Jayne Birkby

Total Page:16

File Type:pdf, Size:1020Kb

Jayne Birkby Measuring Carbon and Oxygen Abundances in Hot Jupiter Atmospheres with High-Resolution Spectroscopy Jayne Birkby ! NASA Sagan Fellow, Harvard-Smithsonian Center for Astrophysics ! Remco de Kok, Matteo Brogi, Ignas Snellen, Henriette Schwarz (Leiden Observatory) Planet formation mechanisms operate on different timescales at different locations in disk HR 8799 (Marois et al. (2010) Core accretion or gravitational instability alone cannot reproduce system and significant migration is unlikely C/O ratio could reveal where and how a planet formed in its protoplanetary disk Öberg et al. (2011) Measure the relative abundances: CO, H2O, CO2, CH4 Detect molecules in exoplanet atmospheres using ground-based High Dispersion Spectroscopy (HDS) A CRIRES/VLT survey of hot Jupiter atmospheres • CRIRES: CRyogenic high-resolution InfraRed Echelle Spectrograph • R=100,000 • 155hrs • 5 brightest host stars visible from Paranal, Chile: HD 209458 b, HD 189733 b, 51 Peg b, � Boo b, HD 179499 b Detecting molecules with high dispersion spectroscopy HDS detects the radial velocity shift of the planetary spectrum 0.8 Blue-shifted Toy model of CO lines Dayside Secondary eclipse 0.6 Nightside Transit Secondary eclipse Red-shifted 0.4 Phase KP Model H2O lines 5 0.2 0.0 Transit Model CO lines Relativeline depth x 10 Model CO lines -0.2 2.309 2.310 2.311 2.312 2.313 Wavelength / "m H2O absorption in the dayside atmosphere of the transiting hot Jupiter HD 189733 b Birkby et al. 2013 HDS also reveals complex molecules in non-transiting planets Mayor & Queloz (1995) KS (km/s) p K H2O in 51 Peg b 51 Peg 79.6° < i < 82.2° MP = 0.46MJ ± 0.02MJ Birkby et al. (in prep) See also LockwoodNon-transiting et al. (2014) detection planet of H2O in =non-transiting spectroscopic � Boo b with Keck/NIRSPEC binary (R~25,000) Simple CO molecule routinely detected in hot Jupiter atmospheres with HDS Boo b - CO 51 Peg b - CO + H2O 90 140 HD 209458 b 70 90 140 70 60 120 ) ) ° 60 ° 120 50 ) ) -1 -1 50 100 (km s 40 (km s P 100 P K K 40 Orbital inclination ( Orbital inclination ( 80 30 80 30 60 Boo b 20 60 � -40 -20 0 20 40 -80 -60 -40 -20 0 20 -1 -1 Vsys (km s ) Vsys (km s ) Vsys Significance () Significance () -2.7 -1.6 -0.5 0.6 1.7 2.8 3.9 5.0 -3.8 -2.6 -1.4 -0.2 1.0 2.2 3.4 4.6 HD 189733b - CO HD 179949b - CO + H2O 180 160 160 90 90 70 ) ) 70 ° 140 ° 140 60 ) ) -1 60 -1 51 Peg b 120 50 (km s 120 (km s P 50 P K K 100 Orbital inclination ( 40 Orbital inclination ( 100 40 80 80 30 30 HD 189733 b HD 179949 b -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 -1 -1 Vsys (km s ) Vsys (km s ) Significance () Significance () -4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 Snellen et al. (2010); Brogi, Snellen, de Kok, Albrecht, Birkby et al. (2012); de Kok, Brogi, Snellen, Birkby et al. (2013); Brogi, de Kok, Birkby et al. (2014); Brogi, Snellen, de Kok, Albrecht, Birkby et al. (2014) How do we measure relative molecular abundances? Continuum level of planet essentially non-varying over narrow wavelength region wavelength narrow non-varyingplanet essentially of over level Continuum Planet flux (Wm-2µm-1)x104 non-transiting CO andH CO 2 O detected O hot Jupiter HDJupiter 179949 hot b Planet flux (Wm-2µm-1)x104 simultaneously H 2 O in Boo b - CO 51 Peg b - CO + H2O 90 140 70 90 140 70 60 120 ) ) ° 60 ° 120 50 ) ) -1 -1 50 100 (km s 40 (km s P 100 P K K 40 Orbital inclination ( Orbital inclination ( 80 30 80 30 60 20 60 -40 -20 0 20 40 -80 -60 -40 -20 0 20 -1 -1 Vsys (km s ) Vsys (km s ) Significance () Significance () CO and H2O detected simultaneously in -2.7 -1.6 -0.5 non-transiting 0.6 1.7 2.8 3.9 5.0 hot Jupiter-3.8 -2.6 -1.4 HD-0.2 1.0179949 2.2 3.4 4.6 b HD 189733b - CO HD 179949b - CO + H2O 180 160 MP = 0.98MJ ± 0.04MJ 160 • 90 i = 67.7° ± 4.3° 90 70 ) ) ! 