Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astronomy DOI: 10.1051/0004-6361/201423537 & C ESO 2014 Astrophysics
A&A 565, A124 (2014) Astronomy DOI: 10.1051/0004-6361/201423537 & c ESO 2014 Astrophysics Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b? M. Brogi1, R. J. de Kok1;2, J. L. Birkby1, H. Schwarz1, and I. A. G. Snellen1 1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands Received 29 January 2014 / Accepted 5 April 2014 ABSTRACT Context. In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmo- spheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. The system is bright enough to be an ideal target for near-infrared, high-resolution spectroscopy. Aims. Here we present the analysis of spectra of the system at 2.3 µm, obtained at a resolution of R ∼ 100 000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet’s thermal spectrum and the radial component of its orbital velocity. Methods. Unlike the telluric signal, the planet signal is subject to a changing Doppler shift during the observations. This is due to the changing radial component of the planet orbital velocity, which is on the order of 100–150 km s−1 for these hot Jupiters. -
Messenger-No117.Pdf
ESO WELCOMES FINLANDINLAND AS ELEVENTH MEMBER STAATE CATHERINE CESARSKY, ESO DIRECTOR GENERAL n early July, Finland joined ESO as Education and Science, and exchanged which started in June 2002, and were con- the eleventh member state, following preliminary information. I was then invit- ducted satisfactorily through 2003, mak- II the completion of the formal acces- ed to Helsinki and, with Massimo ing possible a visit to Garching on 9 sion procedure. Before this event, howev- Tarenghi, we presented ESO and its scien- February 2004 by the Finnish Minister of er, Finland and ESO had been in contact tific and technological programmes and Education and Science, Ms. Tuula for a long time. Under an agreement with had a meeting with Finnish authorities, Haatainen, to sign the membership agree- Sweden, Finnish astronomers had for setting up the process towards formal ment together with myself. quite a while enjoyed access to the SEST membership. In March 2000, an interna- Before that, in early November 2003, at La Silla. Finland had also been a very tional evaluation panel, established by the ESO participated in the Helsinki Space active participant in ESO’s educational Academy of Finland, recommended Exhibition at the Kaapelitehdas Cultural activities since they began in 1993. It Finland to join ESO “anticipating further Centre with approx. 24,000 visitors. became clear, that science and technology, increase in the world-standing of ESO warmly welcomes the new mem- as well as education, were priority areas Astronomy in Finland”. In February 2002, ber country and its scientific community for the Finnish government. we were invited to hold an information that is renowned for its expertise in many Meanwhile, the optical astronomers in seminar on ESO in Helsinki as a prelude frontline areas. -
Laporan Tahunan Persatuan Astronomi Negara Brunei Darussalam
ﻻڤورن تاهونن Laporan Tahunan 2019 - 2020 Persatuan Astronomi Negara Brunei Darussalam Disediakan oleh Setiausaha Agung PABD 1 Kandungan • Pengenalan • Pindaan Pertama Perlembagaan PABD • Penaung & Penasihat PABD 2019/2020 • AJK Eksekutif PABD 2019/2020 • Pindaan Pertama Perlembagaan • Keahlian PABD • Kegiatan PABD www.bruneiastronomy.org • Jaringan Rakan Strategik PABD Fb.com/bruneiastronomy • Fenomena Astronomi 2021 www.bruneiastronomy.org/whatsapp • Laporan Khas: NameExoWorlds Brunei @bruneiastronomy • Laporan Khas: Telescope For All 2020 t.me/bruneiastronomy 2 Pengenalan PABD Agensi bukan Kerajaan yang unggul dalam bidang Astronomi di Negara Brunei Darussalam Persatuan Astronomi Negara Brunei Darussalam (PABD) merupakan persatuan bebas dan persatuan bukan Kerajaan yang didedikasi kepada masyarakat dan bidang sains astronomi. Ia adalah satu-satunya agensi bukan Kerajaan yang berkaitan dengan bidang astronomi di Negara Brunei Darussalam. PABD telah didaftarkan secara rasmi kepada Pendaftar Pertubuhan, Polis Di Raja Brunei, pada 06 Januari 2003 bersamaan dengan 03 Zulkaedah 1423 H. Peraturan-peraturan dan keterangan PABD telah termaktub di dalam Perlembagaan Persatuan Astronomi Negara Brunei Darussalam oleh ahli-ahli sementara PABD pada tahun 2002. Persatuan ini mempunyai Penaung, iaitu Ketua Hakim Syarie, Jabatan Kehakiman Negara, dan tiga orang ahli Penasihat yang terdiri daripada Hakim Mahkamah Tinggi Syariah Negara Brunei Darussalam, Juruukur Agung dan Naib Canselor Universiti Brunei Darussalam (UBD). Penambahan seorang penasihat, -
