Waters Unispray Ionization Source White Paper

Total Page:16

File Type:pdf, Size:1020Kb

Waters Unispray Ionization Source White Paper [ WHITE PAPER ] Waters UniSpray Ionization Source S. Bajic Waters Corporation, Wilmslow, UK INTRODUCTION The first commercial electrospray ionization (ESI) sources for mass spectrometers became available at the end of the 1980s. These early sources broadened the applications of mass spectrometry (MS) to biological compounds such as peptides and proteins which would typically be infused into the source at low flow rates of 1–5 µL/min. Under these low flow conditions, atomisation was achieved via a classical Taylor cone which was formed at the end of the liquid capillary following the application of a few kilovolts between the capillary and the ion inlet cone. More recently, this type of infusion-based analysis for biological applications has been superseded by nanospray ESI capillaries that operate at extremely low flow rates (10–1000 nL/min) and offer high ionization efficiency for small sample volumes. From a commercial viewpoint, the greatest leap in the utilisation of ESI sources came from the marriage of mass spectrometry with liquid chromatography (LC-MS) which enabled analytical chemists to benefit from the enhanced specificity offered by both techniques. In order to adapt ESI sources to the high flow rates (0.1–1.0 mL/min) typically UniSpray Ionization Source. used in LC, or its modern equivalent UPLC, it was necessary to aid the atomisation process with the addition of a concentric flow of high velocity nitrogen gas at the ESI tip. However, when conducting infusion experiments with a fixed analyte concentration from flow rates of 10 nL/min to 1 mL/min, it is common to observe only a 20 times increase in analyte ion signal at the higher flow rate whilst the analyte consumption has increased by a factor of 100,000. This is known to be due to the poor ionization efficiency of high flow rate ESI which is critically dependent on a number of factors such as droplet size distribution, droplet charge per unit volume, droplet evaporation rates and additional factors such as the inlet sampling efficiency. Additionally, ionization efficiency can become particularly challenging when using highly aqueous mobile phases. In this white paper, we introduce a new ionization technique called UniSpray™ which attempts to increase ionization efficiency by interacting a high velocity spray with a high voltage, cylindrical target that is positioned in an off-axis, cross-flow arrangement. A number of physical processes will be described which are believed to be important mechanisms that lead to enhanced UniSpray sensitivity when compared to ESI, viz. high Weber number droplet impacts, the Coanda effect, vortex shedding, and counter-rotating surface microvortices. 1 [ WHITE PAPER ] WHAT IS UNISPRAY? The 1.6 mm-diameter, 35 mm long, cylindrical HV target is UniSpray shares some common features with high flow constructed from a cold-drawn, 316L stainless steel wire that rate ESI sources in that the liquid flow is nebulised by a is polished to a near-mirror finish with 1 µm-grade lapping high velocity, concentric nitrogen gas flow. However, in paper. The target is connected to a 0–5 kV DC power supply comparison to ESI, the high voltage is applied to a cylindrical via a 47 MΩ current-limiting resistor. Since the target has a target electrode that is positioned in close proximity to low thermal conductance to the source housing, it rapidly the grounded nebulizer such that the near-supersonic jet reaches an equilibrium temperature that is equal to the local impinges on the target surface. A schematic of the UniSpray temperature of the heater gas (typically >250 °C for a heater source is shown in Figure 1. The source is formed by directing set-point temperature of 500 °C). In order to optimise source a high velocity nebulised jet from a grounded sprayer onto sensitivity, it is critically important to adjust the point at which a cylindrical metal target that is held at a high voltage and the collimated spray impacts on the cylindrical target. As is located between the sprayer and the ion inlet orifice of shown in Figure 1, the maximum signal intensity is typically the mass spectrometer. For singly charged analytes, it is obtained when the spray is asymmetrically positioned such conventional to use a positive potential of typically 1 kV for that it impacts on the upper right quadrant of the target. positive ion analysis and vice versa for negative ion analysis. Under these conditions, the gas flow becomes attached to a For multiply charged analytes, such as peptides and proteins, portion of the curved surface and results in asymmetric gas it is generally found that higher potentials of 3–4 kV are streamlines in the wake that are directed towards the ion required for signal optimisation. The pneumatically-assisted inlet orifice. This flow phenomenon is known as the Coanda nebulizer is formed from a 130 µm I.D. by 220 µm o.d. liquid effect. Under