On Integrated Urban Flood Risk Management April 18-21, 2016

Total Page:16

File Type:pdf, Size:1020Kb

On Integrated Urban Flood Risk Management April 18-21, 2016 Public Disclosure Authorized TECHNICAL DEEP DIVE ON INTEGRATED URBAN Public Disclosure Authorized RISK MANAGEMENT SUMMARY REPORT Public Disclosure Authorized Public Disclosure Authorized TECHNICAL DEEP DIVE (TDD) ON INTEGRATED URBAN FLOOD RISK MANAGEMENT APRIL 18-21, 2016 Co-organized by the World Bank Disaster Risk Management Hub, Tokyo, and the World Bank Tokyo Development Learning Center in partnership with the government of Japan (Ministry of Finance and Ministry of Land, Infrastructure, Transport and Tourism), the Urban Floods Community of Practice, and Global Facility for Disaster Reduction and Recovery This report was prepared by World Bank staff. The findings, interpretations, and conclusions expressed here do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions: The World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution to the work is given. The material in this work is subject to copyright. © 2017 International Bank for Reconstruction and Development / International Development Association or The World Bank 1818 H Street NW Washington DC 20433 CONTENTS ACKNOWLEDGEMENTS ............................................................................1 ACRONYMS AND ABBREVIATIONS ............................................................2 EXECUTIVE SUMMARY ............................................................................4 OPENING & WELCOME REMARKS .............................................................6 TECHNICAL DEEP DIVE: INTRODUCTION AND OBJECTIVES ..........................7 SESSION SUMMARIES ............................................................................9 An Evolving Approach: The Case of Japan ........................................... 10 Understanding the Current Approach and Planning Efforts ...................12 Integrating Non-Structural Measures ..................................................14 Investing in Key Structural Measures ..................................................17 SITE VISITS ........................................................................................19 Arakawa Office and Museum ............................................................. 20 Shinden Area Super Levee ..................................................................21 Miyagase Dam ...................................................................................22 Tsurumi River Catchment Center .........................................................23 Koto Flood Control Office & .............................................................. 24 Kiyosumi Pump Station ..................................................................... 24 OUTCOMES AND CONCLUSIONS ............................................................. 25 Results of Action Planning ................................................................ 26 Outcome Statements / Conclusion ..................................................... 30 Follow-Up: Public Seminar ................................................................31 Ensuring Follow-On Support and Next Steps ........................................32 ANNEXES ............................................................................................ 33 Annex 1. Agenda ............................................................................... 34 Annex 2. Speaker and Collaborator Biographies ................................. 39 Annex 3. List of Participants ............................................................. 47 ACKNOWLEDGEMENTS This summary report was produced by James (Jay) Newman (Disaster Risk Management Specialist, Global Facility for Disaster Reduction and Recovery (GFDRR)) and Vibhu Jain (Consultant, GFDRR). The report was edited by Anne Himmelfarb and designed by Robert Eisermann. The report greatly benefited from the information and support provided by the Ministry of Finance (MoF), Government of Japan, Ministry of Land, Infrastructure, Transport and Tourism (MLIT), International Centre for Water Hazard and Risk Management (ICHARM) Japan, and Catchment & Waterways Department, Public Utility Board (PUB), Singapore. The team would like to acknowledge the valuable contributions and comments provided by Mr. Tomoyuki Okada, Director, International Coordination of River Engineering and River Planning Division, MLIT and Mr. Yoichi Iwami, Chief Researcher, ICHARM. Our special thanks to Mr. Satoru Mimura and Mr. Mikio Ishiwatari of JICA for their support, valuable discussions, and feedbacks on this subject matter. The team acknowledges the valuable contributions from internal peer reviewers, including Philip Karp, Jolanta Kryspin-Watson, Toshihiro Sonoda, and Zuzana Stanton-Geddes. For other contributions and advice, the team thanks World Bank team members, including Dan Levine, Yuko Okazawa, Haruka Imoto, and Mariko Tanaka. Lastly, we thank the participating officials and Project Task Teams for their presentations, active involvement, and knowledge sharing. Acknowledgements — 1 ACRONYMS AND ABBREVIATIONS CoP ...........................Community of Practice DRM ..........................disaster risk management GFDRR .......................Global Facility for Disaster Reduction and Recovery ICHARM .....................International Centre for Water Hazard and Risk Management IFAS ..........................Integrated Flood Analysis System IUFRM .......................Integrated Urban Flood Risk Management JICA ...........................Japan International Cooperation Agency LAC ...........................Latin America and the Caribbean MLIT ..........................Ministry of Land, Infrastructure, Transport and Tourism (Japan) MOF ..........................Ministry of Finance (Japan) O&M ..........................operations and maintenance ODA ...........................official development assistance PPP ...........................public-private partnership PUB ...........................Public Utility Board (Singapore) PWRI .........................Public Works Research Institute TDD ...........................Technical Deep Dive TDLC ..........................World Bank Tokyo Development Learning Center UFCOP .......................Urban Floods Community of Practice UNESCO .....................United Nations Educational, Scientific and Cultural Organization 2 — Acronyms and Abbreviations 3 — Acronyms and Abbreviations 3 EXECUTIVE SUMMARY The first Technical Deep Dive (TDD) on Integrated The participating clients were a diverse mix: 42 Urban Flood Risk Management (IUFRM) was held percent were from infrastructure or public works on April 18–21, 2016. It was co-organized by the departments, 37 percent from water resource World Bank Disaster Risk Management Hub, Tokyo, management or hydrology departments, and 21 and the World Bank Tokyo Development Learning percent from disaster risk management agencies. A Center in partnership with the government of Japan little over half of participants (56 percent) worked (Ministry of Finance [MOF] and Ministry of Land, for national agencies, and the remainder worked for Infrastructure, Transport and Tourism [MLIT]), the subnational governments. The eight participating Urban Floods Community of Practice, and the Global countries represented approximately 3.5 million Facility for Disaster Reduction and Recovery. people exposed to floods every year. The TDD on IUFRM offered firsthand knowledge- A short survey of participants, conducted prior exchange opportunities for clients and World to the TDD, identified some of the key challenges Bank staff from Argentina, Ghana, Indonesia, the participants’ countries face in flood management: Lao People’s Democratic Republic, Madagascar, lack of or ineffective institutional frameworks, land Nigeria, the Solomon Islands, and Vietnam. It use or land management issues, financial issues, included expert presentations from MLIT, the Japan and lack of capacity for holistic approaches to flood International Cooperation Agency (JICA), and the risk reduction. The participants expressed interest International Centre for Water Hazard and Risk in gaining practical knowledge, in benefiting from Management (ICHARM), as well as from Singapore’s Japan’s experience and expertise in managing urban Public Utility Board. It was also an opportunity flood risks, and in sharing experiences with peer for MOF to highlight identification and mitigation countries. of flood risks as important means of safeguarding More specifically, participants were interested in communities. learning about nonstructural measures, investments, and operations and maintenance of structural measures. The TDD facilitated knowledge sharing on a range of relevant issues, including institutional frameworks and integrated planning processes, resilient structural investments, best practices for nonstructural measures, and capacity development measures designed to meet current and future challenges. Participants expected that the TDD would help them create plans for an integrated flood management system in their countries. 4 — Executive Summary In showcasing the experience of countries such as
Recommended publications
  • Building Urban Resilience Through Spatial Planning Following Disasters
    BUILDING URBAN RESILIENCE THROUGH SPATIAL PLANNING FOLLOWING DISASTERS THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI DISSERTATION BY NADINE MÄGDEFRAU SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF ENGINEERING (DR.-ING.) AT THE FACULTY OF SPATIAL PLANING OF THE TECHNICAL UNIVERSITY OF DORTMUND DECEMBER 2016 Front Cover: Own illustration | Photo by author (October 2015) Doctoral Committee Supervisors PROF. DR. STEFAN GREIVING Technical University of Dortmund, Germany Faculty of Spatial Planning Institute of Spatial Planning PROF. DR. MICHIO UBAURA Tohoku University Department of Architecture and Building Science Urban and Regional Planning System Lab Examiner PROF. DR. SABINE BAUMGART Technical University of Dortmund, Germany Faculty of Spatial Planning Department of Urban and Regional Planning Dissertation at the Faculty of Spatial Planning of the Technical University of Dortmund, Dortmund. BUILDING URBAN RESILIENCE THROUGH SPATIAL PLANNING FOLLOWING DISASTERS THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI DISSERTATION BY NADINE MÄGDEFRAU SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF ENGINEERING (DR.-ING.) AT THE FACULTY OF SPATIAL PLANING OF THE TECHNICAL UNIVERSITY OF DORTMUND DECEMBER 2016 ACKNOWLEDGMENT “It is complicated.” This is one of the phrases that I heard most frequently throughout my research in Tohoku Region. It referred to the reconstruction process, but can equally be applied to the endeavor of writing a dissertation. It was complicated to find an appropriate research topic. It was complicated to collect and understand the required data (mainly written in a foreign language) and to comprehend the complex processes that took and take place in Tohoku Region to recover from the Great East Japan Earthquake and Tsunami.