IAU Division C Working Group on Star Names 2019 Annual Report
IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ WGSN Email: [email protected] The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials. -
The Atmospheric Parameters of FGK Stars Using Wavelet Analysis of CORALIE Spectra S
A&A 612, A111 (2018) https://doi.org/10.1051/0004-6361/201731954 Astronomy & © ESO 2018 Astrophysics The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra S. Gill, P. F. L. Maxted, and B. Smalley Astrophysics Group, Keele University, Keele ST5 5BG, UK e-mail: [email protected] Received 14 September 2017 / Accepted 18 January 2018 ABSTRACT Context. Atmospheric properties of F-, G- and K-type stars can be measured by spectral model fitting or with the analysis of equivalent width (EW) measurements. These methods require data with good signal-to-noise ratios (S/Ns) and reliable continuum normalisation. This is particularly challenging for the spectra we have obtained with the CORALIE échelle spectrograph for FGK stars with transiting M-dwarf companions. The spectra tend to have low S/Ns, which makes it difficult to analyse them using existing methods. Aims. Our aim is to create a reliable automated spectral analysis routine to determine Teff , [Fe/H], V sin i from the CORALIE spectra of FGK stars. Methods. We use wavelet decomposition to distinguish between noise, continuum trends, and stellar spectral features in the CORALIE spectra. A subset of wavelet coefficients from the target spectrum are compared to those from a grid of models in a Bayesian framework to determine the posterior probability distributions of the atmospheric parameters. Results. By testing our method using synthetic spectra we found that our method converges on the best fitting atmospheric parameters. We test the wavelet method on 20 FGK exoplanet host stars for which higher-quality data have been independently analysed using EW measurements. -
The Habitability of Proxima Centauri B: II: Environmental States and Observational Discriminants
The Habitability of Proxima Centauri b: II: Environmental States and Observational Discriminants Victoria S. Meadows1,2,3, Giada N. Arney1,2, Edward W. Schwieterman1,2, Jacob Lustig-Yaeger1,2, Andrew P. Lincowski1,2, Tyler Robinson4,2, Shawn D. Domagal-Goldman5,2, Rory K. Barnes1,2, David P. Fleming1,2, Russell Deitrick1,2, Rodrigo Luger1,2, Peter E. Driscoll6,2, Thomas R. Quinn1,2, David Crisp7,2 1Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 2NASA Astrobiology Institute – Virtual Planetary Laboratory Lead Team, USA 3E-mail: [email protected] 4Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, 5Planetary Environments Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 6Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 7Jet Propulsion Laboratory, California Institute of Technology, M/S 183-501, 4800 Oak Grove Drive, Pasadena, CA 91109 Abstract Proxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its star’s habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here we use 1D coupled climate-photochemical models to generate self- consistent atmospheres for several of the evolutionary scenarios predicted in our companion paper (Barnes et al., 2016). These include high-O2, high-CO2, and more Earth-like atmospheres, with either oxidizing or reducing compositions. We show that these modeled environments can be habitable or uninhabitable at Proxima Cen b’s position in the habitable zone. We use radiative transfer models to generate synthetic spectra and thermal phase curves for these simulated environments, and use instrument models to explore our ability to discriminate between possible planetary states. -
Atmospheres of Hot Alien Worlds