the influence of the Coanda flow field, ions and delivery capillary (stainless steel) that is surrounded by a charged droplets are directed towards the ion inlet which is 330 µm I.D. nebulizer tube (stainless steel) with a restriction surrounded by a cone gas nozzle that supports a drying gas length of 10 mm. Nitrogen gas is delivered to the nebulizer flow of nitrogen at 150 L/hr. tube at a gauge pressure of 7 bar. Under these conditions, UniSpray sources are generally found to give enhanced the nitrogen jet will be near supersonic at a distance of a few ionization efficiency when compared to high flow rate ESI millimetres from the nebulizer tip. The distance over which the which, in turn, can lead to enhanced analytical sensitivity. inner capillary protrudes from the nebulizer tube is adjustable Some general characteristics of the UniSpray source have and is typically found to optimise at very small protrusions been studied by Lubin et al1. These authors compared the (<0.2 mm) where the spray appears highly collimated. In a signal intensity obtained by ESI and UniSpray for small conventional manner, the nebulizer is also surrounded by an pharmaceutical compounds (16 analytes in positive ion annular heater that delivers hot nitrogen gas at a flow rate of mode and 7 in negative ion mode) with acidic, basic and typically 1200 L/hr. neutral mobile phase types. Figure 2 shows the signal gains (UniSpray ion intensity divided by ESI ion intensity) obtained at various mobile phase compositions and for three different flow rates. Here, each point is an average of the pooled data for each compound and each mobile phase type. From these plots it can be concluded that the signal intensity observed with the UniSpray source is, on average, higher than the ESI signal for all mobile phase compositions with relatively higher gains observed under higher aqueous conditions. The full data set exhibited a strong compound dependence where, whilst UniSpray gains in excess of x20 were observed under certain conditions, other analytes could occasionally give greater responses with an ESI source. In view of the performance enhancements outlined above, the following sections will consider some underlying physical mechanisms that are unique to the UniSpray source and may contribute to the observed increase in ionization efficiency or ion sampling efficiency. Figure 1. A schematic of the UniSpray API source. Waters UniSpray Ionization Source 2 [ WHITE PAPER ] Figure 2. A comparison of the average signal intensity ratios for UniSpray and ESI versus mobile Figure 3. Typical droplet size distribution for a pneumatically phase composition for 16 positive ion analytes and 7 negative ion analytes (from reference1). assisted ESI probe at a flow rate of 0.5 mL/min of water (Malvern Instruments Spraytec system). DROPLET SIZE DISTRIBUTION: THE LIMITATION OF HIGH experimental techniques where, in particular, FLOW RATE ESI the ping-pong drift cell method4 more closely In the traditional ESI model, charged droplets are formed by positive and resembles the dynamics of LC/MS sources. negative charge separation in the high electric field region at the tip of the The diameter of a droplet, dp, after an evaporation liquid capillary. At very low flow rates (<1 µL/min), this process proceeds time, t, an evaporation rate, s, and an initial with extremely high efficiency to yield highly-charged, sub-micron droplets droplet diameter, d0, is given by that almost instantaneously give rise to gas phase ions due to Rayleigh 2 2 dp = d0 − st (i) disintegration processes2. However, at the high flow rates typically used in LC and UPLC-MS (100–800 µL/min), it is necessary to use a high velocity where s has been experimentally determined as 2 -1 nebulizer gas to atomize the liquid flow, a process which is known to 1250 and 6500 µm s for water and acetonitrile, 4 produce larger droplets with a lower charge per unit volume and hence respectively . According to equation (i), Figure lower ionization efficiency3. 4 shows a plot of initial droplet diameter versus droplet diameter after an evaporation period Whilst the use of a high velocity gas is advantageous from an atomisation of 100µs for water and acetonitrile. From these viewpoint, it has the disadvantage of reducing the residence time of data, it becomes apparent that (i) droplets above droplets between the ESI capillary and the ion inlet orifice of the mass 2 µm in diameter do not undergo significant spectrometer, which, in turn, reduces the time available for droplet evaporation in this time frame and (ii) rapid evaporation which is critical to the Rayleigh disintegration process. evaporation only occurs for diameters below In-house measurements, using Phase Doppler Anemometry (PDA) and the “knee” of the curve, which corresponds Laser Diffraction Particle Sizing (LDPS) reveal that the ESI and UniSpray to approximately 0.4 and 1.0 µm for water nebulizers typically produce initial droplet size distributions that peak at and acetonitrile, respectively.
