Measuring Carbon and Oxygen Abundances in Atmospheres with High-Resolution Spectroscopy

Jayne Birkby NASA Sagan Fellow, Harvard-Smithsonian Center for Astrophysics Remco de Kok, Matteo Brogi, Ignas Snellen, Henriette Schwarz (Leiden Observatory) formation mechanisms operate on different timescales at different locations in disk

HR 8799 (Marois et al. (2010)

Core accretion or gravitational instability alone cannot reproduce system and significant migration is unlikely C/O ratio could reveal where and how a planet formed in its protoplanetary disk

Öberg et al. (2011)

Measure the relative abundances: CO, H2O, CO2, CH4 Detect molecules in atmospheres using ground-based High Dispersion Spectroscopy (HDS)

A CRIRES/VLT survey of hot Jupiter atmospheres

• CRIRES: CRyogenic high-resolution Echelle Spectrograph • R=100,000 • 155hrs • 5 brightest host visible from Paranal, Chile:

HD 209458 b, HD 189733 b, 51 Peg b, � Boo b, HD 179499 b Detecting molecules with high dispersion spectroscopy HDS detects the shift of the planetary spectrum

0.8 Blue-shifted Toy model of CO lines Dayside Secondary eclipse

0.6

Nightside Secondary eclipse

Red-shifted 0.4 Phase KP Model H2O lines

5 0.2

0.0 Transit

Model CO lines Relativeline depth10 x Model CO lines

-0.2 2.309 2.310 2.311 2.312 2.313 Wavelength / μm H2O absorption in the dayside atmosphere of the transiting hot Jupiter HD 189733 b

Birkby et al. 2013 HDS also reveals complex molecules in non-transiting

Mayor & Queloz (1995)

KS

(km/s)

p K

H2O in 51 Peg b 51 Peg

79.6° < i < 82.2°

MP = 0.46MJ ± 0.02MJ Birkby et al. (in prep)

See also LockwoodNon-transiting et al. (2014) detection planet of H2O in =non-transiting spectroscopic � Boo b with Keck/NIRSPEC binary (R~25,000) Simple CO molecule routinely detected in hot Jupiter atmospheres with HDS

Boo b - CO 51 Peg b - CO + H2O 90 140 HD 209458 b 70 90 140 70 60 120 ) )

° 60 ° 120 50 ) ) -1 -1 50 100

(km s 40 (km s

P 100 P K K 40 ( Orbital inclination ( 80 30 80

30 60 Boo b 20 60 � -40 -20 0 20 40 -80 -60 -40 -20 0 20 -1 -1 Vsys (km s ) Vsys (km s ) Vsys Significance () Significance ()

-2.7 -1.6 -0.5 0.6 1.7 2.8 3.9 5.0 -3.8 -2.6 -1.4 -0.2 1.0 2.2 3.4 4.6

HD 189733b - CO HD 179949b - CO + H2O 180 160 160 90 90 70 ) ) 70 ° 140 ° 140 60 ) ) -1 60 -1 51 Peg b 120 50

(km s 120 (km s

P 50 P K K

100 Orbital inclination ( 40 Orbital inclination ( 100 40

80 80 30 30 HD 189733 b HD 179949 b -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 -1 -1 Vsys (km s ) Vsys (km s ) Significance () Significance ()

-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0

Snellen et al. (2010); Brogi, Snellen, de Kok, Albrecht, Birkby et al. (2012); de Kok, Brogi, Snellen, Birkby et al. (2013); Brogi, de Kok, Birkby et al. (2014); Brogi, Snellen, de Kok, Albrecht, Birkby et al. (2014) How do we measure relative molecular abundances? CO and H2O detected simultaneously in non-transiting hot Jupiter HD 179949 b

CO H2O 4 4 )x10 )x10 -1 -1 m m µ µ -2 -2 Planetflux(Wm Planetflux(Wm

Continuum level of planet essentially non-varying over narrow wavelength region Boo b - CO 51 Peg b - CO + H2O 90 140 70 90 140 70 60 120 ) )

