Online Supplement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Miraculous Ningguo City of China and Analysis of Influencing Factors of Competitive Advantage
www.ccsenet.org/jgg Journal of Geography and Geology Vol. 3, No. 1; September 2011 A Miraculous Ningguo City of China and Analysis of Influencing Factors of Competitive Advantage Wei Shui Department of Eco-agriculture and Regional Development Sichuan Agricultural University, Chengdu Sichuan 611130, China & School of Geography and Planning Sun Yat-Sen University, Guangzhou 510275, China Tel: 86-158-2803-3646 E-mail: [email protected] Received: March 31, 2011 Accepted: April 14, 2011 doi:10.5539/jgg.v3n1p207 Abstract Ningguo City is a remote and small county in Anhui Province, China. It has created “Ningguo Miracle” since 1990s. Its general economic capacity has been ranked #1 (the first) among all the counties or cities in Anhui Province since 2000. In order to analyze the influencing factors of competitive advantages of Ningguo City and explain “Ningguo Miracle”, this article have evaluated, analyzed and classified the general economic competitiveness of 61 counties (cities) in Anhui Province in 2004, by 14 indexes of evaluation index system. The result showed that compared with other counties (cities) in Anhui Province, Ningguo City has more advantages in competition. The competitive advantage of Ningguo City is due to the productivities, the effect of the second industry and industry, and the investment of fixed assets. Then the influencing factors of Ningguo’s competitiveness in terms of productivity were analyzed with authoritative data since 1990 and a log linear regression model was established by stepwise regression method. The results demonstrated that the key influencing factor of Ningguo City’s competitive advantage was the change of industry structure, especially the change of manufacture structure. -
Research on the Present Situation, Problems and Countermeasures Of
Advances in Social Science, Education and Humanities Research, volume 427 5th International Conference on Social Sciences and Economic Development (ICSSED 2020) Research on the Present Situation, Problems and Countermeasures of Precision Poverty Alleviation in Badong County Yahong Gong1 Weiliang Tu2,* 1Economics and Management of Yangtze University School, Jingzhou, 434023, Hubei Email: [email protected] 2Economics and Management of Yangtze University School, Jingzhou, 434023, Hubei * Corresponding author: Weiliang Tu ABSTRACT Targeted poverty alleviation means accurate identification, assistance and management of the poor. Through the analysis of the current situation of poverty and precision poverty alleviation practice in the rural areas of Badong county, we can find out the difficult problems in the precise poverty alleviation work and overcome the problem of poverty alleviation in the deep poverty-stricken areas. We should improve the strategy of targeted poverty alleviation through multiple channels, establish a long-term mechanism of poverty alleviation through industry, education, entrepreneurship, and improve the skills of poverty alleviation teams, in an effort to reduce the poor population in Badong county. Keywords: targeted poverty alleviation, problem, long-term mechanism zone, 12 townships and 491 villages (neighborhood committees). In 2016, the resident population of Badong 1. INTRODUCTION county was 570,000, among which more than 520,000 were rural residents, accounting for 91.23% of the total In the past, China mainly focused on the extensive poverty population of the county. alleviation model. Later, the targeted poverty alleviation model was put forward in light of the extensive poverty alleviation model. The targeted poverty alleviation model 2.2. Poverty situation. was a scientific and effective program that accurately identified, assisted and managed the targets of poverty Badong county is one of the poorest counties and cities in alleviation[4]. -
Download Article
Advances in Economics, Business and Management Research, volume 70 International Conference on Economy, Management and Entrepreneurship(ICOEME 2018) Research on the Path of Deep Fusion and Integration Development of Wuhan and Ezhou Lijiang Zhao Chengxiu Teng School of Public Administration School of Public Administration Zhongnan University of Economics and Law Zhongnan University of Economics and Law Wuhan, China 430073 Wuhan, China 430073 Abstract—The integration development of Wuhan and urban integration of Wuhan and Hubei, rely on and Ezhou is a strategic task in Hubei Province. It is of great undertake Wuhan. Ezhou City takes the initiative to revise significance to enhance the primacy of provincial capital, form the overall urban and rural plan. Ezhou’s transportation a new pattern of productivity allocation, drive the development infrastructure is connected to the traffic artery of Wuhan in of provincial economy and upgrade the competitiveness of an all-around and three-dimensional way. At present, there provincial-level administrative regions. This paper discusses are 3 interconnected expressways including Shanghai- the path