Recommended publications
  • Mass Spectrometer Business Presentation Materials
    Mass Spectrometer Business Presentation Materials Hiroto Itoi, Corporate Officer Deputy General Manager of the Analytical & Measuring Instruments Division Shimadzu Corporation Jul. 3, 2018 Contents I. Introduction • Expansion of Mass Spectrometry ………………………………………………………………… p.3 • History of Shimadzu's Growth in Mass Spectrometry …………………………………………… p.5 II. Overview of Mass Spectrometers • Operating Principle, Demand Trends, and Vendors ……………………………………………… p.9 • Mass Spectra ………………………………………………………………………………………… p.10 • Configuration of Mass Spectrometers …………………………………………………………… p.11 • Ionization …………………………………………………………………………………………… p.12 • Mass Separation …………………………………………………………………………………… p.14 III. Shimadzu's Mass Spectrometer Business • Product Type ………………………………………………………………………………………… p.17 • Application Software ………………………………………………………………………………… p.18 • Growth Strategy for Mass Spectrometer Business ……………………………………………… p.19 • Expand/Improve Product Lines …………………………………………………………………… p.20 • Measures to Expand Application Fields …………………………………………………………… p.24 • Measures to Automate Data Processing Using AI ……………………………………………… p.25 IV. Summary • Future Direction ……………………………………………………………………………………… p.26 July 2018 Mass Spectrometer Business Presentation Materials 2 I. Introduction Expansion of Mass Spectrometry (1) Why Mass Spectrometry? Mass spectrometry is able to analyze a wide variety of compounds with high accuracy and high efficiency (simultaneous multicomponent analysis). It offers superior characteristics that are especially beneficial in the following fields,
    [Show full text]
  • Contents • Introduction to Proteomics and Mass Spectrometry
    Contents • Introduction to Proteomics and Mass spectrometry - What we need to know in our quest to explain life - Fundamental things you need to know about mass spectrometry • Interfaces and ion sources - Electrospray ionization (ESI) - conventional and nanospray - Heated nebulizer atmospheric pressure chemical ionization - Matrix assisted laser desorption • Types of MS analyzers - Magnetic sector - Quadrupole - Time-of-flight - Hybrid - Ion trap In the next step in our quest to explain what is life The human genome project has largely been completed and many other genomes are surrendering to the gene sequencers. However, all this knowledge does not give us the information that is needed to explain how living cells work. To do that, we need to study proteins. In 2002, mass spectrometry has developed to the point where it has the capacity to obtain the "exact" molecular weight of many macromolecules. At the present time, this includes proteins up to 150,000 Da. Proteins of higher molecular weights (up to 500,000 Da) can also be studied by mass spectrometry, but with less accuracy. The paradigm for sequencing of peptides and identification of proteins has changed – because of the availability of the human genome database, peptides can be identified merely by their masses or by partial sequence information, often in minutes, not hours. This new capacity is shifting the emphasis of biomedical research back to the functional aspects of cell biochemistry, the expression of particular sets of genes and their gene products, the proteins of the cell. These are the new goals of the biological scientist: o to know which proteins are expressed in each cell, preferably one cell at a time o to know how these proteins are modified, information that cannot necessarily be deduced from the nucleotide sequence of individual genes.
    [Show full text]
  • Modern Mass Spectrometry
    Modern Mass Spectrometry MacMillan Group Meeting 2005 Sandra Lee Key References: E. Uggerud, S. Petrie, D. K. Bohme, F. Turecek, D. Schröder, H. Schwarz, D. Plattner, T. Wyttenbach, M. T. Bowers, P. B. Armentrout, S. A. Truger, T. Junker, G. Suizdak, Mark Brönstrup. Topics in Current Chemistry: Modern Mass Spectroscopy, pp. 1-302, 225. Springer-Verlag, Berlin, 2003. Current Topics in Organic Chemistry 2003, 15, 1503-1624 1 The Basics of Mass Spectroscopy ! Purpose Mass spectrometers use the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules to separate them. Therefore, mass spectroscopy allows quantitation of atoms or molecules and provides structural information by the identification of distinctive fragmentation patterns. The general operation of a mass spectrometer is: "1. " create gas-phase ions "2. " separate the ions in space or time based on their mass-to-charge ratio "3. " measure the quantity of ions of each mass-to-charge ratio Ionization sources ! Instrumentation Chemical Ionisation (CI) Atmospheric Pressure CI!(APCI) Electron Impact!(EI) Electrospray Ionization!(ESI) SORTING DETECTION IONIZATION OF IONS OF IONS Fast Atom Bombardment (FAB) Field Desorption/Field Ionisation (FD/FI) Matrix Assisted Laser Desorption gaseous mass ion Ionisation!(MALDI) ion source analyzer transducer Thermospray Ionisation (TI) Analyzers quadrupoles vacuum signal Time-of-Flight (TOF) pump processor magnetic sectors 10-5– 10-8 torr Fourier transform and quadrupole ion traps inlet Detectors mass electron multiplier spectrum Faraday cup Ionization Sources: Classical Methods ! Electron Impact Ionization A beam of electrons passes through a gas-phase sample and collides with neutral analyte molcules (M) to produce a positively charged ion or a fragment ion.
