Discovery and Quantitation of Protein Modifications Using Targeted Mass
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tandem Mass Spectrometry (MS–MS)
Advanced Analytical Chemistry Lecture 22 Chem 4631 Tandem Mass Spectrometry (MS–MS) Tandem mass spectrometry (MS–MS) is a term which covers a number of techniques where one stage of mass spectrometry (not necessarily the first) is used to isolate an ion of interest and a second stage is then used to probe the relationship of this ion with others from which it may have been generated or which it may generate on decomposition. Chem 5570 Tandem Mass Spectrometry (MS–MS) Chem 5570 The two analyzers (MS-MS) can be separated by a collision cell (can be another MS) into which an inert gas (e.g. argon, xenon) is admitted to collide with the selected sample ions and bring about their fragmentation. Tandem MS have the ability to perform multiple steps on a single sample. The MS selects a specific ion, fragment the ion, and generate another mass spec – able to repeat the cycle several times. Chem 5570 The analyzers can be of the same or of different types, the most common combinations being: quadrupole - quadrupole magnetic sector - quadrupole magnetic sector - magnetic sector quadrupole - time-of-flight Fragmentation experiments can also be performed on certain single analyzer mass spectrometers such as ion trap and time-of-flight instruments, the latter type using a post-source decay experiment to effect the fragmentation of sample ions. Chem 5570 Tandem Mass Spectrometry (MS–MS) TIC - Total ion current or total ion chromatogram The TIC represents the sum of all signal intensities of a single scan spectrum. The TIC is usually calculated by the data system of the mass spectrometer and plotted against time or scan number to give a measure for evaporation/ionization of a sample over the duration of the whole measurement. -
Front-End Methods for Enhancing the Analytical Power of Mass Spectrometry
FRONT-END METHODS FOR ENHANCING THE ANALYTICAL POWER OF MASS SPECTROMETRY PETER PAUL LIUNI A DISSERTAITON SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FUFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN CHEMISTRY YORK UNIVERSITY TORONTO, ONTARIO December 2015 © Peter Paul Liuni, 2015 Abstract The analytical power and versatility of mass spectrometry can be enhanced by adding ‘front-end’ devices, which provide additional functionality before, during or immediately after ElectroSpray Ionization (ESI). Such devices can include Ion mobility spectrometry (IMS) and Time-Resolved ElectroSpray Ionization (TRESI) which provide enhanced analysis of illicit compounds, protein folding, enzyme kinetics, and catalysis-linked dynamics. With respect to IMS, this work describes implementation of a hybrid Trace Compound Detector (TCD) system that combines IMS and MS to allow for rapid front- end mobility separation, followed by characterization and identification of analytical markers of seized opium by mass spectrometry. Ultimately, this device provides an avenue for rapid prosecution based on simultaneous detection and unambiguous identification of illicit drugs. TRESI is used to extend Mass Spectrometry (MS) to millisecond-timescale reaction studies. In the first instance, we combine TRESI with Travelling Wave Ion Mobility Spectrometry (TWIMS) to compare equilibrium and kinetic unfolding intermediates of cytochrome c, showing a high degree of correlation between all species populated under these substantially different regimes. We then combine TRESI with Hydrogen Deuterium Exchange (TRESI-HDX) to elucidate the relationship between structural fluctuations (conformational dynamics) of enzymes and their catalytic activity. The results of this work include a new model for catalysis-linked dynamics, in which the nature of the conformational landscape explored by an enzyme is independent of catalysis, but the rate at which the landscape is explored is enhanced for catalytically active species. -
Simultaneous Analysis of Drugs in Forensic Cases by Liquid Chromatography–High‑Resolution Orbitrap Mass Spectrometry