70 ° 140 ° 140 60 ) Molecular absorption: ) -1 • -1 non-inverted atmosphere60 ! 120 50 (km s 120 (km s P 50 P K • Highly irradiated: K -9 2 1.4⨉10 erg/cm /s 100 100 Orbital inclination ( 40 Orbital inclination ( ! 40 • Active star: 80 80 R’HK﹤ -4.72 30 30 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 -1 -1 Vsys (km s ) Vsys (km s ) Significance (C/O?) Significance () -4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 Brogi, de Kok, Birkby et al. (2014) Two molecules in one narrow wavelength region give loose constraints on C/O ratios Shallow T-P profile -4.5 10 Altitude / bar / 1 Pressure Brogi, de Kok, Birkby et al. (2014) Temperature Two molecules in one narrow wavelength region give loose constraints on C/O ratios best Δσ C/O ratio Brogi, de Kok, Birkby et al. (2014) Two molecules in one narrow wavelength region give loose constraints on C/O ratios best Δσ C/O ratio −4.5 −9.5 VMR(CO) = VMR(H2O) = 10 , VMR(CH4) = 10 Brogi, de Kok, Birkby et al. (2014) Simulations identify 3.5µm as spectral ‘sweet spot’ for measuring C/O ratio Simulation of CRIRES sensitivity de Kok, Birkby et al. (2013b) H2O HD 209458 b CH4 (Birkby et al. in prep.) CO2 CO H2O CH4 Relative Correlation H2O CO2 CH4 H2O CO2 Wavelength / "m Adapting the technique for long period planets Combining high contrast imaging (HCI) and HDS reveals atmospheres of wide-separation exoplanets β Pic b Star-planet separation ~ 0.6” Credit: ESO/A.M. Lagrange CO detected in β Pic b dispersion position Planet velocity β Pic b Position on detector relativestar on to (arcsec)Position Blue-shift velocity consistent with a transit event in 1981 and predicted transit in 2017-2018 Snellen, Brandl, de Kok, Brogi, Birkby et al. (2014) HDS+HCI reveals 8 hour rotation period for β Pic b = instrument Vspin = 25 ± 3 km/s profile Snellen, Brandl, de Kok, Brogi, Birkby et al. (2014) Angular momentum → formation mechanism? 1hr CRIRES/VLT = brown dwarf Snellen, Brandl, de Kok, Brogi, Birkby et al. (2014) Boo b - CO 51 Peg b - CO + H2O 90 140 70 90 140 70 60 120 ) ) ° 60 ° 120 50 ) ) -1 -1 50 100 (km s 40 (km s P 100 P K K 40 Summary &Orbital inclination ( ConclusionsOrbital inclination ( 80 30 80 30 60 20 60 -40 -20 0 20 40 -80 -60 -40 -20 0 20 -1 -1 Vsys (km s ) Vsys (km s ) Significance () Significance () 1) HDS-2.7 -1.6 -0.5 gives 0.6 1.7 2.8 3.9 5.0 unambiguous-3.8 -2.6 -1.4 -0.2 1.0 2.2 3.4 4.6 detections of complex molecules HD 189733b - CO HD 179949b - CO + H2O 180 160 160 90 90 70 ) ) 70 ° 140 ° 140 60 ) ) -1 60 -1 120 50 (km s 120 (km s P 50 P K K 100 Orbital inclination ( 40 Orbital inclination ( 100 40 80 80 30 30 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 -1 -1 Vsys (km s ) Vsys (km s ) Significance () Significance () -4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 2) HDS is beginning to constrain 3) HDS+HCI gives molecules and C/O and 3.5µm data look promising rotation for directly imaged planets best Δσ C/O ratio Composition → formation location/mechanism? Angular momentum → formation mechanism? [email protected] http://www.cfa.harvard.edu/~jbirkby.