    [Show full text]
  • Methods of Ion Generation
    Chem. Rev. 2001, 101, 361−375 361 Methods of Ion Generation Marvin L. Vestal PE Biosystems, Framingham, Massachusetts 01701 Received May 24, 2000 Contents I. Introduction 361 II. Atomic Ions 362 A. Thermal Ionization 362 B. Spark Source 362 C. Plasma Sources 362 D. Glow Discharge 362 E. Inductively Coupled Plasma (ICP) 363 III. Molecular Ions from Volatile Samples. 364 A. Electron Ionization (EI) 364 B. Chemical Ionization (CI) 365 C. Photoionization (PI) 367 D. Field Ionization (FI) 367 IV. Molecular Ions from Nonvolatile Samples 367 Marvin L. Vestal received his B.S. and M.S. degrees, 1958 and 1960, A. Spray Techniques 367 respectively, in Engineering Sciences from Purdue Univesity, Layfayette, IN. In 1975 he received his Ph.D. degree in Chemical Physics from the B. Electrospray 367 University of Utah, Salt Lake City. From 1958 to 1960 he was a Scientist C. Desorption from Surfaces 369 at Johnston Laboratories, Inc., in Layfayette, IN. From 1960 to 1967 he D. High-Energy Particle Impact 369 became Senior Scientist at Johnston Laboratories, Inc., in Baltimore, MD. E. Low-Energy Particle Impact 370 From 1960 to 1962 he was a Graduate Student in the Department of Physics at John Hopkins University. From 1967 to 1970 he was Vice F. Low-Energy Impact with Liquid Surfaces 371 President at Scientific Research Instruments, Corp. in Baltimore, MD. From G. Flow FAB 371 1970 to 1975 he was a Graduate Student and Research Instructor at the H. Laser Ionization−MALDI 371 University of Utah, Salt Lake City. From 1976 to 1981 he became I.
    [Show full text]
  • A Novel High Resolution Accurate Mass Orbitrap-Based GC-MS
    ROUTINE OR RESEARCH GC-Orbitrap for Environmental Analysis a collaboration between ROUTINE OR RESEARCH GC-Orbitrap for Environmental Analysis Foreword A Novel High Resolution Accurate Mass Orbitrap-based GC-MS Platform for Routine Analysis of Short Chained Chlorinated Paraffins In this study, the performance of a novel bench top, high resolution accurate mass Orbitrap™-based GC-MS was tested for the analysis of SCCPs. System performance was tested using full-scan acquisition and simple instrumental setup. Pyrolysis-GC-Orbitrap MS - A Powerful Analytical Tool for Identification and Quantification of Microplastics in a Biological Matrix The purpose of the experiments described in this work was to assess the applicability of pyrolysis-gas chromatography-Orbitrap™ mass spectrometry for the qualitative and quantitative analysis of plastic polymers in complex biological matrices. Low Level Quantification of NDMA and Non-targeted Contaminants Screening in Drinking Water using GC Orbitrap Mass Spectrometry In this work, a sensitive and selective method for NDMA detection and quantification using high resolution accurate mass GC Orbitrap™ technology is described. Overcoming Analytical Challenges for Polybrominated Diphenyl Ethers (PBDEs) Analysis in Environmental Samples using Gas Chromatography – Orbitrap Mass Spectrometry The note demonstrates the quantitative performance of the Thermo Scientific™ Exactive™ GC Orbitrap™ GC-MS mass spectrometer for the analysis of polybrominated diphenyl ethers (PBDEs) in environmental samples. Versatility of GC-Orbitrap Mass Spectrometry for the Ultra-trace Detection of Persistent Organic Pollutants in Penguin Blood from Antarctica In this study, the performance of the Thermo Scientific™ Q Exactive™ GC Orbitrap™ mass spectrometer was evaluated for routine analysis of POPs within King penguin blood from Antarctica.