Atmospheres of hot alien Worlds Atmospheres of hot alien Worlds Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op donderdag 5 juni 2014 klokke 10.00 uur door Matteo Brogi geboren te Grosseto, Italië in 1983 Promotiecommissie Promotors: Prof. dr. I. A. G. Snellen Prof. dr. C. U. Keller Overige leden: Prof. dr. C. Dominik University of Amsterdam Prof. dr. K. Heng University of Bern Prof. dr. E. F. van Dishoeck Dr. M. A. Kenworthy Prof. dr. H. J. A. Röttgering Ai miei genitori, per aver creduto in me, permettendomi di realizzare un sogno Contents 1 Introduction 1 1.1 Planet properties from transits and radial velocities . 2 1.2 Atmospheric characterization of exoplanets . 4 1.2.1 Atmospheres of transiting planets . 4 1.2.2 Challenges of space- and ground-based observations . 7 1.2.3 Ground-based, high resolution spectroscopy . 8 1.2.4 A novel data analysis . 10 1.3 Close-in planets and their environment . 10 1.3.1 From atmospheric escape to catastrophic evaporation . 12 1.4 This thesis . 12 2 The orbital trail of the giant planet t Boötis b 17 2.1 The CRIRES observations . 18 2.2 Data reduction and analysis . 19 2.2.1 Initial data reduction . 19 2.2.2 Removal of telluric line contamination . 19 2.2.3 Cross correlation and signal extraction . 21 2.3 The CO detection and the planet velocity trail . -
Evolutionary Processes in Interacting Binary Stars
INTERNATIONAL ASTRONOMICAL UNION SYMPOSIUM No. 151 EVOLUTIONARY PROCESSES IN INTERACTING BINARY STARS Edited by Y. KONDO, R. F. SISTER6 and R. S. POLIDAN I~A I IINTERNATIONAL ASTRONOMICAL UNION l!J KLUWER ACADEMIC PUBLISHERS Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.93, on 01 Oct 2021 at 16:03:55, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0074180900122880 EVOLUTIONARY PROCESSES IN INTERACTING BINARY STARS Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.93, on 01 Oct 2021 at 16:03:55, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0074180900122880 INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE EVOLUTIONARY PROCESSES IN INTERACTING BINARY STARS PROCEEDINGS OF THE 151ST SYMPOSIUM OF THE INTERNATIONAL ASTRONOMICAL UNION, HELD IN CORDOBA, ARGENTINA, AUGUST 5-9, 1991 EDITED BY Y. KONDO Goddard Space Flight Center, Greenbelt, Maryland, U.S.A. R. F. SISTERO Observatorio Astronomico, Universidad Nacional de Cordoba, Argentina and R. S. POLIDAN Goddard Space Flight Center, Greenbelt, Maryland, U.S.A. KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.93, on 01 Oct 2021 at 16:03:55, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0074180900122880 Library of Congress Cataloging-in-Publication Data International Astronomical Union. Symposium (151st : 1991 : Cordoba, Argent Ina ) Evolutionary processes in interacting binary stars : proceedings of the 151st Symposium of the International Astronomical Union, held in Cordoba. -
Annual Report / Rapport Annuel / Jahresbericht 1982
COVER PICTURE PHOTOGRAPHIE OE UMSCHLAGSPHOTO COUVERTURE The southern barred galaxy NGC 1365 La galaxie bamie australe NGC 1365 Die südliche Balkengalaxie NGC 1365 as photographed with the Schmidt tele prise avec le tetescope de Schmidt. Cette auJgenommen mit dem Schmidt-Tele scope. This galaxy at a distance oJ about galaxie, distante d'environ 100.000.000 skop. Die etwa 100.000.000 Lichtjahre 100,000,000 light years is also an X-ray annees-lumiere, est aussi une saurce X; entJernte Galaxie ist auch eine Röntgen• saurce; it has been investigated exten elle a ete etudiee intensivement avec le quelle; sie ist mit dem 3,6-m-Teleskop sively with the 3.6 m telescope. The blue telescope de 3,6 m. Les parties bleues sont eingehend untersucht worden. Die blau parts are populated by young massive peuplees d'etoiles jeunes de grande masse, en Regionen sind von jungen, massereI stars and gas, while the yellow light et de gas, tandis que la lumiere jaune chen Sternen und Gas bevölkert, wäh• comes Jrom older stars oJ lower mass. provient d'Ctoiles plus vieilles et de masses rend das gelbe Licht von älteren und (Schmidt photographs by H-E. Schuster; plus Jaibles. masseärmeren Sternen kommt. colour composite by C. Madsen.) (Cliches Schmidt pris par H-E. Schuster; (Schmidt-AuJnahmen: H-E. Schuster; tirage couleur: C. Madsen.) Farbmontage: C. Madsen.) Annual Report / Rapport annuel / Jahresbericht 1982 presented to the Council by the Director General presente au Conseil par le Directeur general dem Rat vorgelegt vom Generaldirektor Prof. Dr. L. Woltjer EUROPEAN SOUTHERN OBSERVATORY Organisation Europeenne pour des Recherches Astronomiques dans l'Hemisphere Austral Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre Table Table des Inhalts of Contents matleres" verzeichnis INTRODUCTION ,. -
Evidence for Enhanced Chromospheric Ca II H and K Emission in Stars with Close-In Extrasolar Planets