    [Show full text]
  • Report on Rebuilding Flood-Conscious Societies in Small
    Report on Rebuilding Flood-Conscious Societies in Small and Medium River Basins January 2017 Council for Social Infrastructure Development 1 Contents 1. Introduction - Accelerate Rebuilding Flood-Conscious Societies ............................... 3 2. Typhoons in the Hokkaido and Tohoku regions in August 2016 .................................. 5 2.1 Outline of Torrential Rains ........................................................................................ 5 2.2 Outline of Disaster Damage ....................................................................................... 6 2.3 Features of the Disasters ............................................................................................ 7 3. Small and Medium River Basins under Changing Climate and Declining Populations ................................................................................................................................................ 9 4. Key Activities Based on the Report of December 2015 ................................................ 11 5. Key Challenges to be addressed..................................................................................... 13 6. Measures Needed in Small and Medium River Basins ................................................ 15 6.1 Basic Policy ................................................................................................................ 15 6.2 Measures to be taken ................................................................................................ 17 7. Conclusion ......................................................................................................................
    [Show full text]
  • Approach for International Exchange of River Restoration Technology
    Approach for International Exchange of River Restoration Technology Ito, Kazumasa Head of planning office, Research Center for Sustainable Communities, CTI Engineering Co., Ltd, Tokyo, Japan Senior Councilor, Technical Coordination and Cooperation Division, Foundation for River Improvement and Restoration Tokyo, Japan Lecturer Musashi Institute of Technology Dept. of Civil Engineering Faculty of Engineering, Tokyo, Japan Abstract : About 50% of the population and 75% of the properties concentrate on the flood plain in Japan. The rivers have intimate relationship with our lives. Those conditions have been seen after modern river improvement projects that began about a century ago. The technology which was introduced from foreign countries was improved in conformity with geographical features and the climate condition of our nation, and has redeveloped as a Japanese original technology. In 1940's, Japan had serious natural disasters that were caused by large- scale typhoons. Those typhoons wiped out everything completely. Even though the government realized the importance of flood control and management after those natural disasters, civil work still aimed to economic development. Those construction works have become the one of factors for concentrating population and degrading natural environment in urban areas. Deterioration of river environment has become serious issue in urban development and main cause of pollution. The approaches for environmental restorations which were started about 30 years ago aimed to harmonize with nature environment and cities and human lives. There have been going on many projects called “river environmental improvement projects”, the “nature friendly river works” and “natural restoration projects.” The society has tried to find a way to live in harmony with nature.
