Urbanization Impacts on Land Snail Community Composition

Total Page:16

File Type:pdf, Size:1020Kb

Urbanization Impacts on Land Snail Community Composition University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2016 Urbanization Impacts on Land Snail Community Composition Mackenzie N. Hodges University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Biodiversity Commons, and the Population Biology Commons Recommended Citation Hodges, Mackenzie N., "Urbanization Impacts on Land Snail Community Composition. " Master's Thesis, University of Tennessee, 2016. https://trace.tennessee.edu/utk_gradthes/3774 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Mackenzie N. Hodges entitled "Urbanization Impacts on Land Snail Community Composition." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology. Michael L. McKinney, Major Professor We have read this thesis and recommend its acceptance: Colin Sumrall, Charles Kwit Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Urbanization Impacts on Land Snail Community Composition A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Mackenzie N. Hodges May 2016 i DEDICATION I dedicate this research to my late grandmother, Shirley Boling, who introduced me to snails in the garden in very young age. I believe her love and constant presence in my early years has changed my life in unknowable ways. I also dedicate this to Philip Moore, my partner in love, life, and happiness. His support and rationale throughout this process has been nothing short of life-saving. ii ACKNOWLEDGEMENTS I would like to sincerely thank Dr. Michael McKinney for his constant support and all the knowledge he has imparted upon me, which started on my first day of college when I sat in the front row of his biodiversity class. I credit him for developing my love of nature and understanding of the environment, which includes the tiniest snails and the most beautiful phenomenon. I would like to thank my committee member Colin Sumrall, who is a constant voice of reason, and who introduced me to hydrogen peroxide, which saved innumerable hours of time. I thank Charlie Kwit who graciously agreed to join my committee late in the process, and provided a wealth of ecological knowledge and enthusiasm. The assistance of Philip Moore, Barbara Dinkins, Matthew Blair, Nicholas Gladstone, and Evan Norton was immeasurable in helping to collect and process over 12,000 snails. Amy and Wayne Van Devender, Ron Caldwell, Tim Pierce, Daniel Douglas, and Francisco Borreo all graciously lent their knowledge of snails to turn “unknown snails” into identifications. I thank David Withers, the Tennessee State Zoologist, whose interest and advice in my work was very encouraging and appreciated, and Rusty Boles of the TWRA who assisted me in obtaining collection permits. I thank the Parks and Recreation Departments in Nashville, Knoxville, and Chattanooga who let me make other visitors uncomfortable by crawling around in the dirt and bushes looking for snails. I thank Dr. Arnold Saxton, brilliant statistician, who finally spoke about statistics in a way that left me in tears of happiness instead of despair. The knowledge I gained from his class and advising appointments was absolutely invaluable. Finally, I want to acknowledge my parents, whose encouragement and love has gotten me so far in life. Your daughter, the snail counter, sincerely thanks you for all of your support. iii ABSTRACT Urbanization has tremendous impacts on most native species. Urban ecosystems are becoming increasingly prevalent, while urban ecology is a relatively underdeveloped field. This is especially true for terrestrial mollusks, which are a surprisingly understudied organism. Due to their low mobility and dispersal potential, land snails are valuable indicators of ecosystem disturbance. For this study, land snails were collected in 54 city parks along an urban gradient to understand influences of urbanization on snail communities. Sampled parks include small extensively landscaped downtown parks, neighborhood and community parks, district parks, and large nature parks, each with variable vegetation, soil characteristics, disturbance regimes, and human activities. Sampling recovered 12,153 individual snails, representing 20 families, 43 genera, and 95 species. Seven new Tennessee state and 87 new county occurrences were recorded for Davidson, Knox, Hamilton, and Marion counties. Five non-native and one extra-limital invasive species were found, four of which are new Tennessee state records. Results show that urbanization greatly alters land snail community structure. Nature and district parks have significantly greater species richness, species diversity and species evenness than community, neighborhood, and downtown parks. Degradation of parks, distance from the park to the city center and percent of coarse woody debris explained most of the variation between park types. Non-metric multidimensional scaling shows that downtown snail communities are similar across all three cities, whereas snail communities in nature parks are distinct. This suggests that urbanization promotes homogenization among land snail communities in Tennessee. iv TABLE OF CONTENTS CHAPTER 1 INTRODUCTION .............................................................................................................. 