“Spectra and Photometry: Windows Into Exoplanet Atmospheres”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astronomy DOI: 10.1051/0004-6361/201423537 & C ESO 2014 Astrophysics
A&A 565, A124 (2014) Astronomy DOI: 10.1051/0004-6361/201423537 & c ESO 2014 Astrophysics Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b? M. Brogi1, R. J. de Kok1;2, J. L. Birkby1, H. Schwarz1, and I. A. G. Snellen1 1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands Received 29 January 2014 / Accepted 5 April 2014 ABSTRACT Context. In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmo- spheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. The system is bright enough to be an ideal target for near-infrared, high-resolution spectroscopy. Aims. Here we present the analysis of spectra of the system at 2.3 µm, obtained at a resolution of R ∼ 100 000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet’s thermal spectrum and the radial component of its orbital velocity. Methods. Unlike the telluric signal, the planet signal is subject to a changing Doppler shift during the observations. This is due to the changing radial component of the planet orbital velocity, which is on the order of 100–150 km s−1 for these hot Jupiters. -
Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i, -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
Exoplanet Community Report
JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probeclass missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2 -
IAU Division C Working Group on Star Names 2019 Annual Report
IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ WGSN Email: [email protected] The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials. -
Mètodes De Detecció I Anàlisi D'exoplanetes
MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits -
How Stars and Planets Interact: a Look Through the High-Energy Window
How Stars and Planets Interact: a Look Through the High-Energy Window Katja Poppenhaeger Queen's University Belfast → University Potsdam / Leibniz Institute for Astrophysics AIP Star-exoplanet systems Star-exoplanet systems Star-exoplanet systems Star-exoplanet systems Star-exoplanet systems tidal interaction Star-exoplanet systems tidal interaction star spinning faster → higher Lx Star-exoplanet systems magnetic interaction Star-exoplanet systems magnetic interaction stellar flares, hot spots Star-exoplanet systems planetary effects Star-exoplanet systems planetary effects atmospheric blow-off Star-exoplanet systems planetary effects aurorae Star-exoplanet systems planetary effects hot planet dynamos Star-exoplanet systems tidal interaction star spinning faster → higher Lx Tidal interaction Mathis & Remus (2013) see also Lanza & Mathis (2016) How stars age on the main sequence loss of angular momentum through stellar wind (“magnetic braking”) Bias-controlled sample: planet-hosting wide binaries image credit: Mugrauer et al. (2007); see also Raghavan (2006) upsilon And Ab B And upsilon HD 189733 Ab B HD 189733 HD 46375 Ab B Ab 46375 HD Planet-hosting widebinaries HD 178911 A Bb A 178911 HD tau Boo Ab B Boo tau CoRoT-2 Ab B CoRoT-2 55 Cnc Abcde B Abcde Cnc 55 HAT-P-20 Ab Ab B HAT-P-20 HD 109749 Ab B HD 109749 Poppenhaeger et al. (2014), Poppenhaeger et al. in prep. Planet-hosting wide binaries strong tidal interaction weak tidal interaction more active Planet-hosting widebinaries more active Planet-hosting widebinaries more active Planet-hosting widebinaries more active Planet-hosting widebinaries more active Planet-hosting widebinaries more active Several over-active systems Poppenhaeger et al. -
Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD -
Star-Planet Interactions
Star-Planet Interactions A. F. Lanza1 1INAF-Osservatorio Astrofisico di Catania, Via S. Sofia, 78 – 95123 Catania, Italy Abstract. Stars interact with their planets through gravitation, radiation, and magnetic fields. I shall focus on the interactions between late-type stars with an outer convection zone and close-in planets, i.e., with an orbital semimajor axis smaller than 0.15 AU. I shall review the roles of tides and magnetic fields considering some key observations≈ and discussing theoretical scenarios for their interpretation with an emphasis on open questions. 1. Introduction Stars interact with their planets through gravitation, radiation, and magnetic fields. I shall focus on the case of main-sequence late-type stars and close-in planets (orbit semimajor axis a < 0.15 AU) and limit myself to a few examples. Therefore, I apologize for missing important topics∼ in this field some of which have been covered in the contributions by Jardine, Holtzwarth, Grissmeier, Jeffers, and others at this Conference. The space telescopes CoRoT (Auvergne et al. 2009) and Kepler (Borucki et al. 2010) have opened a new era in the detection of extrasolar planets and the study of their interactions with their host stars because they allow us, among others, to measure stellar rotation in late-type stars through the light modulation induced by photospheric brightness inhomogeneities (e.g., Affer et al. 2012; McQuillan et al. 2014; Lanza et al. 2014). Moreover, the same flux modulation can be used to derive information on the active longitudes where starspots preferentially form and evolve (e.g., Lanza et al. 2009a; Bonomo & Lanza 2012)1. -