Chromatographia (2020) 83:53–64 https://doi.org/10.1007/s10337-019-03814-w ORIGINAL Simultaneous Analysis of Drugs in Forensic Cases by Liquid Chromatography–High‑Resolution Orbitrap Mass Spectrometry Siti U. Mokhtar1 · Chadin Kulsing2,3,4 · Jalal T. Althakafy2,5 · Alex Kotsos6 · Olaf H. Drummer6,7 · Philip J. Marriott2 Received: 10 May 2019 / Revised: 23 September 2019 / Accepted: 15 October 2019 / Published online: 31 October 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract In the present study, liquid chromatography coupled to an Orbitrap mass spectrometer (HPLC–Q-Orbitrap MS) was used as an approach for identifcation and quantifcation of 113 drugs simultaneously in biological samples (whole blood/plasma/ serum). Samples were prepared using liquid–liquid extraction conducted using a trizma/isopropanol/butyl chloride bufer system. Reversed-phase separation employing a column (50 × 2.1 mm) packed with 2.6-μm C18 particles was then performed under gradient elution with mobile phase composition consisting of acetic acid and aqueous-acetonitrile mixtures with the acetonitrile content ranging from 10 to 100% v/v. Compounds were detected with high-resolution MS operated in full scan mode having a mass accuracy < 5 ppm. In this study, isobaric compounds (same nominal mass) were easily distinguished and identifed by their diferent retention times. Extracted ion chromatograms (XICs) with narrow mass tolerance window (5 ppm) 2 provided analysis with acceptable linearity (r ) ranged from 0.9530 to 1, low limits of detection (LOD) (0.02–39 ng mL−1) and low limit of quantifcation (LOQ) (0.1–130 ng mL−1). The developed method was applied to successfully analyse drugs in 26 blood samples from positive forensic cases and proved that this technique was able to detect analytes at trace level. -
Mass Spectrometer Business Presentation Materials
Mass Spectrometer Business Presentation Materials Hiroto Itoi, Corporate Officer Deputy General Manager of the Analytical & Measuring Instruments Division Shimadzu Corporation Jul. 3, 2018 Contents I. Introduction • Expansion of Mass Spectrometry ………………………………………………………………… p.3 • History of Shimadzu's Growth in Mass Spectrometry …………………………………………… p.5 II. Overview of Mass Spectrometers • Operating Principle, Demand Trends, and Vendors ……………………………………………… p.9 • Mass Spectra ………………………………………………………………………………………… p.10 • Configuration of Mass Spectrometers …………………………………………………………… p.11 • Ionization …………………………………………………………………………………………… p.12 • Mass Separation …………………………………………………………………………………… p.14 III. Shimadzu's Mass Spectrometer Business • Product Type ………………………………………………………………………………………… p.17 • Application Software ………………………………………………………………………………… p.18 • Growth Strategy for Mass Spectrometer Business ……………………………………………… p.19 • Expand/Improve Product Lines …………………………………………………………………… p.20 • Measures to Expand Application Fields …………………………………………………………… p.24 • Measures to Automate Data Processing Using AI ……………………………………………… p.25 IV. Summary • Future Direction ……………………………………………………………………………………… p.26 July 2018 Mass Spectrometer Business Presentation Materials 2 I. Introduction Expansion of Mass Spectrometry (1) Why Mass Spectrometry? Mass spectrometry is able to analyze a wide variety of compounds with high accuracy and high efficiency (simultaneous multicomponent analysis). It offers superior characteristics that are especially beneficial in the following fields, -
Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests
Application Note: 386 Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests Rosa Viner, Terry Zhang, Scott Peterman, and Vlad Zabrouskov, Thermo Fisher Scientific, San Jose, CA, USA Introduction Materials and Methods Key Words Comprehensive, accurate identification of proteins in Sample Preparation • LTQ Orbitrap complex sample mixtures is an important fundamental capability for any proteomics research laboratory. Technology Ten µL of E. coli cell lysate diluted 20-fold with 6 M • Peptide advancements in both hardware and software continue to guanidine HCl in 50 mM ammonium bicarbonate (pH 8.0) Sequencing expand and refine our view of any proteomic system in was reduced with 5 mM DTT, alkylated with 25 mM iodoacetic acid and digested at 37 °C for 16 hours. • Protein terms of protein identities and their post-translational Identification modifications (PTMs). It has been suggested that the very HPLC recent ability to routinely obtain accurate mass measurements Column: C18 Packed tip, 75 µm x 75 mm (QSTAR Elite); • PTMs (< 5 ppm RMS) on precursor and MS/MS fragment ions C18 column, 75 µm x 100 mm (LTQ Orbitrap XL) in proteomic experiments should lead to unprecedented Mobile phase A: 0.1% Formic Acid in Water with accuracy in the ability to identify and characterize proteins.1 2% Acetonitrile This paper compares alternative approaches to this Mobile phase B: 0.1% Formic Acid in Acetonitrile challenging application using two high performance Flow Rate: 300 nL/min platforms for proteomics: a QqTOF instrument (QSTAR® Gradient: 5% B to 35% B in 90 min Elite from Applied Biosystems) and a hybrid linear ion trap- orbitrap instrument (Thermo Scientific LTQ Orbitrap XL). -
