PURPOSE 1-1 1U1.1 MOBIDIC D General Purpose High-Speed Computer 1-1 1.2 MOBIDIC D Program 1-1 11.2. 1 Phase I -Preliminary Design 1-1 1.2.2 Phase II-Design 1-1 1.2.3 Phase III-Construction and Test 1-2 1.2.4 Phase IV-Update MOBIDIC D to MOBIDIC 7A 1-2 I 1.2.5 Phase V-Van Installation and Test 1,-2 II ABSTRACT 2-1 III PUBLICATIONS, LECTURES, CONFERENCES & TERMINOLOGY 3-1 3.1 Publications 3-1 T3.2 Lectures 3-1 3.3 Conferences 3-2 3.4 Terminology and Abbreviations 3-10 S3.4.1 Logical and Mechanization Designations: 3-13 Central Machine and Converter S3.4.2 Logical and Mechanization Designations: - 3-45 Card Reader and Punch Buffer 3.4. -
The PORTHOS Executive System for the IBM 7094
A § 1 " * '& I m I ^ ;/ 1 ^ # **W : : : The Porthos Executive System for the IBM 7O9I+ User ' s Manual Table of Contents Title Sheet Preface Table of Contents 1. The 709^-1^01 Computer Installation 1.1. Description 1.1.1. General 1.1.2. Organization 1.1.3* Equipment 1.2. Programming Services 1.2.1. System Consulting 1.2.2. System Development 1.2.3- Associated Programmers 1.3« Library Services 1.3* 1' Program Documentation 1.3*2. Subroutines I.3. 3« Reference Publications 1.3.1+. The Mailing List 1.3' 5* Information Bulletins Date 5/1/65 Section Contents Page: 1 Change 2 Porthos Manual Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/porthosexecutivesyOOuniv : s 2. Use of the Computing Facility 2.1. Conditions of Use 2.1.1. Policy for Charging for Computer Use 2.1.2. Refunding of IBM 7094 Time Due to System or Machine Failures 2.1.2.1. In-System Jobs 2.1.2.2. Relinquish Jobs 2.2. Application for Use of Equipment 2.2.1. The Form 2.2.2. Submission and Approval 2.2.3. Entries on the Problem Specification Form 2.2.4. Changes in the Problem Specification 2.2.5. Problem Abstracts 2.3- Logging and Control of Computer Time 2.3«1« Accounting for Computer Time 2.3.2. Notices to Users Concerning Lapsing Time 2.3.3. Department Reports 2.3'3-l« Internal Reports 2. 3- 3* 2. The Technical Progress Report 2. -
Modern Programming Languages CS508 Virtual University of Pakistan
Modern Programming Languages (CS508) VU Modern Programming Languages CS508 Virtual University of Pakistan Leaders in Education Technology 1 © Copyright Virtual University of Pakistan Modern Programming Languages (CS508) VU TABLE of CONTENTS Course Objectives...........................................................................................................................4 Introduction and Historical Background (Lecture 1-8)..............................................................5 Language Evaluation Criterion.....................................................................................................6 Language Evaluation Criterion...................................................................................................15 An Introduction to SNOBOL (Lecture 9-12).............................................................................32 Ada Programming Language: An Introduction (Lecture 13-17).............................................45 LISP Programming Language: An Introduction (Lecture 18-21)...........................................63 PROLOG - Programming in Logic (Lecture 22-26) .................................................................77 Java Programming Language (Lecture 27-30)..........................................................................92 C# Programming Language (Lecture 31-34) ...........................................................................111 PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)........................129 Modern Programming Languages-JavaScript -
Microprocessors History of Computing Nouf Assaid
MICROPROCESSORS HISTORY OF COMPUTING NOUF ASSAID 1 Table of Contents Introduction 2 Brief History 2 Microprocessors 7 Instruction Set Architectures 8 Von Neumann Machine 9 Microprocessor Design 12 Superscalar 13 RISC 16 CISC 20 VLIW 23 Multiprocessor 24 Future Trends in Microprocessor Design 25 2 Introduction If we take a look around us, we would be sure to find a device that uses a microprocessor in some form or the other. Microprocessors have become a part of our daily lives and it would be difficult to imagine life without them today. From digital wrist watches, to pocket calculators, from microwaves, to cars, toys, security systems, navigation, to credit cards, microprocessors are ubiquitous. All this has been made possible by remarkable developments in semiconductor technology enabling in the last 30 years, enabling the implementation of ideas that were previously beyond the average computer architect’s grasp. In this paper, we discuss the various microprocessor technologies, starting with a brief history of computing. This is followed by an in-depth look at processor architecture, design philosophies, current design trends, RISC processors and CISC processors. Finally we discuss trends and directions in microprocessor design. Brief Historical Overview Mechanical Computers A French engineer by the name of Blaise Pascal built the first working mechanical computer. This device was made completely from gears and was operated using hand cranks. This machine was capable of simple addition and subtraction, but a few years later, a German mathematician by the name of Leibniz made a similar machine that could multiply and divide as well. After about 150 years, a mathematician at Cambridge, Charles Babbage made his Difference Engine. -