1 Urbanization Impacts on Biodiversity and Community Similarity ............................................... 1 Introduction to Terrestrial Gastropods ................................................................................................... 2 The Importance of Terrestrial Gastropods ............................................................................................ 4 Habitat Factors that Influence Terrestrial Gastropod Communities ........................................... 6 Urbanization Impacts on Land Snails .................................................................................................. 7 Study Goals ......................................................................................................................................................... 9 CHAPTER 2 MATERIALS AND METHODS .................................................................................. 10 City and Site Selection ................................................................................................................................. 10 Sampling Overview ....................................................................................................................................... 15 Visual Survey and Processing ................................................................................................................... 15 Soil and Litter Collection and Processing ........................................................................................ 18 Snail Identification ........................................................................................................................................ 20 Habitat Data Collection ............................................................................................................................... 20 Data analysis ................................................................................................................................................... 21 Analysis of Variation ............................................................................................................................... 21 Regression Models ................................................................................................................................... 23 Indicator species analysis ..................................................................................................................... 23 Nonmetric multidimensional scaling ................................................................................................ 24 CHAPTER 3 RESULTS ......................................................................................................................... 25 Descriptive Statistics .................................................................................................................................... 25 Analysis of Snail Communities across Park Types and Cities ...................................................... 34 Abiotic and Biotic Factors Influencing Snail Communities ........................................................... 39 Indicator Species Analysis for Park Type ............................................................................................ 43 Indicator Species Analysis with Invasive Ground Cover ........................................................... 46 Synanthropic species analysis ............................................................................................................. 46 Nonmetric Multidimensional Scaling Ordination .......................................................................
Recommended publications
  • Factors Affecting the Structure and Distribution of Terrestrial Pulmonata
    Proceedings of the Iowa Academy of Science Volume 73 Annual Issue Article 60 1966 Factors Affecting the Structure and Distribution of Terrestrial Pulmonata Charles G. Atkins Let us know how access to this document benefits ouy Copyright ©1966 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Atkins, Charles G. (1966) "Factors Affecting the Structure and Distribution of Terrestrial Pulmonata," Proceedings of the Iowa Academy of Science, 73(1), 408-416. Available at: https://scholarworks.uni.edu/pias/vol73/iss1/60 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Atkins: Factors Affecting the Structure and Distribution of Terrestrial P Factors Affecting the Structure and Distribution of Terrestrial Pulmonata CHARLES G. ATKINS Abstracts Soil CaCO. levels were determined for six ecosystems in Washtenaw and Wayne Counties, Michigan and in Linn County, Iowa; and correlation between these results and the shell thickness of certain terrestrial snails was made. Species used were Anguispira alternata ( Say), Triodopsis multilineata (Say), and T. albolabris (Say). Two ecosystems had high caco. levels ( 120-144 ppm), three had intermedi­ ate levels ( 93-99ppm) and one had a low level ( 40 ppm). 'Width/thickness ratios of live and cast shells showed that those in high calcium ecosystems had thicker shells than those in low calcium ecosystems, though there were large de­ viations in the thickness values.