Contents • Introduction to Proteomics and Mass Spectrometry
Contents • Introduction to Proteomics and Mass spectrometry - What we need to know in our quest to explain life - Fundamental things you need to know about mass spectrometry • Interfaces and ion sources - Electrospray ionization (ESI) - conventional and nanospray - Heated nebulizer atmospheric pressure chemical ionization - Matrix assisted laser desorption • Types of MS analyzers - Magnetic sector - Quadrupole - Time-of-flight - Hybrid - Ion trap In the next step in our quest to explain what is life The human genome project has largely been completed and many other genomes are surrendering to the gene sequencers. However, all this knowledge does not give us the information that is needed to explain how living cells work. To do that, we need to study proteins. In 2002, mass spectrometry has developed to the point where it has the capacity to obtain the "exact" molecular weight of many macromolecules. At the present time, this includes proteins up to 150,000 Da. Proteins of higher molecular weights (up to 500,000 Da) can also be studied by mass spectrometry, but with less accuracy. The paradigm for sequencing of peptides and identification of proteins has changed – because of the availability of the human genome database, peptides can be identified merely by their masses or by partial sequence information, often in minutes, not hours. This new capacity is shifting the emphasis of biomedical research back to the functional aspects of cell biochemistry, the expression of particular sets of genes and their gene products, the proteins of the cell. These are the new goals of the biological scientist: o to know which proteins are expressed in each cell, preferably one cell at a time o to know how these proteins are modified, information that cannot necessarily be deduced from the nucleotide sequence of individual genes. -
Modern Mass Spectrometry
Modern Mass Spectrometry MacMillan Group Meeting 2005 Sandra Lee Key References: E. Uggerud, S. Petrie, D. K. Bohme, F. Turecek, D. Schröder, H. Schwarz, D. Plattner, T. Wyttenbach, M. T. Bowers, P. B. Armentrout, S. A. Truger, T. Junker, G. Suizdak, Mark Brönstrup. Topics in Current Chemistry: Modern Mass Spectroscopy, pp. 1-302, 225. Springer-Verlag, Berlin, 2003. Current Topics in Organic Chemistry 2003, 15, 1503-1624 1 The Basics of Mass Spectroscopy ! Purpose Mass spectrometers use the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules to separate them. Therefore, mass spectroscopy allows quantitation of atoms or molecules and provides structural information by the identification of distinctive fragmentation patterns. The general operation of a mass spectrometer is: "1. " create gas-phase ions "2. " separate the ions in space or time based on their mass-to-charge ratio "3. " measure the quantity of ions of each mass-to-charge ratio Ionization sources ! Instrumentation Chemical Ionisation (CI) Atmospheric Pressure CI!(APCI) Electron Impact!(EI) Electrospray Ionization!(ESI) SORTING DETECTION IONIZATION OF IONS OF IONS Fast Atom Bombardment (FAB) Field Desorption/Field Ionisation (FD/FI) Matrix Assisted Laser Desorption gaseous mass ion Ionisation!(MALDI) ion source analyzer transducer Thermospray Ionisation (TI) Analyzers quadrupoles vacuum signal Time-of-Flight (TOF) pump processor magnetic sectors 10-5– 10-8 torr Fourier transform and quadrupole ion traps inlet Detectors mass electron multiplier spectrum Faraday cup Ionization Sources: Classical Methods ! Electron Impact Ionization A beam of electrons passes through a gas-phase sample and collides with neutral analyte molcules (M) to produce a positively charged ion or a fragment ion. -
Novel Quadrupole Time-Of-Flight Mass Spectrometry for Shotgun Proteomics
DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER FAKULTÄT FÜR CHEMIE UND PHARMAZIE DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN Novel quadrupole time-of-flight mass spectrometry for shotgun proteomics von Scarlet Svenja Anna-Maria Beck aus Tettnang 2016 ii Erklärung Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Matthias Mann betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, den 25.04.2017 …………………………………………………………………………………………Scarlet Beck Dissertation eingereicht am 23.09.2016 1. Gutachter: Prof. Dr. Matthias Mann 2. Gutachter: Prof. Dr. Jürgen Cox Mündliche Prüfung am 04.11.2016 iii iv ABSTRACT Mass spectrometry (MS)-based proteomics has become a powerful technology for the identification and quantification of thousands of proteins. However, the coverage of complete proteomes is still very challenging due to the high sample complexity and the difference in protein concentrations. In data-dependent shotgun proteomics several peptides elute simultaneously from the column and are isolated by the quadrupole and fragmented by the collision cell one at a time. This method has two major disadvantages. On the one hand, a large number of eluting peptides cannot be targeted since the sequencing speeds of current instruments are too slow and on the other hand, peptides that only differ slightly in mass and elute together are co-isolated and co-fragmented, resulting in chimeric MS2 spectra. Therefore an urgent need for further developments and improvements of mass spectrometers remains. The aim of this thesis was to co-develop, evaluate and improve novel quadrupole time-of-flight (QTOF) mass spectrometers. In my first project I have described the developments and improvements of the hardware of the high-resolution QTOF mass spectrometer, the impact II, and have shown that this instrument can be used for very deep coverage of diverse proteomes as well as for accurate and reproducible quantification. -
Orbitrap Fusion Tribrid Mass Spectrometer
MASS SPECTROMETRY Product Specifications Thermo Scientific Orbitrap Fusion Tribrid Mass Spectrometer Unmatched analytical performance, revolutionary MS architecture The Thermo Scientific™ Orbitrap Fusion™ mass spectrometer combines the best of quadrupole, Orbitrap, and linear ion trap mass analysis in a revolutionary Thermo Scientific™ Tribrid™ architecture that delivers unprecedented depth of analysis. It enables life scientists working with even the most challenging samples—samples of low abundance, high complexity, or difficult-to-analyze chemical structure—to identify more compounds faster, quantify them more accurately, and elucidate molecular composition more thoroughly. • Tribrid architecture combines quadrupole, followed by ETD or EThCD for glycopeptide linear ion trap, and Orbitrap mass analyzers characterization or HCD followed by CID • Multiple fragmentation techniques—CID, for small-molecule structural analysis. HCD, and optional ETD and EThCD—are available at any stage of MSn, with The ultrahigh resolution of the Orbitrap mass subsequent mass analysis in either the ion analyzer increases certainty of analytical trap or Orbitrap mass analyzer results, enabling molecular-weight • Parallelization of MS and MSn acquisition determination for intact proteins and confident to maximize the amount of high-quality resolution of isobaric species. The unsurpassed data acquired scan rate and resolution of the system are • Next-generation ion sources and ion especially useful when dealing with complex optics increase system ease of operation and robustness and low-abundance samples in proteomics, • Innovative instrument control software metabolomics, glycomics, lipidomics, and makes setup easier, methods more similar applications. powerful, and operation more intuitive The intuitive user interface of the tune editor The Orbitrap Fusion Tribrid MS can perform and method editor makes instrument calibration a wide variety of analyses, from in-depth and method development easier. -
Methods of Ion Generation
Chem. Rev. 2001, 101, 361−375 361 Methods of Ion Generation Marvin L. Vestal PE Biosystems, Framingham, Massachusetts 01701 Received May 24, 2000 Contents I. Introduction 361 II. Atomic Ions 362 A. Thermal Ionization 362 B. Spark Source 362 C. Plasma Sources 362 D. Glow Discharge 362 E. Inductively Coupled Plasma (ICP) 363 III. Molecular Ions from Volatile Samples. 364 A. Electron Ionization (EI) 364 B. Chemical Ionization (CI) 365 C. Photoionization (PI) 367 D. Field Ionization (FI) 367 IV. Molecular Ions from Nonvolatile Samples 367 Marvin L. Vestal received his B.S. and M.S. degrees, 1958 and 1960, A. Spray Techniques 367 respectively, in Engineering Sciences from Purdue Univesity, Layfayette, IN. In 1975 he received his Ph.D. degree in Chemical Physics from the B. Electrospray 367 University of Utah, Salt Lake City. From 1958 to 1960 he was a Scientist C. Desorption from Surfaces 369 at Johnston Laboratories, Inc., in Layfayette, IN. From 1960 to 1967 he D. High-Energy Particle Impact 369 became Senior Scientist at Johnston Laboratories, Inc., in Baltimore, MD. E. Low-Energy Particle Impact 370 From 1960 to 1962 he was a Graduate Student in the Department of Physics at John Hopkins University. From 1967 to 1970 he was Vice F. Low-Energy Impact with Liquid Surfaces 371 President at Scientific Research Instruments, Corp. in Baltimore, MD. From G. Flow FAB 371 1970 to 1975 he was a Graduate Student and Research Instructor at the H. Laser Ionization−MALDI 371 University of Utah, Salt Lake City. From 1976 to 1981 he became I. -