Recommended publications
  • Astronomy DOI: 10.1051/0004-6361/201423537 & C ESO 2014 Astrophysics
    A&A 565, A124 (2014) Astronomy DOI: 10.1051/0004-6361/201423537 & c ESO 2014 Astrophysics Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b? M. Brogi1, R. J. de Kok1;2, J. L. Birkby1, H. Schwarz1, and I. A. G. Snellen1 1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands Received 29 January 2014 / Accepted 5 April 2014 ABSTRACT Context. In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmo- spheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. The system is bright enough to be an ideal target for near-infrared, high-resolution spectroscopy. Aims. Here we present the analysis of spectra of the system at 2.3 µm, obtained at a resolution of R ∼ 100 000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet’s thermal spectrum and the radial component of its orbital velocity. Methods. Unlike the telluric signal, the planet signal is subject to a changing Doppler shift during the observations. This is due to the changing radial component of the planet orbital velocity, which is on the order of 100–150 km s−1 for these hot Jupiters.
    [Show full text]
  • “Spectra and Photometry: Windows Into Exoplanet Atmospheres”
    “Spectra and Photometry: Windows into Exoplanet Atmospheres” A. Burrows Dept. of Astrophysical Sciences Princeton University Transiting Planets Secondary Eclipse See thermal radiation and reflected light from planet disappear and reappear Transit Orbital Phase Variations See stellar flux decrease See cyclical variations in (function of wavelength) brightness of planet figure taken from H. Knutson! With upper- atmosphere optical absorber! Transit chord Graphics by D. Spiegel! Haze on HD 189733b Figure from Pont, Knutson et al. (2007) showing atmospheric transmission function derived from HST ACS measurements between 600-1000 nm Pont et al .2013: Haze on HD 189733b Pont et al. 2013 GJ 1214b: Transit Radius vs. Wavelength! Howe & Burrows 2012, in press HST GJ1214b transit spectrum – Kreidberg et al. 2014 Hazes! Figure 2: The transmission spectrum of GJ1214b. a,Transmissionspectrummeasurements from our data (black points) and previous work (gray points)7–11,comparedtotheoreticalmodels (lines). The error bars correspond to 1 σ uncertainties. Each data set is plotted relative to its mean. Our measurements are consistent with past results for GJ1214usingWFC310.Previousdatarule out a cloud-free solar composition (orange line), but are consistent with a high-mean molecular weight atmosphere (e.g. 100% water, blue line) or a hydrogen-rich atmosphere with high-altitude clouds. b,Detailviewofourmeasuredtransmissionspectrum(blackpoints) compared to high mean molecular weight models (lines). The error bars are 1 σ uncertainties in the posterior distri- bution from a Markov chain Monte Carlo fit to the light curves (see the Supplemental Information for details of the fits). The colored points correspond to the models binned at the resolution of the observations.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Introduction
    Introduction ”They say the sky is the limit, but to me, it is only the beginning. I look to the stars, and I count them, imagining every one of them as the centre of a solar system, even more wondrous than our own. We now know they are out there. Planets. Millions of them - just waiting to be discovered. What are they like, these distant spinning worlds? How did they come to be? And finally - before I close my eyes and go to sleep, one question lingers. Like the echo of a whisper : Is anyone out there...” The study of exoplanets is a quest to understand our place in the universe. How unique is the solar system? How extraordinary is the Earth? Is life on Earth an unfathomable coincidence, or is the galaxy teeming with life? Only 25 years ago the first extrasolar planets were discovered, two of them, orbiting the millisecond pulsar PSR1257+12 (Wolszczan and Frail, 1992), and this was followed three years later by the discovery of the first exoplanet orbiting a solar-type star (51 Pegasi, Mayor and Queloz, 1995). In the subsequent years, multiple techniques were developed to find and study these new worlds. Each detection method has its own advantages, limitations and biases, and they have complimented each other to form the picture of exoplanets that we have today: The galaxy is brimming with planetary systems, and the exoplanets are more diverse, than we could ever have imagined. The diversity of planets presents a challenge to the theories of formation designed to match the solar system, and any modern theories must strive to explain the full observed range of architectures of planetary systems.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • Laporan Tahunan Persatuan Astronomi Negara Brunei Darussalam