    [Show full text]
  • 86 Animal Miraculum Discovery of Living Anguispira Alternata (Say
    Discovery of Living Anguispira alternata (Say, 1816) (Discidae: Gastropoda) in Louisiana, USA Russell L. Minton*, Erin L. Basiger, and Casey B. Nolan Department of Biology, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209-0520, USA (Accepted January 29, 2010) Of the 13 recognized species of Anguispira in the US, 2 are listed as occurring in Louisiana (NatureServe 2009). (A) Anguispira alternata (Say, 1819) is a pulmonate land snail found throughout the eastern US, including states bordering the Mississippi River to the west (Hubricht 1985). The other species, A. strongylodes (Pfeiffer, 1854), is found across the southern US, with a range that narrowly overlaps A. alternata at its northern boundary. The shell of A. strongylodes differs from that of A. alternata by lacking streaks along the base and the umbilicus and by having smaller spots along the shell periphery (Pilsbry 1948). Hubricht (1985) listed only fossil A. alternata as occurring in Louisiana and Mississippi, while NatureServe (2009) lists it as extirpated in both states. Pilsbry viewed strongylodes as a weakly differentiated subspecies of A. alternata endemic to east-central Texas, although Hubricht (1960) later elevated strongylodes to species status and established its currently recognized range (Hubricht 1985). During a recent survey of Black Bayou Lake National Wildlife Refuge (32.6°N, 92.04°W) in Monroe, LA, we collected (B) a number of living and dead specimens that matched the original description and other published images of A. alternata and not A. strongylodes. These specimens possessed the color patterns described by Pilsbry (1948), most notably prominent spots on the periphery and streaks on the underside that separate A.
    [Show full text]
  • Succineidae, Testacelloidea and Helicoidea
    Zootaxa 3721 (2): 157–171 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3721.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:71B4B001-FB10-4B99-ACF9-720131457534 The fossil pulmonate snails of Sandelzhausen (Early/Middle Miocene, Germany): Succineidae, Testacelloidea and Helicoidea RODRIGO BRINCALEPE SALVADOR Staatliches Museum für Naturkunde Stuttgart (Stuttgart, Germany). Mathematisch-Naturwissenschaftliche Fakultät, Eberhard Karls Universität Tübingen (Tübingen, Germany). E-mail: [email protected] Abstract Sandelzhausen is an Early/Middle Miocene (Mammal Neogene zone MN5) fossil site near Mainburg, S Germany, and despite its small size it harbors a rich fossil record. Hundreds of fossil continental mollusks, almost exclusively pulmo- nates snails, were recovered during the excavations, but never received due attention by researchers. Here, the second part of a formal taxonomical treatment of the fossil pulmonates from Sandelzhausen is presented, dealing with the superfam- ilies Succineoidea, Testacelloidea and Helicoidea, and including the description of a new hygromiid species. The follow- ing species were found in the material: Succinea minima (Succineidae); Palaeoglandina sp. (Spiraxidae); Testacella zellii (Testacellidae); Klikia cf. coarctata (Elonidae); Cepaea cf. eversa, Cepaea cf. sylvestrina and Tropidomphalus cf. incras- satus (Helicidae); ?Helicodonta sp. and Helicodontidae indet. (Helicodontidae); Leucochroopsis kleinii and Urticicola perchtae sp. nov. (Hygromiidae). Key words: Gastropoda, MN5 European Mammal Neogene zone, Pulmonata, Stylommatophora, Urticicola perchtae new species Introduction The Sandelzhausen fossil site is one of the most important continental sites in Europe (Moser et al. 2009a) and its bounty include hundreds of specimens of gastropods.