A&A 540, A82 (2012) Astronomy DOI: 10.1051/0004-6361/201118247 & c ESO 2012 Astrophysics Evidence for enhanced chromospheric Ca II H and K emission in stars with close-in extrasolar planets T. Krejcovᡠ1 and J. Budaj2 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ2, 61137 Brno, Czech Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovak Republic e-mail: [email protected] Received 11 October 2011 / Accepted 13 February 2012 ABSTRACT Context. The planet-star interaction is manifested in many ways. It has been found that a close-in exoplanet causes small but mea- surable variability in the cores of a few lines in the spectra of several stars, which corresponds to the orbital period of the exoplanet. Stars with and without exoplanets may have different properties. Aims. The main goal of our study is to search for the influence that exoplanets might have on atmospheres of their host stars. Unlike the previous studies, we do not study changes in the spectrum of a host star or differences between stars with and without exoplanets. We aim to study a large number of stars with exoplanets and the current level of their chromospheric activity and to look for a possible correlation with the exoplanetary properties. Methods. To analyse the chromospheric activity of stars, we exploited our own and publicly available archival spectra, measured the equivalent widths of the cores of Ca II H and K lines, and used them to trace their activity. Subsequently, we searched for their dependence on the orbital parameters and the mass of the exoplanet. -
Chromospheric Activity Induced by Short-Period Planets a Search for Modulation of Ca II H &; K Emission
Chromospheric Activity Induced by Short-Period Planets A Search for Modulation of Ca II H &; K Emission by Evgenya Shkolnik B.Sc. (Physics and Mathematics), Dalhousie University, 1998 M.Sc. (Astronomy), The University of British Columbia, 2000 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Department of Physics and Astronomy) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December 4, 2003 © Evgenya Shkolnik, 2003 Abstract I have detected the first evidence of magnetic interaction between an extra- solar planet and its parent star. Of the > 100 extrasolar planets discovered to date, approximated 20% of them are '51 Peg'-type with a Jupiter-mass planet orbiting within 0.1 As- tronomical Units. The systems with the tightest orbits (P orb < 5 days) offer the best opportunity to observe a tidal or magnetic interaction between the planet and its parent star. Stellar chromospheric activity could be modu- lated in two ways. For magnetic interaction, the modulation is predicted to be at the orbital period with enhancement near the sub-planetary point (</> = 0). Tidal interaction would stimulate activity with a period of Porb/2 with enhancements near both <j> — 0 and 0.5. The Ca II H & K line reversals at 3968 and 3933 A are the best chro- mospheric activity indicators visible from the ground. I observed the H & K emission cores of five sun-like stars with short period planets: r Boo, HD179949, HD 209458, 51 Peg and v And. -
Biological Damage of Uv Radiation in Environments Of
BIOLOGICAL DAMAGE OF UV RADIATION IN ENVIRONMENTS OF F-TYPE STARS by SATOKO SATO Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2014 Copyright c by Satoko Sato 2014 All Rights Reserved I dedicate this to my daughter Akari Y. Sato. Acknowledgements First of all, I would like to thank my supervising professor Dr. Manfred Cuntz. His advice on my research and academic life has always been invaluable. I would have given up the Ph.D. bound program without his encouragement and generous support as the supervising professor during a few difficult times in my life. I would like to thank Dr. Wei Chen, Dr. Yue Deng, Dr. Zdzislaw E. Musielak, and Dr. Sangwook Park for their interest in my research and for their time to serve in my committee. Next, I would like to acknowledge my research collaborators at University of Guanajuato, Cecilia M. Guerra Olvera, Dr. Dennis Jack, and Dr. Klaus-Peter Schr¨oder,for providing me the data of F-type evolutionary tracks and UV spectra. I would also like to express my deep gratitude to my parents, Hideki and Kumiko Yakushigawa, for their enormous support in many ways in my entire life, and to my sister, Tomoko Yakushigawa, for her constant encouragement to me. I am grateful to my husband, Makito Sato, and my daughter, Akari Y. Sato. Their presence always gives me strength. I am thankful to my parents-in-law, Hisao and Tsuguho Sato, and my grand-parents-in-law, Kanji and Ayako Momoi, for their financial support and prayers.