    [Show full text]
  • Thermospray Mass Spectrometry , a New Technique for Studying The
    430 Notizen Thermospray Mass Spectrometry , a New charged droplets. These droplets decompose in a Technique for Studying the Relative Stability heated jet chamber in which a pressure of several of Cluster Ions of Salts mbar is maintained, and desolvated ions enter the mass analyser via a small orifice. Typically quadru- G. Schmelzeisen-Redeker, S. S. Wong, pole mass filters are employed. For the production U. Giessmann, and F. W. Röllgen of salt cluster ions the temperatures of the jet and in Institut für Physikalische Chemie der Universität Bonn the jet chamber must be high enough to allow the Z. Naturforsch. 40a,430-431 (1985); decomposition of charged small solid particles. For received February 23. 1985 the ammonium halide this condition is easily achieved. Thermospray (TSP) mass spectrometry provides a means of studying stability effects in the frequency distribution of The ammonium chloride cluster ion distribution cluster ions of salts under conditions of heat transfer to the as obtained by the new TSP technique is shown in cluster ions via thermal collisions in a gas. This is demon- strated for the cluster ions of ammonium chloride. The Figure 2. The TSP mass spectrum was obtained TSP mass spectrum is compared with that obtained by with the experimental arrangement described in sputtering of the salt in secondary ion mass spectrometry. [16], A quadrupole mass filter with a mass range 1-420 was utilized. A 0.1 molar aqueous solution of NH C1 was applied. The temperature at the end Cluster ions of salts are easily generated by 4 of the capillary was 250 °C and the temperature of particle impact in secondary ion mass spectrometry the jet chamber was 180 °C.
    [Show full text]
  • Two New Devices for Identifying Electrochemical Reaction
    Article pubs.acs.org/ac Two New Devices for Identifying Electrochemical Reaction Intermediates with Desorption Electrospray Ionization Mass Spectrometry † ‡ † † Heyong Cheng, , Xin Yan, and Richard N. Zare*, † Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States ‡ College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China *S Supporting Information ABSTRACT: Desorption electrospray ionization mass spectrometry (DESI- MS) previously has been used to capture and identify transient intermediates in electrochemical redox reactions on a platinum-covered rotating waterwheel. We present here two different setups that use a flat surface with porous carbon tape as the working electrode, where analyte-containing microdroplets from the DESI probe contacted with electrolyte supplied onto the surface. One setup had the conducting carbon tape in the form of a grooved inclined plane; the other one was in the form of a flat plane that had the conducting carbon tape as its front surface. Both these setups, which were relatively robust and easy to operate, overcame interference from the electrospray sheath gas that disturbs and dries the flowing electrolyte. By using the inclined-plane device, we observed radical cations and dimer species generated in the electrochemical oxidation of triphenylamine, diimine and imine alcohol in the electrochemical oxidation of uric acid, and the reductive cleavage of disulfide bonds in glutathione disulfide. By using the device with the flat carbon tape, we detected nitrenium ions generated in the electrochemical oxidation of N,N′-dimethyoxydiphenylamine and di-p-tolylamine. Our experience suggests that the flat porous carbon tape surface might be preferable over the inclined plane because of its ease of setup.