    [Show full text]
  • Euconulus Alderi Gray a Land Snail
    Euconulus alderi, Page 1 Euconulus alderi Gray A land snail State Distribution Photo by Matthew Barthel and Jeffery C. Nekola Best Survey Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Status: State listed as Special Concern are smaller, have a more shiny luster, and a darker shell color. Also, the microscopic spiral lines on the base of Global and state ranks: G3Q/S2 the shell are stronger than the radial striations. This is reversed in E. fulvus (Nekola 1998). For more Family: Helicarionidae information on identifying land snails, see Burch and Jung (1988) pages 155-158 or Burch and Pearce (1990) Synonyms: none pages 211-218. Total range: The global range of Euconulus alderi Best survey time: Surveys for E. alderi are best includes Ireland, Sweden, the United Kingdom, and the performed after rain, when the soil and vegetation are United States. Within the U.S. it has been found in moist. During dry periods, a survey site can appear Iowa, Maine, Massachusetts, Michigan, Minnesota, and completely devoid of snails, while after a rain the same Wisconsin (Frest 1990, NatureServe 2007, Nekola site can be found to contain numerous individuals. 1998). This species was not known from North Temperatures should be warm enough that the ground is America until 1986 when it was discovered in Iowa and not frozen and there is no snow. Dry, hot periods during Wisconsin (Frest 1990, Nekola 1998). mid-summer should be avoided. The best time of day to survey is often in early morning when conditions are State distribution: E.
    [Show full text]
  • Bibliografie Rndr. Vojena Ložka, Drsc. [Bibliography of Rndr. Vojen
    Bohemia centralis, Praha, 33: 421–462, 2015 BIBLIOGRAFIE BIBLIOGRAPHY Bibliografie RNDr. Vojena Ložka, DrSc. Bibliography of RNDr. Vojen Ložek, DrSc. Jiří Kovanda Dobropolská 26, CZ – 102 00 Praha 10; e-mail: [email protected]; tel. 271 750 586, mobil 604 424 572 ▒ Abstract. Bibliography of RNDr. Vojen Ložek, DrSc., is compiled on the occasion of his ninetieth birthday. The present list includes 1338 items. ▒ Key words: molluscs, Holocene, Pleistocene, malacofauna, Quaternary, karst, landscape, malacology, malacostratigraphy, biostratigraphy, zoostratigraphy, chronostratigraphy, caves, loess, limestone, Central Europe, palaeoecology, Bohemia, Moravia, Slovakia, Carpathians, calcareous tufa, climatic changes, nature conservation Úvod Dr. Vojen Ložek, DrSc., se narodil 26. července 1925. Jeho celoevropský význam zhodnotila řada autorů (viz dále). K jeho devadesátinám předávám do tisku jeho úplnou bibliografii, která aktuálně čítá 1338 publikací, za jeden rok tedy vydal průměrně 17 prací! Jsou to jak práce, které napsal sám, tak se spoluautory, články i větší studie a velké monografie. To samo již vypovídá o jeho nezměrné píli a vědeckém zaměření v nejrůznějších oborech. Kromě publikovaných prací sepsal desítky odborných posudků a zpráv o průbězích svých výzkumů. Vedle toho všeho také sestavil mapy přirozených 421 BOHEMIA CENTRALIS 33 hnojiv a minerální síly půd v měřítku 1 : 200 000 s obsáhlými texty k nim, které slouží zvláště zemědělcům. Jde o soubor map pokrývající prakticky celou plochu tehdejšího Československa, celkem 31 listů! Na Ložkově bibliografii jsem pracoval průběžně po celou řadu let. Vedle separátů a knih, které mi jubilant postupně věnoval, získával jsem od něj také seznamy jeho publikací, které jsem doplňoval o jeho další, při mých studiích zjištěné práce, které mu nedopatřením ušly, neboť redakce některých periodik mu třeba zapomněly poslat autorské výtisky, takže se nedostaly do jeho seznamu.