of deep integration development of Wuhan and Ezhou Chengdu expressway, Wuhan-Ezhou expressway and from the aspects of history, geography, politics and economy, Wugang expressway. In terms of market access, Wuhan East and puts forward some suggestions on relevant management Lake Development Zone and Ezhou Gedian Development principles and policies. Zone try out market access cooperation, and enterprises Keywords—urban regional cooperation; integration registered in Ezhou can be named with “Wuhan”. development; path III. THE SPACE FOR IMPROVEMENT IN THE INTEGRATION I. INTRODUCTION DEVELOPMENT OF WUHAN AND EZHOU Exploring the path of leapfrog development in inland The degree of integration development of Wuhan and areas is a common issue for the vast areas (that is to say, 500 Ezhou is lower than that of central urban area of Wuhan, and kilometers from the coastline) of China’s hinterland. -
Fenhe (Fen He)
China ―10 Fenhe (Fen He) Map of River Table of Basic Data Name(s): Fenhe (in Huanghe River) Serial No. : China-10 Location: Shanxi Province, Northern China N 35° 34' ~ 38° 53' E 110° 34' ~ 111° 58' Area: 39,471 km2 Length of the main stream: 694 km Origin: Mt. Guancen (2,147 m) Highest point: Mt.Woyangchang (2,603 m) Outlet: Huanghe Lowest point: 365 (m) Main geological features: Hard layered clastic rocks, Group of hard massive metamorphic rocks Main tributaries: Lanhe (1,146 km2), Xiaohe (3,894 km2), Changyuanhe (2,274 km2), Wenyuhe (3,979 km2), Honganjiandong (1,123 km2), Huihe (2,060 km2) Main lakes: ------------ 6 3 6 3 Main reservoirs: Fenhe (723×10 m , 1961), Wenyuhe (105×10 m , 1970), Fenhe II (under construction) Mean annual precipitation: 493.2 mm (1971 ~ 1990) (basin average) Mean annual runoff: 48.7 m3/s at Hejin (38,728 km2) (1971 ~ 1990) Population: 3,410,700 (1998) Main cities: Taiyuan, Linfen, Yuci, Houma Land use: Forest (24%), Rice paddy (2%), Other agriculture (29%), Water surface (2%),Urban (6%), Uncultivated land (20%), Qthers (17%) 3 China ―10 1. General Description The Fenhe is a main tributary of The Yellow River. It is located in the middle of Shanxi province. The main river originates from northwest of Mt. Guanqing and flows from north to south before joining the Yellow River at Wanrong county. It flows through 18 counties and cities, including Ningwu, Jinle, Loufan, Gujiao, and Taiyuan. The catchment area is 39,472 km2 and the main channel length is 693 km. -
Mapping the Accessibility of Medical Facilities of Wuhan During the COVID-19 Pandemic
International Journal of Geo-Information Article Mapping the Accessibility of Medical Facilities of Wuhan during the COVID-19 Pandemic Zhenqi Zhou 1, Zhen Xu 1,* , Anqi Liu 1, Shuang Zhou 1, Lan Mu 2 and Xuan Zhang 2 1 Department of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; [email protected] (Z.Z.); [email protected] (A.L.); [email protected] (S.Z.) 2 Department of Geography, University of Georgia, Athens, GA 30602, USA; [email protected] (L.M.); [email protected] (X.Z.) * Correspondence: [email protected] Abstract: In December 2019, the coronavirus disease 2019 (COVID-19) pandemic attacked Wuhan, China. The city government soon strictly locked down the city, implemented a hierarchical diagnosis and treatment system, and took a series of unprecedented pharmaceutical and non-pharmaceutical measures. The residents’ access to the medical resources and the consequently potential demand– supply tension may determine effective diagnosis and treatment, for which travel distance and time are key indicators. Using the Application Programming Interface (API) of Baidu Map, we estimated the travel distance and time from communities to the medical facilities capable of treating COVID-19 patients, and we identified the service areas of those facilities as well. The results showed significant differences in service areas and potential loading across medical facilities. The accessibility of medical facilities in the peripheral areas was inferior to those in the central areas; there was spatial inequality of medical resources within and across districts; the amount of community healthcare Citation: Zhou, Z.; Xu, Z.; Liu, A.; Zhou, S.; Mu, L.; Zhang, X. -
Research on Slope Deformation Regularity of the Badong Formation in the Three-Gorges Reservoir Area
Applied Mechanics and Materials Vols 117-119 (2012) pp 1638-1645 Online: 2011-10-24 © (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMM.117-119.1638 Research on Slope Deformation Regularity of the Badong Formation in the Three-Gorges Reservoir Area Huiming Tang 1, a , Xinli Hu 1, b and Chengren Xiong 1,c 1 Engineering Faculty, China University of Geosciences, Wuhan 430074, China a [email protected], b [email protected], c [email protected] Keywords: The Three-Gorge Reservoir, Badong Formation, landslide, Huangtupo landslide, landslide evolution pattern Abstract. The Three-Gorges Reservoir area is characterized by widely distributed strata of Badong Formation, in which large size landslide and deep-reaching loose geological body are likely to form. Therefore, it is significant to reveal the mechanism and patterns of the large size landslide