° 60 ° 120 50 ) ) -1 -1 50 100

(km s 40 (km s

P 100 P K K 40 Orbital inclination ( Orbital inclination ( 80 30 80

30 60 20 60 -40 -20 0 20 40 -80 -60 -40 -20 0 20 -1 -1 Vsys (km s ) Vsys (km s ) Significance () Significance () CO and H2O detected simultaneously in -2.7 -1.6 -0.5 non-transiting 0.6 1.7 2.8 3.9 5.0 hot Jupiter-3.8 -2.6 -1.4 HD-0.2 1.0179949 2.2 3.4 4.6 b HD 189733b - CO HD 179949b - CO + H2O 180 160 MP = 0.98MJ ± 0.04MJ 160 • 90 i = 67.7° ± 4.3° 90 70 ) ) 70 ° 140 ° 140 60 ) Molecular absorption: )

-1 • -1 non-inverted atmosphere60 120 50 (km s 120 (km s

P 50 P K • Highly irradiated: K -9 2 1.4⨉10 erg/cm /s 100 100 Orbital inclination ( 40 Orbital inclination ( 40 • Active : 80 80 R’HK﹤ -4.72 30 30

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 -1 -1 Vsys (km s ) Vsys (km s ) Significance (C/O?) Significance ()

-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 Brogi, de Kok, Birkby et al. (2014) Two molecules in one narrow wavelength region give loose constraints on C/O ratios

Shallow T-P profile -4.5

10 Altitude / bar /

1 Pressure Brogi, de Kok, Birkby et al. (2014) Temperature Two molecules in one narrow wavelength region give loose constraints on C/O ratios best Δσ

C/O ratio

Brogi, de Kok, Birkby et al. (2014) Two molecules in one narrow wavelength region give loose constraints on C/O ratios

best Δσ

C/O ratio

−4.5 −9.5 VMR(CO) = VMR(H2O) = 10 , VMR(CH4) = 10

Brogi, de Kok, Birkby et al. (2014) Simulations identify 3.5µm as spectral ‘sweet spot’ for measuring C/O ratio

Simulation of CRIRES sensitivity de Kok, Birkby et al. (2013b)

H2O HD 209458 b CH4 (Birkby et al. in prep.) CO2

CO H2O CH4 RelativeCorrelation

H2O CO2 CH4

H2O CO2

Wavelength / μm Adapting the technique for long period planets Combining high contrast imaging (HCI) and HDS reveals atmospheres of wide-separation

β Pic b Star-planet separation ~ 0.6”

Credit: ESO/A.M. Lagrange CO detected in β Pic b

dispersion position Planet velocity Planet β Pic

b Position on detector relativestar on to (arcsec) Position

Blue-shift velocity consistent with a transit event in 1981 and predicted transit in 2017-2018

Snellen, Brandl, de Kok, Brogi, Birkby et al. (2014) HDS+HCI reveals 8 hour rotation period for β Pic b

= instrument Vspin = 25 ± 3 km/s profile

Snellen, Brandl, de Kok, Brogi, Birkby et al. (2014) Angular momentum → formation mechanism?

1hr CRIRES/VLT = brown dwarf

Snellen, Brandl, de Kok, Brogi, Birkby et al. (2014) Boo b - CO 51 Peg b - CO + H2O 90 140 70 90 140 70 60 120 ) )

° 60 ° 120 50 ) ) -1 -1 50 100

(km s 40 (km s

P 100 P K K 40 Summary &Orbital inclination ( ConclusionsOrbital inclination ( 80 30 80

30 60 20 60 -40 -20 0 20 40 -80 -60 -40 -20 0 20 -1 -1 Vsys (km s ) Vsys (km s ) Significance () Significance () 1) HDS-2.7 -1.6 -0.5 gives 0.6 1.7 2.8 3.9 5.0 unambiguous-3.8 -2.6 -1.4 -0.2 1.0 2.2 3.4 4.6 detections of complex molecules

HD 189733b - CO HD 179949b - CO + H2O 180 160 160 90 90 70 ) ) 70 ° 140 ° 140 60 ) )

-1 60 -1 120 50

(km s 120 (km s

P 50 P K K

100 Orbital inclination ( 40 Orbital inclination ( 100 40

80 80 30 30

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 -1 -1 Vsys (km s ) Vsys (km s ) Significance () Significance ()

-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0

2) HDS is beginning to constrain 3) HDS+HCI gives molecules and C/O and 3.5µm data look promising rotation for directly imaged planets best Δσ

C/O ratio Composition → formation location/mechanism? Angular momentum → formation mechanism? [email protected] http://www.cfa.harvard.edu/~jbirkby