    [Show full text]
  • Nudipleura Bathydorididae Bathydoris Clavigera AY165754 2064 AY427444 1383 AF249222 445 AF249808 599
    !"#$"%&'"()*&**'+),#-"',).+%/0+.+()-,)12+),",1+.)$./&3)1/),+-),'&$,)45&("3'+&.-6) !"#$%&'()*"%&+,)-"#."%)-'/%0(%1/'2,3,)45/6"%7/')89:0/5;,)8/'(7")<=)>(5#&%?)@)A(BC"/5)DBC'E752,3 +F/G"':H/%:)&I)A"'(%/)JB&#K#:/H#)FK%"H(B#,)4:H&#GC/'/)"%7)LB/"%)M/#/"'BC)N%#.:$:/,)OC/)P%(Q/'#(:K)&I)O&RK&,)?S+S?) *"#C(T"%&C",)*"#C(T",)UC(V")2WWSX?Y;,)Z"G"%=)2D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)[&&5&1K,)A9%BCC"$#/%#:'=)2+,)X+2;W) A9%BC/%,)</'H"%K=)3F/G"':H/%:)-(&5&1K)NN,)-(&[/%:'$H,)\$7T(1SA"6(H(5("%#SP%(Q/'#(:]:,)<'&^C"7/'%/'#:'=)2,)X2+?2) _5"%/11SA"'.%#'(/7,)</'H"%K`);D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)_"5/&%:&5&1K)"%7)</&5&1K,)</&V(&)U/%:/')\AP,) M(BC"'7S>"1%/'SD:'=)+a,)Xa333)A9%BC/%,)</'H"%K`)?>/#:/'%)4$#:'"5("%)A$#/$H,)\&BR/7)-"1);b,)>/5#CG&&5)FU,)_/':C,) >4)YbXY,)4$#:'"5("=))U&''/#G&%7/%B/)"%7)'/c$/#:#)I&')H":/'("5#)#C&$57)V/)"77'/##/7):&)!=*=)d/H"(5e)R"%&f"&'(=$S :&RK&="B=gGh) 7&33'+8+#1-.9)"#:/.8-;/#<) =-*'+)7>?)8$B5/&.7/)#/c$/%B/#)&I)G'(H/'#)$#/7)I&')"HG5(iB".&%)"%7)#/c$/%B(%1 =-*'+)7@?)<"#:'&G&7)#G/B(/#)"%7)#/c$/%B/#)$#/7)(%):C/)GCK5&1/%/.B)'/B&%#:'$B.&%)&I)/$:CK%/$'"%)B5"7/#)(%B5$7(%1) M(%1(B$5&(7/" A"$&.+)7>?)M46A\):'//#)V"#/7)&%)I&$'S1/%/)7":"#/:)T(:C&$:)&%/)&I):T&)H"g&')%$7(G5/$'"%)#$VB5"7/#e)d"h)8$7(V'"%BC(") d!"#$%&'()*+"%7),-.)/)&"h)"%7)dVh)_5/$'&V'"%BC&(7/")d0.-1('2("34$1*+"%7)5'/#$'/6*'3)"h= A"$&.+)7@?)O(H/SB"5(V'":/7)-J4DO):'//#)T(:C&$:)&%/)&I)I&$')B"5(V'".&%)G'(&'#e)d"h)i'#:)#G5(:)T(:C(%)J$&G(#:C&V'"%BC(")"%7) dVh)#G5(:#)V/:T//%)7"(%4$)1/)"%7)8/-"9'.)"%7)dBh)V/:T//%):)39)41.'6*)*)"%7):C'//)&:C/')'(%1(B$5(7#= A"$&.+)7B?)A'-"K/#):'//)V"#/7)&%)I&$'S1/%/)7":"#/:=
    [Show full text]
  • Armed Snaggletooth Gastrocopta Armifera ILLINOIS RANGE
    armed snaggletooth Gastrocopta armifera Kingdom: Animalia FEATURES Phylum: Mollusca One-eighth inch is the largest shell dimension of this species. Class: Gastropoda Snails have a complex system of organs. The mouth contains Order: a radula, a flexible, ribbonlike structure lined with rows of teeth, used to scrape food. On the head are tentacles. Most Family: Vertiginidae snails in Illinois have an eye at the tip of each upper tentacle. ILLINOIS STATUS A snail’s shell develops in the egg along with the rest of its body and continues to grow until the snail reaches sexual common, native maturity. The shell is formed by deposits of calcium laid down by the mantle. As the shell grows in its coiled shape, whorls are added. A snail cannot leave its shell. It has a strong muscle inside that is firmly attached to the shell. Snail shells grow in a variety of shapes. Shell shape, number and type of whorls and shell ornamentation, such as ribs or hairs, aid in identification of species. Snail shells may persist long after the snail has died and often can be used to identify species. The shell of this snail has projections, called teeth or denticles, in its aperture that help protect its soft body from being eaten by insect predators. BEHAVIORS Snails need to seek sheltered places to live, eat and rest. They prefer to live in moist areas and are commonly found under logs, loose bark or coarse woody debris, and in leaf litter on the forest floor. In general, snail populations are greatest in areas that have high soil calcium levels.