Analytical Engine, 1838 ALLAN G
Charles Babbage’s Analytical Engine, 1838 ALLAN G. BROMLEY Charles Babbage commenced work on the design of the Analytical Engine in 1834 following the collapse of the project to build the Difference Engine. His ideas evolved rapidly, and by 1838 most of the important concepts used in his later designs were established. This paper introduces the design of the Analytical Engine as it stood in early 1838, concentrating on the overall functional organization of the mill (or central processing portion) and the methods generally used for the basic arithmetic operations of multiplication, division, and signed addition. The paper describes the working of the mechanisms that Babbage devised for storing, transferring, and adding numbers and how they were organized together by the “microprogrammed” control system; the paper also introduces the facilities provided for user- level programming. The intention of the paper is to show that an automatic computing machine could be built using mechanical devices, and that Babbage’s designs provide both an effective set of basic mechanisms and a workable organization of a complete machine. Categories and Subject Descriptors: K.2 [History of Computing]- C. Babbage, hardware, software General Terms: Design Additional Key Words and Phrases: Analytical Engine 1. Introduction 1838. During this period Babbage appears to have made no attempt to construct the Analytical Engine, Charles Babbage commenced work on the design of but preferred the unfettered intellectual exploration of the Analytical Engine shortly after the collapse in 1833 the concepts he was evolving. of the lo-year project to build the Difference Engine. After 1849 Babbage ceased designing calculating He was at the time 42 years o1d.l devices. -
Oral History of Fernando Corbató
Oral History of Fernando Corbató Interviewed by: Steven Webber Recorded: February 1, 2006 West Newton, Massachusetts CHM Reference number: X3438.2006 © 2006 Computer History Museum Oral History of Fernando Corbató Steven Webber: Today the Computer History Museum Oral History Project is going to interview Fernando J. Corbató, known as Corby. Today is February 1 in 2006. We like to start at the very beginning on these interviews. Can you tell us something about your birth, your early days, where you were born, your parents, your family? Fernando Corbató: Okay. That’s going back a long ways of course. I was born in Oakland. My parents were graduate students at Berkeley and then about age 5 we moved down to West Los Angeles, Westwood, where I grew up [and spent] most of my early years. My father was a professor of Spanish literature at UCLA. I went to public schools there in West Los Angeles, [namely,] grammar school, junior high and [the high school called] University High. So I had a straightforward public school education. I guess the most significant thing to get to is that World War II began when I was in high school and that caused several things to happen. I’m meandering here. There’s a little bit of a long story. Because of the wartime pressures on manpower, the high school went into early and late classes and I cleverly saw that I could get a chance to accelerate my progress. I ended up taking both early and late classes and graduating in two years instead of three and [thereby] got a chance to go to UCLA in 1943. -
Topic a Dataflow Model of Computation
Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory - CAPSL Topic A Dataflow Model of Computation CPEG 852 - Spring 2014 Advanced Topics in Computing Systems Guang R. Gao ACM Fellow and IEEE Fellow Endowed Distinguished Professor Electrical & Computer Engineering University of Delaware CPEG852-Spring14: Topic A - Dataflow - 1 [email protected] Outline • Parallel Program Execution Models • Dataflow Models of Computation • Dataflow Graphs and Properties • Three Dataflow Models – Static – Recursive Program Graph – Dynamic • Dataflow Architectures CPEG852-Spring14: Topic A - Dataflow - 1 2 Terminology Clarification • Parallel Model of Computation – Parallel Models for Algorithm Designers – Parallel Models for System Designers • Parallel Programming Models • Parallel Execution Models • Parallel Architecture Models CPEG852-Spring14: Topic A - Dataflow - 1 3 What is a Program Execution Model? . Application Code . Software Packages User Code . Program Libraries . Compilers . Utility Applications PXM (API) . Hardware System . Runtime Code . Operating System