    [Show full text]
  • Social Contribution of Environmental Conservation
    Basis for Sustainable Environmental Management Social Contribution of Environmental Conservation We are making efforts to conserve global forest ecosystems and enhance our employees’ global citizen awareness. To conserve the global environment, it Three Areas of Environmentally-friendly Social Contribution Activities is important not only to reduce environ- mental impact, but also to maintain and enhance the self-recovery capability of the global environment. Ricoh is pro- Social contribution to Natural Resources moting forest ecosystem conservation environmental environment conservation projects at many places all over the Society world in partnership with environmental Ecosystem conservation activities We work to conserve ecosystems at the global and Resources NPOs and local communities. Further- community levels as a company and support more, manufacturing subsidiaries and organization engaged in such activities. Economy Resource Production activities recovery sales companies in various regions in the Promoting employees’ voluntary activities world are committed to environmentally- We promote employees’ participation in voluntary Money Products friendly social contribution activities. In activities for environmental conservation in communities and encourage them to reduce Japan, the Ricoh Group is implement- environmental impact at home and the workplace. Consumption activities ing an Environmental Volunteer Leader Increasing environmental awareness Tolerable impact We encourage individuals and organizations to Development Program*
    [Show full text]
  • Tsurumi River ・Typical Urban River ・Class One River(一級河川) Tsurumi River ・Many Floods in Past ・ “Most Dirty” River in JAPAN
    About the Tsurumi River ・Typical urban river ・Class One river(一級河川) Tsurumi River ・Many floods in past ・ “most dirty” river in JAPAN Information Tokyo Metropolis , City Tomohiro ATSUMI Kanagawa prefecture Kota ARAKI Length 42. 5 [km] Satoshi TOKUE Drainage Tomohiro MATSUKI 235 [km2] Keitaro MATSUMOTO basin SUZUKAKE_ DAI campus History of the Tsurumi river History of the Tsurumi river Frequently Flood - Before middle of Showa era Frequently Flood - Before middle of Showa era History of the Tsurumi river History of the Tsurumi river Water pollution – Urbanization Bad landscape – After store strengthening works What is the problem? Water Master Plan Present issues of Tsurumi river ・MdMade in 2004 • Flood of river that happens many times ・ To understand issues, manage and • Water pollution because of industrialization build facilities from the viewpoint of and urbanization good water cycle • Typical urban river ・All citizen bodies cooperate with each Needfd for comprehifldhensive flood contro l measures other “Tsurumi river basin water master plan” Water Master Plan IitdfInsisted of ma il5inly 5 par ts – Protect from floods – Recover clean and big river – Protect and keep environments – Take countermeasures in case of emergency – Come in contact alota lot http://www.ktr.mlit.go.jp/keihin/tsurumi/project/masterplan/02_ritsuan/01toha_image.htm Concrete Campaign Tsurumi River • Letʼs come in contact Multipurpose Retarding Basin • Campaign to take your rubbish home • Report about Tsurumi river Information LtiLocation KdkKodukue / TiToriyama area, Kohoku-ku, Yokohama Siz e 84 [ha] Capacity 3,900,000 [m3] Amount of About 300 flood 3 control [m /sec] Facilities Nissan Stadium soccer & baseball fields tennis court Tsurumi River Tsurumi River Multipurpose Retarding Basin Multipurpose Retarding Basin When the water level of the Tsurumi River reaches very high because of heavy rain, these areas ppgerform as the retarding basin.
    [Show full text]
  • Flood Loss Model Model
    GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano
    [Show full text]
  • Kanagawa Prefecture
    www.EUbusinessinJapan.eu Latest update: August 2013 KANAGAWA PREFECTURE Prefecture’s flag Main City: Yokohama Population: 9,079,000 people, ranking 2/47 (2013) [1] Area: 2,415.84 km² [2] Geographical / Landscape description: Kanagawa Prefecture is located in the southern Kanto region of Japan and is part of the Greater Tokyo Area. Topographically, the prefecture consists of three distinct areas. The mountainous western region features the Tanzawa Mountain Range and Hakone Volcano. The hilly eastern region is characterized by the Tama Hills and Miura Peninsula. The central region, which surrounds the Tama Hills and Miura Peninsula, consists of flat stream terraces and low lands around major rivers including the Sagami River, Sakai River, Tsurumi River, and Tama River. [2] Climate: The climate is moderate due to the warm current running along the Pacific side of the archipelago. [2] Time zone: GMT +7 in summer (+8 in winter) International dialling code: 0081 Recent history, culture Kanagawa has played a major role in some significant periods in Japan's history. The first began in 1192, when the first military government was established in Kamakura. This made Kanagawa the centre of the Japanese political scene. The second period commenced in 1859, when the Port of Yokohama was opened to the world after more than 200 years of strict national isolation. Since then, Kanagawa became the gateway for the introduction of Western civilization. The third period was the 1950s, when the Japanese economy was being reconstructed after World War II. During this period, along with the development of the Keihin Industrial Belt, Kanagawa played a significant role in rebuilding the war-devastated Japanese economy.