    [Show full text]
  • Gastropoda, Pulmonata) in Zimbabwe/Rhodesia
    BASTERIA 45: 71-72,1981 alien land snails Cochlicopa lubricella and Helix aspersa as (Gastropoda, Pulmonata) in Zimbabwe/Rhodesia A.C. van Bruggen Dept. of Systematics and Evolutionary Biology of the University, c/o Rijksmuseum van Natuurlijke Historie, Leiden,The Netherlands Two Holarctic species of Cochlicopa Risso, 1826,viz., C. lubricella (Porro, 1838) and C. lubrica (Müller, 1774), have been repeatedly recorded from southern Africa (Van Bruggen, 1967, 1980). A new record shows the first of these species to expand its distri- bution rapidly, although both are fortunately still restricted to the urban centres. Recently one of our correspondents, Mrs. Cécile Granville of Schagen (Transvaal), sub- mitted another sample for identification, this time from Zimbabwe (formerly Rhodesia). The material was obtained in October 1980 in an old, well established garden at 35 Arun- del School Road in Mount Pleasant, a northern residential suburb of Salisbury, by Mrs. Jennifer A. Conway: ‘... she found them in a few minutes all in a clump and wondered if they were mating or just newly hatched.’ (Mrs. C. Granville, in litt. 22.X.1980). The sample, preserved in alcohol in the Rijksmuseum van Natuurlijke Historie (Leiden), con- sists of 38 specimens, a proportion of which are juvenile (smallest shell 3.2 mm long with have to and ca. 3½ whorls). This proves that here we do with a vigorous healthy, repro- at in ducing population. Snail control measures aimed Helix aspersa (see below) the form effect of the usual snail bait may have had some though. The largest specimen and eleven randomly selected adult shells were measured; the ratio length/major diameter (1/d) was calculated from micrometer readings.
    [Show full text]
  • Malacologica
    FOLIA Folia Malacol. 24(3): 111–177 MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists Faculty of Biology, Adam Mickiewicz University Bogucki Wydawnictwo Naukowe Poznań, September 2016 http://dx.doi.org/10.12657/folmal.024.008 PATTERNS OF SPATIO-TEMPORAL VARIATION IN LAND SNAILS: A MULTI-SCALE APPROACH SERGEY S. KRAMARENKO Mykolaiv National Agrarian University, Paryzka Komuna St. 9, Mykolaiv, 54020, Ukraine (e-mail: [email protected]) ABSTRACT: Mechanisms which govern patterns of intra-specific vatiation in land snails were traced within areas of different size, using Brephulopsis cylindrica (Menke), Chondrula tridens (O. F. Müller), Xeropicta derbentina (Krynicki), X. krynickii (Krynicki), Cepaea vindobonensis (Férussac) and Helix albescens Rossmässler as examples. Morphometric shell variation, colour and banding pattern polymorphism as well as genetic polymorphism (allozymes and RAPD markers) were studied. The results and literature data were analysed in an attempt to link patterns to processes, with the following conclusions. Formation of patterns of intra- specific variation (initial processes of microevolution) takes different course at three different spatial scales. At micro-geographical scale the dominant role is played by eco-demographic characteristics of the species in the context of fluctuating environmental factors. At meso-geographical scale a special part is played by stochastic population-genetic processes. At macro-geographical scale more or less distinct clinal patterns are associated with basic macroclimatic
    [Show full text]
  • Corel Ventura