    [Show full text]
  • Accelerated Reaction Kinetics in Microdroplets: Overview and Recent Developments
    PC71CH02_Cooks ARjats.cls April 9, 2020 11:29 Annual Review of Physical Chemistry Accelerated Reaction Kinetics in Microdroplets: Overview and Recent Developments Zhenwei Wei,1 Yangjie Li,1 R. Graham Cooks,1 and Xin Yan2 1Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; email: [email protected] 2Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA; email: [email protected] Annu. Rev. Phys. Chem. 2020. 71:31–51 Keywords The Annual Review of Physical Chemistry is online at reaction acceleration, interfacial reactions, ion solvation, electrospray Annu. Rev. Phys. Chem. 2020.71:31-51. Downloaded from www.annualreviews.org physchem.annualreviews.org Access provided by Radboud Universiteit Nijmegen on 04/15/21. For personal use only. ionization, mass spectrometry https://doi.org/10.1146/annurev-physchem-121319- 110654 Abstract Copyright © 2020 by Annual Reviews. Various organic reactions, including important synthetic reactions involving All rights reserved C–C, C–N, and C–O bond formation as well as reactions of biomolecules, are accelerated when the reagents are present in sprayed or levitated micro- droplets or in thin films. The reaction rates increase by orders of magnitude with decreasing droplet size or film thickness. The effect is associated with reactions at the solution–air interface. A key factor is partial solvation of the reagents at the interface, which reduces the critical energy for reaction. This phenomenon is of intrinsic interest and potentially of practical value as a simple, rapid method of performing small-scale synthesis. 31 PC71CH02_Cooks ARjats.cls April 9, 2020 11:29 1. INTRODUCTION: BACKGROUND AND HISTORY Mass spectrometry (MS), the art of ionization of compounds and manipulation of the resulting ions in vacuum, is widely used to measure the mass-to-charge ratios (m/z) of ionized compounds for their chemical characterization (1).
    [Show full text]
  • Influence of Postharvest Handling on the Concentration of Pesticide
    POSTHARVEST BIOLOGY & TECHNOLOGY HORTSCIENCE 37(3):554–558. 2002. from the early (‘Juneprince’), middle (‘Har- vester’), late (‘Flameprince’ and ‘O’Henry’) and very late (‘Parade’) harvest seasons, fairly Influence of Postharvest Handling on represent the full range of pesticide use pat- terns. Three different grower operations were the Concentration of Pesticide sampled based on the differences in field op- erations among those operations (Table 1). Residues in Peach Peel Farm A and C sprayed methyl parathion from every row middle at a lower rate than Farm B Kathryn C. Taylor1 where methyl parathion was sprayed in alter- nate row middles. Farm C was located in an Horticulture Department, University of Georgia, 21 Dunbar Road, Byron, area with slightly different insect and disease GA 31008 pressures, resulting in somewhat reduced ap- plication rates and frequencies. Parshall B. Bush 1998 Trial. ‘Flameprince’ and ‘O’Henry’ Agricultural Services Laboratory, University of Georgia, 2300 College peel samples, taken before and after packing Station Road, Athens, GA 32602 house process, were analyzed for methyl par- athion, fenbuconazole, propiconazole, cap- Additional index words. captan, carbaryl, methyl parathion, packing line, phosmet, tan and carbaryl. Farm records indicated that propiconazole, Prunus persica the following spray rates were applied by an airblast sprayer at 935 L·ha–1: 1.17 L L·ha–1 Abstract. To discern how the packing process influences pesticide residue loads on peach methyl parathion (Penncap M®; Elf Atochem, (Prunus persica L. Batsch) fruit; postharvest, post hydrocooled, and post brushed fruit Philadelphia) on 8 Apr. 1998, 15 May 1998, were assessed for levels of several pesticides.
    [Show full text]
  • Discovery and Quantitation of Protein Modifications Using Targeted Mass
    Discovery and Quantitation of Protein Modifications using Targeted Mass Spectrometry Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jia You, M.E. Graduate Program in Chemistry The Ohio State University 2012 Dissertation Committee: Dr. Michael A. Freitas, Advisor Dr. Dehua Pei, Co-Advisor Dr. Anne Co Copyright by Jia You 2012 Abstract In this dissertation, efforts were focused on the development of targeted proteomic assays to elucidate differences in protein profiles present in diseases and their correlation with other molecular markers (proteins or microRNA). In Chapter 2, a high-sensitivity TFA-free LC-MS method is described. The analysis of proteins by reversed-phase liquid chromatography (RPLC) commonly involves the use of TFA as an ion-pairing agent, even though it forms adducts and suppresses sensitivity. The presence of adducts can complicate protein molecular weight assignment especially when protein isoforms coelute as in the case of histones. To mitigate the complicating effects of TFA adducts in protein LC-MS, TFA-free methods for protein separation optimized. Protein standards and histones were used to evaluate TFA-free separations using capillary (0.3 mm id) and nanoscale (0.1 mm id) C8 columns with the ion-pairing agents, formic acid or acetic acid. The optimized method was then used to examine the applicability of the approach for histone characterization in human cancer cell lines and primary tumor cells from chronic lymphocytic leukemia patients. ii In chapter 3, a targeted mass spectrometry approach was used to examine nitration and nitrosylation of tyrosine residues on tropomyosin.