High Resolution LC-MS for Screening and Quantitative
High Resolution LC-MS for Screening and Quantitative Analysis of Antibiotics in Drinking Water Using an Orbitrap and Online Sample Preparation Jonathan Beck, Charles Yang, Dipankar Ghosh, Kristi Akervik; Thermo Fisher Scientific, San Jose, CA, USA Mass Spectrometry TABLE 2. List of antibiotics analyzed with their theoretical masses, LOQs and FIGURE 4. Spectral comparision of the MS2 spectrum of the antibiotic Overview Results reproducibility trimethoprim obtained at a concentration of 80 pg/mL. The library reference The Exactive™ Plus Orbitrap mass spectrometer was used in this experiment. The spectrum is the top spectrum, the lower spectrum is from the sample. The Purpose: To demonstrate online sample pre-concentration and extraction of water Exactive Plus was operated in alternating full scan and all ion fragmentation (AIF) Quantitation Compound Theoretical Mass (m/z) LOQ (pg/mL) % RSD at LOQ samples and analysis with high-resolution, accurate mass (HR/AM) detection, comparison was performed with ExactFinder software. mode with positive electrospray ionization. One scan of full scan MS data was Acquisition and quantitation was carried out using TraceFinder™ software. The Carbamazepine 332.14050 0.2 8.90 quantitation and confirmation. collected, and subsequently, all of the ions entering the MS were fragmented in the theoretical mass of each protonated antibiotic compound was used as the mass for Erythromycin 734.46852 40.0 14.30 Methods: Inject 1 mL water samples directly onto a trapping column. The trapped higher-energy C-trap dissociation (HCD) collision cell at a collision energy (CE) of quantitation in this analysis. Calibration lines were created for each compound, and fit Ketoprofen 255.10157 1.0 9.90 compounds are then backflushed onto an analytical HPLC column and detected using 30 eV with a 20% stepped CE, and analyzed in the Orbitrap mass analyzer. -
A Novel High Resolution Accurate Mass Orbitrap-Based GC-MS
ROUTINE OR RESEARCH GC-Orbitrap for Environmental Analysis a collaboration between ROUTINE OR RESEARCH GC-Orbitrap for Environmental Analysis Foreword A Novel High Resolution Accurate Mass Orbitrap-based GC-MS Platform for Routine Analysis of Short Chained Chlorinated Paraffins In this study, the performance of a novel bench top, high resolution accurate mass Orbitrap™-based GC-MS was tested for the analysis of SCCPs. System performance was tested using full-scan acquisition and simple instrumental setup. Pyrolysis-GC-Orbitrap MS - A Powerful Analytical Tool for Identification and Quantification of Microplastics in a Biological Matrix The purpose of the experiments described in this work was to assess the applicability of pyrolysis-gas chromatography-Orbitrap™ mass spectrometry for the qualitative and quantitative analysis of plastic polymers in complex biological matrices. Low Level Quantification of NDMA and Non-targeted Contaminants Screening in Drinking Water using GC Orbitrap Mass Spectrometry In this work, a sensitive and selective method for NDMA detection and quantification using high resolution accurate mass GC Orbitrap™ technology is described. Overcoming Analytical Challenges for Polybrominated Diphenyl Ethers (PBDEs) Analysis in Environmental Samples using Gas Chromatography – Orbitrap Mass Spectrometry The note demonstrates the quantitative performance of the Thermo Scientific™ Exactive™ GC Orbitrap™ GC-MS mass spectrometer for the analysis of polybrominated diphenyl ethers (PBDEs) in environmental samples. Versatility of GC-Orbitrap Mass Spectrometry for the Ultra-trace Detection of Persistent Organic Pollutants in Penguin Blood from Antarctica In this study, the performance of the Thermo Scientific™ Q Exactive™ GC Orbitrap™ mass spectrometer was evaluated for routine analysis of POPs within King penguin blood from Antarctica.