    Ruthenica, 2005, 15(2): 119-124. ©Ruthenica, 2005 New data on the species of the genus Cochlicopa (Gastropoda, Pulmonata) Alexey L. MAMATKULOV A. N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskyi Prospect 33, Moscow 119071, RUSSIA ABSTRACT. Structural peculiarities of male repro- evidence was presented that self-fertilization is the ductive tract of Cochlicopa lubrica (Müller, 1704) main but not a single breeding mode of Cochlicopa enable to assume that reproduction takes place all over [Ambruster, Schlegel, 1994]. It was unknown whet- the warm period. The male genitalia condition referred her these species possess spermatophores. to as lubrica-type is a spermatogenesis (male) phase. The purpose of the present study was to find out Spermatophore of Cochlicopa lubrica is described. what are lubrica-type male genitalia; whether a sper- Anatomical investigation confirms that C. repentina is matophore exists and what is the duration of repro- a synonym of C. lubrica. duction period. The investigation was carried out in Tula region, Central Russia. During the investigation about 320 specimens of the two Cochlicopa species Introduction have been dissected. According to the last guide to Pupillina molluscs Material [Schileyko, 1984], three Cochlicopa species occur in Eastern Europe: Cochlicopa lubrica (Müller, Cochlicopa lubrica (Müller, 1774) 1774), C. lubricella (Porro, 1838) and C. nitens 292 specimens of Cochlicopa lubrica from 26 localities (Gallenstein, 1852). The species can be easily dis- were examined. They were collected as follows: 12 spe- tinguished by shell size. Genital organs of the genus, cimens from Belousov Park, Tula, on April 12, 2001; as in most Pupillina, are characterized by the pre- 11 specimens from Michurino Settlement: 3 on April 15, sence of a peculiar appendix in the male tract.
    [Show full text]
  • The Species Question in Freshwater Malacology: from Linnaeus to the Present Day
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323748481 THE SPECIES QUESTION IN FRESHWATER MALACOLOGY: FROM LINNAEUS TO THE PRESENT DAY Article · March 2018 DOI: 10.12657/folmal.026.005 CITATIONS READS 0 126 1 author: Maxim Vinarski Saint Petersburg State University 134 PUBLICATIONS 664 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Biological diversity and taxonomy of freshwater snails of Central Asia View project Origin of freshwater fauna in Iceland: Cryptic glacial refugia or postglacial founder events? View project All content following this page was uploaded by Maxim Vinarski on 14 March 2018. The user has requested enhancement of the downloaded file. Folia Malacol. 26(1): 39–52 https://doi.org/10.12657/folmal.026.005 THE SPECIES QUESTION IN FRESHWATER MALACOLOGY: FROM LINNAEUS TO THE PRESENT DAY1 MAXIM V. VINARSKI Saint-Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint-Petersburg/Omsk State Pedagogical University, 14 Tukhachevskogo Emb., 644099 Omsk, Russian Federation (e-mail: [email protected]) ABSTRACT: The history of the species problem as applied to freshwater molluscs, from the beginning of scientific taxonomy to the present day, is outlined. Three main approaches to delineation of species boundaries (intuitive, conceptual, and operational) are discussed, with remarks on their practical usage in freshwater malacology. The central topic of the article is how malacologists changed their views on the essence of species category and the impact of these changes on the taxonomic practice. The opinions of some prominent and prolific workers in the field (Bourguignat, Kobelt, Hubendick, Starobogatov) are analysed as well as the debates around the theoretical foundations and practical results of the ‘Nouvelle École’ of the 19th century and the ‘comparatory’ systematics of the 20th century.
    [Show full text]
  • Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
    Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers ..................................................................................
    [Show full text]