Statistical Properties of Exoplanets
A&A 398, 363–376 (2003) Astronomy DOI: 10.1051/0004-6361:20021637 & c ESO 2003 Astrophysics Statistical properties of exoplanets II. Metallicity, orbital parameters, and space velocities N. C. Santos1, G. Israelian2, M. Mayor1,R.Rebolo2,3,andS.Udry1 1 Observatoire de Gen`eve, 51 ch. des Maillettes, 1290 Sauverny, Switzerland 2 Instituto de Astrof´ısica de Canarias, 38200 La Laguna, Tenerife, Spain 3 Consejo Superior de Investigaciones Cient´ıficas, Spain Received 19 September 2002 / Accepted 7 November 2002 Abstract. In this article we present a detailed spectroscopic analysis of more than 50 extra-solar planet host stars. Stellar atmospheric parameters and metallicities are derived using high resolution and high S/N spectra. The spectroscopy results, added to the previous studies, imply that we have access to a large and uniform sample of metallicities for about 80 planet hosts stars. We make use of this sample to confirm the metal-rich nature of stars with planets, and to show that the planetary frequency is rising as a function of the [Fe/H]. Furthermore, the source of this high metallicity is shown to have most probably a “primordial” source, confirming previous results. The comparison of the orbital properties (period and eccentricity) and minimum masses of the planets with the stellar properties also reveal some emerging but still not significant trends. These are discussed and some explanations are proposed. Finally, we show that the planet host stars included in the CORALIE survey have similar kinematical properties as the whole CORALIE volume-limited planet search sample. Planet hosts simply seem to occupy the metal-rich envelope of this latter population. -
Aspects of the Magnetosphere-Stellar Wind Interaction of Close-In Extrasolar Planets Jean-Mathias Grießmeier
Aspects of the magnetosphere-stellar wind interaction of close-in extrasolar planets Jean-Mathias Grießmeier To cite this version: Jean-Mathias Grießmeier. Aspects of the magnetosphere-stellar wind interaction of close-in extrasolar planets. Astrophysics [astro-ph]. Technische Universität Braunschweig, 2006. English. tel-00116842 HAL Id: tel-00116842 https://tel.archives-ouvertes.fr/tel-00116842 Submitted on 28 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Aspects of the magnetosphere-stellar wind interaction of close-in extrasolar planets Von der Fakultät für Physik und Geowissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation von Jean-Mathias Grießmeier aus Kulmbach Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referent: Prof. Dr. -
Biological Damage of Uv Radiation in Environments Of
BIOLOGICAL DAMAGE OF UV RADIATION IN ENVIRONMENTS OF F-TYPE STARS by SATOKO SATO Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2014 Copyright c by Satoko Sato 2014 All Rights Reserved I dedicate this to my daughter Akari Y. Sato. Acknowledgements First of all, I would like to thank my supervising professor Dr. Manfred Cuntz. His advice on my research and academic life has always been invaluable. I would have given up the Ph.D. bound program without his encouragement and generous support as the supervising professor during a few difficult times in my life. I would like to thank Dr. Wei Chen, Dr. Yue Deng, Dr. Zdzislaw E. Musielak, and Dr. Sangwook Park for their interest in my research and for their time to serve in my committee. Next, I would like to acknowledge my research collaborators at University of Guanajuato, Cecilia M. Guerra Olvera, Dr. Dennis Jack, and Dr. Klaus-Peter Schr¨oder,for providing me the data of F-type evolutionary tracks and UV spectra. I would also like to express my deep gratitude to my parents, Hideki and Kumiko Yakushigawa, for their enormous support in many ways in my entire life, and to my sister, Tomoko Yakushigawa, for her constant encouragement to me. I am grateful to my husband, Makito Sato, and my daughter, Akari Y. Sato. Their presence always gives me strength. I am thankful to my parents-in-law, Hisao and Tsuguho Sato, and my grand-parents-in-law, Kanji and Ayako Momoi, for their financial support and prayers.