    ﻻڤورن تاهونن Laporan Tahunan 2019 - 2020 Persatuan Astronomi Negara Brunei Darussalam Disediakan oleh Setiausaha Agung PABD 1 Kandungan • Pengenalan • Pindaan Pertama Perlembagaan PABD • Penaung & Penasihat PABD 2019/2020 • AJK Eksekutif PABD 2019/2020 • Pindaan Pertama Perlembagaan • Keahlian PABD • Kegiatan PABD www.bruneiastronomy.org • Jaringan Rakan Strategik PABD Fb.com/bruneiastronomy • Fenomena Astronomi 2021 www.bruneiastronomy.org/whatsapp • Laporan Khas: NameExoWorlds Brunei @bruneiastronomy • Laporan Khas: Telescope For All 2020 t.me/bruneiastronomy 2 Pengenalan PABD Agensi bukan Kerajaan yang unggul dalam bidang Astronomi di Negara Brunei Darussalam Persatuan Astronomi Negara Brunei Darussalam (PABD) merupakan persatuan bebas dan persatuan bukan Kerajaan yang didedikasi kepada masyarakat dan bidang sains astronomi. Ia adalah satu-satunya agensi bukan Kerajaan yang berkaitan dengan bidang astronomi di Negara Brunei Darussalam. PABD telah didaftarkan secara rasmi kepada Pendaftar Pertubuhan, Polis Di Raja Brunei, pada 06 Januari 2003 bersamaan dengan 03 Zulkaedah 1423 H. Peraturan-peraturan dan keterangan PABD telah termaktub di dalam Perlembagaan Persatuan Astronomi Negara Brunei Darussalam oleh ahli-ahli sementara PABD pada tahun 2002. Persatuan ini mempunyai Penaung, iaitu Ketua Hakim Syarie, Jabatan Kehakiman Negara, dan tiga orang ahli Penasihat yang terdiri daripada Hakim Mahkamah Tinggi Syariah Negara Brunei Darussalam, Juruukur Agung dan Naib Canselor Universiti Brunei Darussalam (UBD). Penambahan seorang penasihat,
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • How Stars and Planets Interact: a Look Through the High-Energy Window
    How Stars and Planets Interact: a Look Through the High-Energy Window Katja Poppenhaeger Queen's University Belfast → University Potsdam / Leibniz Institute for Astrophysics AIP Star-exoplanet systems Star-exoplanet systems Star-exoplanet systems Star-exoplanet systems Star-exoplanet systems tidal interaction Star-exoplanet systems tidal interaction star spinning faster → higher Lx Star-exoplanet systems magnetic interaction Star-exoplanet systems magnetic interaction stellar flares, hot spots Star-exoplanet systems planetary effects Star-exoplanet systems planetary effects atmospheric blow-off Star-exoplanet systems planetary effects aurorae Star-exoplanet systems planetary effects hot planet dynamos Star-exoplanet systems tidal interaction star spinning faster → higher Lx Tidal interaction Mathis & Remus (2013) see also Lanza & Mathis (2016) How stars age on the main sequence loss of angular momentum through stellar wind (“magnetic braking”) Bias-controlled sample: planet-hosting wide binaries image credit: Mugrauer et al. (2007); see also Raghavan (2006) upsilon And Ab B And upsilon HD 189733 Ab B HD 189733 HD 46375 Ab B Ab 46375 HD Planet-hosting widebinaries HD 178911 A Bb A 178911 HD tau Boo Ab B Boo tau CoRoT-2 Ab B CoRoT-2 55 Cnc Abcde B Abcde Cnc 55 HAT-P-20 Ab Ab B HAT-P-20 HD 109749 Ab B HD 109749 Poppenhaeger et al. (2014), Poppenhaeger et al. in prep. Planet-hosting wide binaries strong tidal interaction weak tidal interaction more active Planet-hosting widebinaries more active Planet-hosting widebinaries more active Planet-hosting widebinaries more active Planet-hosting widebinaries more active Planet-hosting widebinaries more active Several over-active systems Poppenhaeger et al.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Star-Planet Interactions
    Star-Planet Interactions A. F. Lanza1 1INAF-Osservatorio Astrofisico di Catania, Via S. Sofia, 78 – 95123 Catania, Italy Abstract. Stars interact with their planets through gravitation, radiation, and magnetic fields. I shall focus on the interactions between late-type stars with an outer convection zone and close-in planets, i.e., with an orbital semimajor axis smaller than 0.15 AU. I shall review the roles of tides and magnetic fields considering some key observations≈ and discussing theoretical scenarios for their interpretation with an emphasis on open questions. 1. Introduction Stars interact with their planets through gravitation, radiation, and magnetic fields. I shall focus on the case of main-sequence late-type stars and close-in planets (orbit semimajor axis a < 0.15 AU) and limit myself to a few examples. Therefore, I apologize for missing important topics∼ in this field some of which have been covered in the contributions by Jardine, Holtzwarth, Grissmeier, Jeffers, and others at this Conference. The space telescopes CoRoT (Auvergne et al. 2009) and Kepler (Borucki et al. 2010) have opened a new era in the detection of extrasolar planets and the study of their interactions with their host stars because they allow us, among others, to measure stellar rotation in late-type stars through the light modulation induced by photospheric brightness inhomogeneities (e.g., Affer et al. 2012; McQuillan et al. 2014; Lanza et al. 2014). Moreover, the same flux modulation can be used to derive information on the active longitudes where starspots preferentially form and evolve (e.g., Lanza et al. 2009a; Bonomo & Lanza 2012)1.
    [Show full text]