CPEG852-Spring14: Topic A - Dataflow - 1 4 Features a User Program Depends On . Procedures; call/return Features expressed within .Access to parameters and a Programming language variables .Use of data structures (static and dynamic) But that’s not all !! . File creation, naming and access Features expressed Outside .Object directories a (typical) programming .Communication: networks language and peripherals .Concurrency: coordination; scheduling CPEG852-Spring14: Topic A - Dataflow - 1 5 Developments in the 1960s, 1970s Highlights 1960 Other Events . Burroughs B5000 Project . Project MAC Funded at MIT Started . Rice University Computer . IBM announces System 360 . Vienna Definition Method . Tasking introduced in Algol . Common Base Language, 1970 68 and PL/I Dennis . Burroughs builds Robert . Contour Model, Johnston Barton’s DDM1 . Book on the B6700, . -
Twenty Years of Berkeley Unix : from AT&T-Owned to Freely
Twenty Years of Berkeley Unix : From AT&T-Owned to Freely Redistributable Marshall Kirk McKusick Early History Ken Thompson and Dennis Ritchie presented the first Unix paper at the Symposium on Operating Systems Principles at Purdue University in November 1973. Professor Bob Fabry, of the University of California at Berkeley, was in attendance and immediately became interested in obtaining a copy of the system to experiment with at Berkeley. At the time, Berkeley had only large mainframe computer systems doing batch processing, so the first order of business was to get a PDP-11/45 suitable for running with the then-current Version 4 of Unix. The Computer Science Department at Berkeley, together with the Mathematics Department and the Statistics Department, were able to jointly purchase a PDP-11/45. In January 1974, a Version 4 tape was delivered and Unix was installed by graduate student Keith Standiford. Although Ken Thompson at Purdue was not involved in the installation at Berkeley as he had been for most systems up to that time, his expertise was soon needed to determine the cause of several strange system crashes. Because Berkeley had only a 300-baud acoustic-coupled modem without auto answer capability, Thompson would call Standiford in the machine room and have him insert the phone into the modem; in this way Thompson was able to remotely debug crash dumps from New Jersey. Many of the crashes were caused by the disk controller's inability to reliably do overlapped seeks, contrary to the documentation. Berkeley's 11/45 was among the first systems that Thompson had encountered that had two disks on the same controller! Thompson's remote debugging was the first example of the cooperation that sprang up between Berkeley and Bell Labs. -
Procurement and Retrieval - Meeting the Challenge"
UNCLASSIFIED AD NUMBER AD493137 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 10 JUN 1964. Other requests shall be referred to Bureau of Naval Weapons, Washington, DC. AUTHORITY USNOL ltr, 26 Nov 1969 THIS PAGE IS UNCLASSIFIED NOLTR 64-98 PkOCEEDINGS OF THE 7th MILITARY LIBRARIANS' WORKSHOP "Procurement and Retrieval - Meeting the Challenge" - 0 40 :- =7 - r cOm 1963 No2,3,4 UNITED STATES ,,:,,NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND co I- 0 NOLTR 64-98- PROCEEDINGS OF THE SEVENTH MILITARY LIBRARIANS' WORKSHOP "Procurement and Retrieval - Meeting the Challenge" ABSTRACT: Papers presented at the Workshop on library operation make up the Proceedings. A panel on the Army STINFO program and one on procurement were important contributions to the Work- shop. Two sessions were devoted to library operation - one using computer, the other using automated equipment. Questions and answers at the end of the talks are included. U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, MARYLAND V77 7. NOLTR\64-98 NOLTR 64-98 10 June 1964 PROCEEDINGS OF THE SEVENTH MILITARY LIBRARIANS' WORKSHOP "Procurement and Retrieval - Meeting the Challenge" The Naval Ordnance Laboratory was host to the Seventh Military Librarians' Workshop on 2 - 4 October 1963. These Proceedings are the record of the meeting, including papers presented, and recordings of discussion which followed the talks. The business meeting of the Group, which was held on 4 October, is included in the Proceedings. R. E. 0DENING LAN BECK By directio ii A# NOLTR 64-98 I CONTENTS Page INTRODUCTION ................. -
Language-Parametric Methods for Developing