in Badong Formation for better understanding of the development of the nature of deformation and process of formation of the deep-reaching loose stratum slope. In this paper, the geological characteristics of the rock mass of the Badong Formation are concluded on the basis of systematic explanation of the space variation of the lithology combinations and space variation of structural deformation of the Badong Formation in the Three-Gorges Reservoir area. To demonstrate the basic law of long-term deformation of the Badong Formation slopes and the patterns of later stage reform and landslide evolution, the authors exemplify the Huangtupo landslide that is typical in the Badong Formation. Introduction The Three-Gorge Reservoir area is characterized by widely distributed strata of Badong Formation, in which large size landslide and deep-reaching loose geological body are likely to form. -
Geographical Overview of the Three Gorges Dam and Reservoir, China—Geologic Hazards and Environmental Impacts
Geographical Overview of the Three Gorges Dam and Reservoir, China—Geologic Hazards and Environmental Impacts Open-File Report 2008–1241 U.S. Department of the Interior U.S. Geological Survey Geographical Overview of the Three Gorges Dam and Reservoir, China— Geologic Hazards and Environmental Impacts By Lynn M. Highland Open-File Report 2008–1241 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Highland, L.M., 2008, Geographical overview of the Three Gorges dam and reservoir, China—Geologic hazards and environmental impacts: U.S. Geological Survey Open-File Report 2008–1241, 79 p. http://pubs.usgs.gov/of/2008/1241/ iii Contents Slide 1...............................................................................................................................................................1 -
World Bank Document
RP552 v 4 Public Disclosure Authorized Anhui Highway Project III (S105 Chaohu ~ Wujiang Section) Resettlement Action Plan Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Anhui Highway Bureau East China Investigation and Design Institute March 2007 Approved by: Bian Bingqian Reviewed by: Qiu Qingsong Resposible Designer: Zhou Jianxin Checked by: Zhou Jianxin Prepared by: Zhou Jianxin Gu Chunrong Li Zongjian Participated by: Jiang Zhouping Gao Jun Zhu Qiang Fang Shiwu Wang Jianhua Yan Fenglong Xia Shouguo LiChun Zhang Wei Contents OBJECTIVES OF THE RAP AND THE DEFINITION OF RESETTLEMENT TERMINOLOGY..................................................................................................................... 1 1. GENERAL ......................................................................................................................... 3 1. GENERAL ......................................................................................................................... 3 1.1 PROJECT BACKGROUND..................................................................................................... 3 1.2 GENERAL OF PROJECT........................................................................................................ 4 1.3 PROJECT SERVICE SCOPE AND IMPORTANCE....................................................................... 4 1.4 MEASURES FOR REDUCING PROJECT IMPACT..................................................................... 5 1.4.1 Planning and Design Stages ...................................................................................... -
Chongqing Handbook All Essential Information You Need to Know About Chongqing
Chongqing Handbook All essential information you need to know about Chongqing Presented by Chongqing Expat Club www.cqexpat.com Copyright 2008. All Rights Reserved. Table of Contents CHAPTER ONE - ABOUT CHONGQING Page 3 CHAPTER TWO – THE CITY HUBS Page 3 CHAPTER THREE – CITY TRANSPORT Page 4 CHAPTER FOUR – ATTRACTIONS Page 6 CHAPTER FIVE – NIGHTLIFE & ENTERTAINMENT Page 16 CHAPTER SIX – ACCOMMODATION Page 18 CHAPTER SEVEN – INTERNATIONAL FOOD Page 21 CHAPTER EIGHT– SHOPPING Page 24 CHAPTER NINE - EDUCATION Page 27 CHAPTER TEN – HEALTH CARE Page 29 CHAPTER ELEVEN – EMBASSIES & CONSULATES Page 31 CHAPTER TWELVE – USEFUL CONTACTS Page 32 CHAPTER THIRTEEN – USEFUL WORDS and PHRASES Page 32 CHAPTER ONE - ABOUT CHONGQING Chongqing is the economic hub of southwest China and the fourth Municipality in China (after Beijing, Shanghai and Tianjin). Chongqing is situated in the east of southwest China, about 2,500km up the Yangtze River from Shanghai. Under its jurisdiction there are 40 districts, cities and counties. It covers an area of 82,000 square kilometres with a total population of 31 million. An estimated 6 million people live in urban Chongqing city. Downtown Chongqing lies at the point where the Yangtze River and the Jialing River merge. Known as the Mountain City, the whole city is built against a backdrop of hills and rivers, characterized by zig-zagging roads and overlapping houses. It is also known as one of the four Furnace Cities for its hot summers and the Foggy City for its misty winters. CHAPTER TWO – THE CITY HUBS Chongqing has five major business and shopping precincts - the oldest and most important being Jiefangbei situated within what remains of the Old Walled City. -