    [Show full text]
  • PHYLOGENY and ZOOGEOGRAPHY of the SUPERFAMILY COBITOIDEA (CYPRINOIDEI, Title CYPRINIFORMES)
    PHYLOGENY AND ZOOGEOGRAPHY OF THE SUPERFAMILY COBITOIDEA (CYPRINOIDEI, Title CYPRINIFORMES) Author(s) SAWADA, Yukio Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 28(2), 65-223 Issue Date 1982-03 Doc URL http://hdl.handle.net/2115/21871 Type bulletin (article) File Information 28(2)_P65-223.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP PHYLOGENY AND ZOOGEOGRAPHY OF THE SUPERFAMILY COBITOIDEA (CYPRINOIDEI, CYPRINIFORMES) By Yukio SAWADA Laboratory of Marine Zoology, Faculty of Fisheries, Bokkaido University Contents page I. Introduction .......................................................... 65 II. Materials and Methods ............... • • . • . • . • • . • . 67 m. Acknowledgements...................................................... 70 IV. Methodology ....................................•....•.........•••.... 71 1. Systematic methodology . • • . • • . • • • . 71 1) The determinlttion of polarity in the morphocline . • . 72 2) The elimination of convergence and parallelism from phylogeny ........ 76 2. Zoogeographical methodology . 76 V. Comparative Osteology and Discussion 1. Cranium.............................................................. 78 2. Mandibular arch ...................................................... 101 3. Hyoid arch .......................................................... 108 4. Branchial apparatus ...................................•..••......••.. 113 5. Suspensorium.......................................................... 120 6. Pectoral
    [Show full text]
  • Japan: Tokai Heavy Rain (September 2000)
    WORLD METEOROLOGICAL ORGANIZATION THE ASSOCIATED PROGRAMME ON FLOOD MANAGEMENT INTEGRATED FLOOD MANAGEMENT CASE STUDY1 JAPAN: TOKAI HEAVY RAIN (SEPTEMBER 2000) January 2004 Edited by TECHNICAL SUPPORT UNIT Note: Opinions expressed in the case study are those of author(s) and do not necessarily reflect those of the WMO/GWP Associated Programme on Flood Management (APFM). Designations employed and presentations of material in the case study do not imply the expression of any opinion whatever on the part of the Technical Support Unit (TSU), APFM concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries. WMO/GWP Associated Programme on Flood Management JAPAN: TOKAI HEAVY RAIN (SEPTEMBER 2000) Ministry of Land, Infrastructure and Transport, Japan 1. Place 1.1 Location Positions in the flood inundation area caused by the Tokai heavy rain: Nagoya City, Aichi Prefecture is located at 35° – 35° 15’ north latitude, 136° 45’ - 137° east longitude. The studied area is Shonai and Shin river basin- hereinafter referred to as the Shonai river system. It locates about the center of Japan including Nagoya city area, 5th largest city in Japan with the population about 3millions. Therefore, two rivers flow through densely populated area and into the Pacific Ocean and are typical city-type rivers in Japan. Shin Riv. Border of basin Shonai Riv. Flooding area Point of breach ●Peak flow rate in major points on Sept. 12 (app. m3/s) ← Nagoya City, ← ← ino ino Aichi Prefecture j Ku ← 1,100 Shin Riv. ← 720 ← → ← ima Detention j Basin Shinkawa Araizeki Shidami Biwa (Fixed dam) Shin Riv.