    [Show full text]
  • Atmospheric Pressure Chemical Ionization (APCI): Less Polar
    LC-MS Based Metabolomics AnalysingAnalysing thethe METABOLOMEMETABOLOME 1.1. MetaboliteMetabolite ExtractionExtraction 2.2. MetaboliteMetabolite detectiondetection (with(with oror withoutwithout separation)separation) 3.3. DataData analysisanalysis MetaboliteMetabolite DetectionDetection GC-MS: Naturally volatile or made volatile (any organic- flavors, sugars, lipids, acids) NMR – any compound containing hydrogen HP Liquid - Chromatography + detector Comon detectors- - UV-detector (phenolics) - MASS SPECTROMETER (MS) as detector (LC-MS) MetaboliteMetabolite DetectionDetection MASS SPECTROMETER (MS) as detector (LC-MS): Compounds that are not well characterized by other methods: Non volatile High molecular weight Too sensitive to heat to be analyzed by GC Your Result Sample LC/MS Sample Sample Efficient Separation Preparation Introduction Gradient (column) Data (computer) LC- MS Ions Ions Ionization UV Detection Separation MS Interface Spectra Today ComponentsComponents inin LCLC--MSMS Ion Ion Formation Sorting PeptiPeptiddee && ProteinProtein SeqSequuenciencinngg Compound ID APcI Analyzer Software LC Structure Elucidation ESI & Detector Quantitation Interface: Chemical Triple Quadrupole Atmospheric Results Separation Quadrupole -Time Of Flight Pressure Quadrupole - Ion-Trap Ionization FT-MS MassMass SpectrometerSpectrometer 1. Breaks up constituents into molecular ions and other fragments 2. The ions then pass through an electric and/or magnetic field that separates them according to their mass-to-charge ratio (m/z) 3. Measures masses MassMass SpectrometerSpectrometer 4. Universal detection method * compared to UV/VIS (PDA), fluorescence etc. * more specific than NMR 5. More sensitive for most compounds 6. Structural information on metabolite * fragmentation pattern * accurate mass 7. For both LC and GC TechnologyTechnology ofof LCLC--MSMS andand LCLC--MSMS--MSMS –– InterfacesInterfaces-- IonizationIonization (elimination(elimination ofof solventsolvent andand generationgeneration ofof gasgas--phasephase ions)ions) –– e.g.e.g.
    [Show full text]
  • Liquid Chromatography-Mass Spectrometry Interface for Detection of Extraterrestrial Organics
    LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY INTERFACE FOR DETECTION OF EXTRATERRESTRIAL ORGANICS Adrian E. Southard Stephanie A. Getty, Manuel J.Ferrance Universities Space Research Balvin, Jamie E. Elsila, Ana J2F Engineering, Charlottesville, Association, Espiritu Melina Carl VA 22911 USA 8800 Greenbelt Rd. Kotecki, Deborah W. Greenbelt, MD 20771 USA. Towner, J.P. Dworkin, 301-286-4457 Daniel P. Glavin, and Paul [email protected] R. Mahaffy NASA Goddard Space Flight Center 8800 Greenbelt Rd. Greenbelt, MD 20771 USA Abstract—The OASIS (Organics Analyzer for Sampling Icy mass spectrometry (LC-MS) [1]. Future high-priority surfaces) microchip enables electrospray or thermospray of planetary exploration will target destinations that are likely analyte for subsequent analysis by the OASIS time-of-flight mass host to a broad diversity of inorganic and organic spectrometer. Electrospray of buffer solution containing the composition. Primitive bodies, such as comets and nucleobase adenine was performed using the microchip and carbonaceous asteroids, are thought to have contributed an detected by a commercial time-of-flight mass spectrometer. Future testing of thermospray and electrospray capability will be inventory of prebiotic chemistry to the early Earth, and performed using a test fixture and vacuum chamber developed cataloguing their present-day, cryo-trapped organic diversity especially for optimization of ion spray at atmosphere and in low can help to offer more detail about the breadth of organic pressure environments. astrochemistry that is representative of the Solar System’s origins and evolution. Major classes of organics are likely TABLE OF CONTENTS to be present on these primitive, small bodies, including polycyclic aromatics, carboxylic acids, alcohols, aldehydes and ketones, amines, nucleobases, and amino acids.
    [Show full text]