Gabriël Ditmar Primo Konat was born in The Language-Parametric Methods for Developing Interactive Programming Systems Language-Parametric Methods for Developing Interactive Programming Hague, the Netherlands. In 2009, he received his BSc in Computer Science from the Institute of Ap- Invitation plied Sciences in Rijswijk. In 2012, he received his MSc in Computer Science from Delft University of Technology (TUDelft). From 2012 to 2018, he was Language-Parametric a Ph.D. student with the Programming Languages Methods for Developing group at TUDelft, under supervision of Eelco Viss- Interactive Programming er and Sebastian Erdweg. His work focuses on lan- Systems guage workbenches and incremental build systems. Gabriël Konat [email protected] You are cordially invited to the public defense of my dissertation on Monday, November 18th, 2019 at 3pm. At 2:30pm, I will give a brief presentation summarizing my dissertation. The defense will take place in the Senaatszaal of the Delft University of Technology Auditorium, Mekelweg 5, 2628 CC Delft, the Netherlands Afterwards, there will be a Gabriël Konat Language-Parametric Methods for reception. Developing Interactive Programming Systems Gabriël Konat Propositions accompanying the dissertation Language-Parametric Methods for Developing Interactive Programming Systems by Gabriël Ditmar Primo Konat 1. Language-parametric methods for developing interactive programming sys- tems are feasible and useful. (This dissertation) 2. Compilers of general-purpose languages must be bootstrapped with fixpoint bootstrapping. (This dissertation) 3. Manually implementing an incremental system must be avoided. (This dissertation) 4. Like chemists need lab assistants, computer scientists need software engineers to support them in research, teaching, and application in industry. 5. -
SIGOPS Annual Report 2012
SIGOPS Annual Report 2012 Fiscal Year July 2012-June 2013 Submitted by Jeanna Matthews, SIGOPS Chair Overview SIGOPS is a vibrant community of people with interests in “operatinG systems” in the broadest sense, includinG topics such as distributed computing, storaGe systems, security, concurrency, middleware, mobility, virtualization, networkinG, cloud computinG, datacenter software, and Internet services. We sponsor a number of top conferences, provide travel Grants to students, present yearly awards, disseminate information to members electronically, and collaborate with other SIGs on important programs for computing professionals. Officers It was the second year for officers: Jeanna Matthews (Clarkson University) as Chair, GeorGe Candea (EPFL) as Vice Chair, Dilma da Silva (Qualcomm) as Treasurer and Muli Ben-Yehuda (Technion) as Information Director. As has been typical, elected officers agreed to continue for a second and final two- year term beginning July 2013. Shan Lu (University of Wisconsin) will replace Muli Ben-Yehuda as Information Director as of AuGust 2013. Awards We have an excitinG new award to announce – the SIGOPS Dennis M. Ritchie Doctoral Dissertation Award. SIGOPS has lonG been lackinG a doctoral dissertation award, such as those offered by SIGCOMM, Eurosys, SIGPLAN, and SIGMOD. This new award fills this Gap and also honors the contributions to computer science that Dennis Ritchie made durinG his life. With this award, ACM SIGOPS will encouraGe the creativity that Ritchie embodied and provide a reminder of Ritchie's leGacy and what a difference a person can make in the field of software systems research. The award is funded by AT&T Research and Alcatel-Lucent Bell Labs, companies that both have a strong connection to AT&T Bell Laboratories where Dennis Ritchie did his seminal work. -
July 1St Century and a Half Later by 1960S
The underlying technology, the After CTSS, he moved onto Leibniz wheel, was reused a Multics [Nov 30] during the mid- July 1st century and a half later by 1960s. That OS is often deemed Thomas de Colmar [May 5] in his a commercial failure, but arithmometer, the first mass- nevertheless had an enormous Gottfried Wilhelm produced mechanical calculator. influence on the design of later systems. For example, UNIX was In 1961, Norbert Wiener [Nov written by two ex-Multics (von) Leibni[t]z 26] suggested that Leibniz programmers, Ken Thompson should be considered the patron Born: July 1, 1646; [Feb 4] and Dennis Ritchie [Sept saint of cybernetics. Leipzig, Saxony 9]. Died: Nov. 14, 1716 Corbató is credited with the first During the 1670s, Leibniz use of passwords (to secure independently developed a very Hans Peter Luhn access to CTSS), although he similar theory of calculus to that Born: July 1, 1896; himself suggested that they first of Issac Newton. More appeared in IBM’s SABRE Barmen, Germany importantly for us, at around the ticketing system [Nov 5]. same time, in 1672, Leibniz cam Died: August 19, 1964 Corbató’s Law: The number of up with the first practical Luhn is sometimes called “the lines of code a programmer can calculating machine, which he father of information retrieval”, write in a fixed period of time is called the “Step Reckoner”. He due to his invention of the Luhn the same independent of the had the initial idea from algorithm, KWIC (Key Words In language used. examining a pedometer. Context) indexing, and Selective It was the first calculator that Dissemination of Information could perform all four arithmetic (“SDI”) operations, although the carry The Luhn algorithm is a Project MAC operation wasn't fully checksum formula used to July 1, 1963 mechanized.