    [Show full text]
  • Pollutioninyokohama 11 Environmental Protection Measures Inyokohama 15 Organization of Environmentalprotection Inyokohamacity 24
    Public Disclosure Authorized 1732 __ ~~~~voL4 Public Disclosure Authorized 4 .........R t., X ~\ r_ Public Disclosure Authorized M Ls t ' ~~~~~~~~ Public Disclosure Authorized Japan'sExperience in Urban Environmental Management Yokohama A Case Study Metropolitan Environmental .4W Improvement M E I P Program April 1996 Table of Contents Page Table of Contents iii Foreword v Executive Summary vii Chapter 1: Profile of the City ofYokohama 1 The City ofYokohama 1 History of the City 4 Chapter 2: EnvironmentalProtection Measures inYokohama 11 Environmental PollutioninYokohama 11 Environmental Protection Measures inYokohama 15 Organization of EnvironmentalProtection inYokohamaCity 24 Chapter 3: Key EnvironmentalConservation Measures, and Organization inYokohama 29 Pollution Control Agreements 29 Kanazawa Reclamation Project and Industrial Relocation 37 Relationships Between Environment and the EconomyinYokohama 45 Chapter 4: Environmental Protection Measures in the Private Sector 51 Power Generation: Coal-Fired ElectricPower plant 51 ChemicalIndustry 52 Food Processing Company 56 Small and Medium-sized ElectronicsParts Manufacture 60 Chapter 5: Summary And Conclusion 63 Evaluation of EnvironmentalProtection Measures inYokohama 63 Conclusion on EnvironmentalProtection Measures inYokohama 67 Annexes 69 Annexl: YokohamaAutomobile Pollution Control Program 70 Annex 2: Changes of Pollution Control Agreement between YokohamaCity and Isogo Thermal ElectricPower Plant, ElectricDevelopment Inc. (Majorcontents of the agreements) 72 Tableof Contents iii
    [Show full text]
  • Restoration of Tsurumi River
    Restoration of Tsurumi River Tsurumi River basin was quite activated from the late 1960s with rapid city development, but it also came to have various problems such as flood control, environment, and disaster prevention. Given the situation that flood control safety level was hard to maintain, a committee of academic experts, basin local government, and river administrator was set to find a basin-wide solution for integration of river development and flood control measures. This is a pioneer of total flood control efforts in Japan. Beyond the basin measures such as rain runoff control, the local government’s urbanization plan and development projects were involved. Key to Restoration ¾ Tsurumi River basin water master plan (flood water management, normal water management, natural environment management, earthquake and fire management, and waterfront partnership management) ¾ Water quality improvement Overview of the River Tsurumi River, a class A river originating in Machida City in Tokyo, flows through Aoba Ward, Midori Ward, Tsuzuki Ward, Kouhoku Ward, and Tsurumi Ward (Yokohama City), and Saiwai Ward (Kawasaki City). It flows into Tokyo Bay from Tsurumi Ward. Its total length is 42.5 km and the basin dimension is 235 km2. Though activated from 1960s with rapid city development, it had various problems such as flood control, environment, and disaster prevention. Basin local government and people work together in establishing “Tsurumi River Tsurumi basin water master plan,” which serves as the total guideline for water cycle River revival including rain runoff control. Project Efforts for Restoration Tsurumi River basin water master plan includes: 【Flood water management】 Water control measures are taken basin-wide to secure Tsurumi River basin against flood and to minimize flooded buildings and houses due to abnormal downpour.
    [Show full text]
  • Flood Control in Small Urban Rivers: an Example of River Projects in Tokyo
    Urban Water 215 Flood control in small urban rivers: an example of river projects in Tokyo K. Sato1, K. Masuhara1, S. Mochida1, T. Yamamoto2, H. Gotoh3 & M. Takezawa3 1Tokyo Metropolitan Government, Japan 2Chuo College of Technology, Japan 3Department of Civil Engineering, Nihon University, Japan Abstract The Tokyo Metropolitan Government (TMG) has conducted a variety of river projects to protect citizens and their property from damage due to flooding, storm surges, and landslides. Projects have also been undertaken to improve and create riversides that support nature, and to protect and restore the natural environment. The hardening of urban and inner city areas with high population densities and developed areas have relatively poor water retention and flood prevention properties. Consequently, these areas have sustained extensive water damage during times of heavy rainfall and flooding. Indeed, extensive flood damage was observed in downtown areas as recently as September 2005 and August 2008, demonstrating the need to implement additional flood mitigation measures to prevent flood damage in the metropolitan area. The number of rivers currently under the direct management of the TMG is 61 class A rivers and two class B rivers, which together measure 494.82 km. In addition, the city office of the TMG also controls 33 class A rivers and 13 class B rivers, which together equal 215.91 km. The main projects undertaken by the TMG is small river development, reinforce of lowland, improvement of the river environment for ecology, improvement of sediment disaster control facilities, development of software programs, river enlightenment activities and improved shoreline protection measures. In 2010, the total costs of river projects amounted to approximately JPY 65 billion.
    [Show full text]