Your Paper's Title Starts Here
2020 International Conference on Economic Development and Education Innovation (EDEI 2020) An Analysis on the Evolutionary Path of Scattered Clusters of Commercial Space around Sea Ports Xiaoliang Xiong, Wan Shao, Huxiao Li Wuhan Technology And Business University, Wuhan, Hubei China [email protected] Keywords: Sea Ports, Commerce and Trade, Clusters, Evolution. Abstract: The scattered villages and town communities around sea ports are the window of modern Chinese economic changes, and the changes in the economic spatial structure of the country’s economic development reflect the spatial pattern of the country’s economic development, -promoting the channel optimization of the rural economy and the optimization of the spatial structure of urban clusters. Based on the evolution trajectory of the economic space of sea ports, this paper studies the characteristics and systems of the evolution of the economic space of tea ports, and analyses the dynamic mechanism of the evolution of the economic space of tea ports, trying to demonstrate the spatial optimization principles of the sea ports and clusters from the system and structure aspects. 1. Introduction Organizations of regional traffic function have a great influence on the formation and development of the town and city. In the ancient era of traffic shortage, clusters often become the first choice for the development of the market city. By virtue of the location advantage as the intersection of the river and sea, the port town has become an important local trade distribution centre with the flow of people and logistics, where all kinds of cultural collision and fusion give birth to the regional economic modernization transformation. -
People's Republic of China: Shanxi Road Development II Project
Completion Report Project Number: 34097 Loan Number: 1967 August 2008 People’s Republic of China: Shanxi Road Development II Project CURRENCY EQUIVALENTS Currency Unit – yuan (CNY) At Appraisal At Project Completion (14 November 2002) (as of 6 March 2008) CNY1.00 = $0.1208 $0.14047 $1.00 = CNY8.277 CNY7.119 ABBREVIATIONS AADT – average annual daily traffic ADB – Asian Development Bank CSE – chief supervision engineer CSEO – chief supervision engineer office DCSE – deputy chief supervision engineer EIA – environmental impact assessment EIRR – economic internal rate of return FIRR – financial internal rate of return GDP – gross domestic product HDM-4 – highway design and maintenance standards model, version 4 ICB – international competitive bidding IDC – interest and other charges during construction IEE – initial environmental examination IRI – international roughness index MOC – Ministry of Communications NCB – national competitive bidding NTHS – national trunk highway system O&M – operation and maintenance PCR – project completion review PPMS – project performance management system PRC – People’s Republic of China PRIS – poverty reduction impact study PRMP – poverty reduction monitoring program REO – resident engineer office RP – resettlement plan SCD – Shanxi Communications Department SCF – standard conversion factor SEIA – summary environmental impact assessment SEPA – State Environment Protection Administration SFB – Shanxi Finance Bureau SHEC – Shanxi Hou-yu Expressway Construction Company Limited SKCC – Shaanxi Kexin Consultant Company SPG – Shanxi provincial government VOC – vehicle operating cost YWNR – Yuncheng Wetlands Nature Reserve WEIGHTS AND MEASURES mu – A traditional land area measurement, it is equivalent to 666.66 square meters, or 0.1647 acres, or 0.066 of a hectare. m/km – meters per kilometer mg/m3 – milligram per meter cube p.a. -
中國能源建設股份有限公司 China Energy Engineering Corporation Limited
Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. 中國能源建設股份有限公司 CHINA ENERGY ENGINEERING CORPORATION LIMITED* (A joint stock company incorporated in the People’s Republic of China with limited liability) (Stock Code: 3996) ANNOUNCEMENT INSIDE INFORMATION The announcement is made by China Energy Engineering Corporation Limited (the “Company”) pursuant to Rule 13.09 of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited and the provisions of inside information under Part XIVA of the Securities and Futures Ordinance (Chapter 571 of the Laws of Hong Kong). Pursuant to the Listing Rules of the Shanghai Stock Exchange, China Gezhouba Group Stock Company Limited (中國葛洲壩集團股份有限公司) (the “CGGC”), a subsidiary of the Company, published a summary of its 2016 annual report for the year ended December 31, 2016 (the “CGGC Summary Annual Report”) on the website of the Shanghai Stock Exchange, a reproduction of which is enclosed to this announcement. For the avoidance of doubt, the “Company” contained in the CGGC Summary Annual Report refers to CGGC. The CGGC Summary Annual Report set out below has been prepared in accordance with the People’s Republic of China Generally Accepted Accounting Principles and has been audited by, BDO China Shu Lun Pan Certified Public Accountants LLP, the auditors of CGGC.